Supporting Information
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Aspartate Aminotransferase (AST, GOT), Human Liver
BioVision 05/18 For research use only Aspartate Aminotransferase (AST, GOT), Human Liver CATALOG NO: P1299-100 1 units RELATED PRODUCTS: ALTERNATE NAMES: Aspartate Transaminase, Glutamate Oxaloacetate, AST, GOT, Aspartate Aminotransferase (AST) (Mouse) ELISA Kit (Cat. No. E4320) sGOT, AspAT, ASAT, serum glutamic oxaloacetic transaminase, AAT Aspartate Aminotransferase (AST) (Human) ELISA Kit (Cat. No. E4319) Aspartate Aminotransferase (AST) (Rat) ELISA Kit (Cat. No. E4321) SOURCE: Human Liver Aspartate Aminotransferase (AST or SGOT) Activity Colorimetric Assay Kit (Cat. PURITY: Purified No. K753) Anti-GOT2 Antibody (cat. No. A1273) MOL. WEIGHT: ~92 kDa Anti-GOT1 Antibody (Cat. No. A1272) FORM: Lyophilized GOT2, human recombinant (Cat. No. 7809) GOT1, human recombinant (Cat. No. 7808) STORAGE CONDITIONS: Store at -20°C. Avoid repeated freezing and thawing cycles. BIOLOGICAL ACTIVITY: ≥ 1 U/mg (Dimension® Clinical Chemistry System) UNIT DEFINITATION: One unit will catalyze the transamination of one micromole of L- aspartate to alpha-ketoglutarate forming L-glutamate and oxaloacetate per minute at 37°C and pH 7.8.Measured at 340 nm as one equimolar amount of NAD produced by a coupled reaction. RECONSTITUTION: > 1 mg/mL in tris buffered saline, 1% BSA, pH 8.0. AST/SGOT is found in many tissues throughout the body, including DESCRIPTION: the liver, heart, muscles, kidney, and brain. If any of these organs or tissues is affected by disease or injury, AST is released into the bloodstream. This means that AST isn't as specific an indicator of liver damage as ALT (also known as alanine aminotransferase, another type of enzyme found almost entirely in the liver). The ratio of AST and ALT levels are commonly used as biomarkers for liver health. -
Pathogen Receptor Discovery with a Microfluidic Human Membrane Protein Array
Pathogen receptor discovery with a microfluidic human membrane protein array Yair Glicka,1,Ya’ara Ben-Aria,1, Nir Draymanb, Michal Pellacha, Gregory Neveuc,d, Jim Boonyaratanakornkitc,d, Dorit Avrahamia, Shirit Einavc,d, Ariella Oppenheimb, and Doron Gerbera,2 aMina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, 5290002, Israel; bFaculty of Medicine, Hebrew University, Jerusalem, 9112001, Israel; cDepartment of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA 94305; and dDepartment of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305 Edited by Stephen R. Quake, Stanford University, Stanford, CA, and approved March 1, 2016 (received for review September 20, 2015) The discovery of how a pathogen invades a cell requires one to and translate into proteins in situ (10, 11). This approach has determine which host cell receptors are exploited. This determina- enabled the study of the Pseudomonas aeruginosa outer mem- tion is a challenging problem because the receptor is invariably a brane protein for immunity (12). membrane protein, which represents an Achilles heel in proteomics. Combining integrated microfluidics with microarrays and We have developed a universal platform for high-throughput ex- in vitro transcription and translation (TNT) systems may over- – pression and interaction studies of membrane proteins by creating a come all of the above mentioned difficulties (Fig. 1A) (13 16). microfluidic-based comprehensive human membrane protein array The integrated microfluidic device allows smart liquid manage- (MPA). The MPA is, to our knowledge, the first of its kind and offers ment in very low volumes, partitioning, and process integration a powerful alternative to conventional proteomics by enabling the (i.e., protein expression, immobilization, and interaction exper- simultaneous study of 2,100 membrane proteins. -
E2F1 Interactive with BRCA1 Pathway Induces HCC Two Different Small Molecule Metabolism Or Cell Cycle Regulation Via Mitochondrion Or CD4+T to Cytosol
Received: 29 March 2017 | Accepted: 3 May 2017 DOI: 10.1002/jcp.25988 ORIGINAL RESEARCH ARTICLE E2F1 interactive with BRCA1 pathway induces HCC two different small molecule metabolism or cell cycle regulation via mitochondrion or CD4+T to cytosol Qingchun Chen1 | Lin Wang1 | Minghu Jiang2 | Juxiang Huang1 | Zhenfu Jiang1 | Haitao Feng3 | Zhili Ji4 1 Computation and Systems Biology, School of Electronic Engineering, Beijing University of Breast cancer 1 (BRCA1) and E2F transcription factor 1 (E2F1) are related to metabolism Posts and Telecommunications, Beijing, China and cell cycle regulation. However, the corresponding mechanism is not clear in HCC. 2 Lab of Computational Linguistics, School of Humanities and Social Sciences, Tsinghua High BRCA1 direct pathway was constructed with 11 molecules from E2F1 feedback- University, Beijing, China interactive network in HCC by GRNInfer based on 39 Pearson mutual positive 3 Dean department, Heilongjiang University of corelation CC ≥0.25 molecules with E2F1. Integration of GRNInfer with GO, KEGG, Chinese Medicine, Harbin, China BioCarta, GNF_U133A, UNIGENE_EST, Disease, GenMAPP databases by DAVID and 4 Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China MAS 3.0, E2F1 feedback-interactive BRCA1 indirect mitochondrion to cytosol pathway was identified as upstream LAPTM4B activation, feedback UNG, downstream BCAT1- Correspondence Prof., Dr. Lin Wang, Computation and HIST1H2AD-TK1 reflecting protein, and DNA binding with enrichment of small molecule Systems Biology, School of Electronics metabolism; The corresponding BRCA1 indirect membrane to cytosol pathway as Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China. upstream CCNB2-NUSAP1 activation, feedback TTK-HIST1H2BJ-CENPF, downstream (Minghu Jiang c/o Lin Wang). -
Genome-Wide Analysis of Host-Chromosome Binding Sites For
Lu et al. Virology Journal 2010, 7:262 http://www.virologyj.com/content/7/1/262 RESEARCH Open Access Genome-wide analysis of host-chromosome binding sites for Epstein-Barr Virus Nuclear Antigen 1 (EBNA1) Fang Lu1, Priyankara Wikramasinghe1, Julie Norseen1,2, Kevin Tsai1, Pu Wang1, Louise Showe1, Ramana V Davuluri1, Paul M Lieberman1* Abstract The Epstein-Barr Virus (EBV) Nuclear Antigen 1 (EBNA1) protein is required for the establishment of EBV latent infection in proliferating B-lymphocytes. EBNA1 is a multifunctional DNA-binding protein that stimulates DNA replication at the viral origin of plasmid replication (OriP), regulates transcription of viral and cellular genes, and tethers the viral episome to the cellular chromosome. EBNA1 also provides a survival function to B-lymphocytes, potentially through its ability to alter cellular gene expression. To better understand these various functions of EBNA1, we performed a genome-wide analysis of the viral and cellular DNA sites associated with EBNA1 protein in a latently infected Burkitt lymphoma B-cell line. Chromatin-immunoprecipitation (ChIP) combined with massively parallel deep-sequencing (ChIP-Seq) was used to identify cellular sites bound by EBNA1. Sites identified by ChIP- Seq were validated by conventional real-time PCR, and ChIP-Seq provided quantitative, high-resolution detection of the known EBNA1 binding sites on the EBV genome at OriP and Qp. We identified at least one cluster of unusually high-affinity EBNA1 binding sites on chromosome 11, between the divergent FAM55 D and FAM55B genes. A con- sensus for all cellular EBNA1 binding sites is distinct from those derived from the known viral binding sites, sug- gesting that some of these sites are indirectly bound by EBNA1. -
Ornithine Aminotransferase, an Important Glutamate-Metabolizing Enzyme at the Crossroads of Multiple Metabolic Pathways
biology Review Ornithine Aminotransferase, an Important Glutamate-Metabolizing Enzyme at the Crossroads of Multiple Metabolic Pathways Antonin Ginguay 1,2, Luc Cynober 1,2,*, Emmanuel Curis 3,4,5,6 and Ioannis Nicolis 3,7 1 Clinical Chemistry, Cochin Hospital, GH HUPC, AP-HP, 75014 Paris, France; [email protected] 2 Laboratory of Biological Nutrition, EA 4466 PRETRAM, Faculté de Pharmacie, Université Paris Descartes, 75006 Paris, France 3 Laboratoire de biomathématiques, plateau iB2, Faculté de Pharmacie, Université Paris Descartes, 75006 Paris, France; [email protected] (E.C.); [email protected] (I.N.) 4 UMR 1144, INSERM, Université Paris Descartes, 75006 Paris, France 5 UMR 1144, Université Paris Descartes, 75006 Paris, France 6 Service de biostatistiques et d’informatique médicales, hôpital Saint-Louis, Assistance publique-hôpitaux de Paris, 75010 Paris, France 7 EA 4064 “Épidémiologie environnementale: Impact sanitaire des pollutions”, Faculté de Pharmacie, Université Paris Descartes, 75006 Paris, France * Correspondence: [email protected]; Tel.: +33-158-411-599 Academic Editors: Arthur J.L. Cooper and Thomas M. Jeitner Received: 26 October 2016; Accepted: 24 February 2017; Published: 6 March 2017 Abstract: Ornithine δ-aminotransferase (OAT, E.C. 2.6.1.13) catalyzes the transfer of the δ-amino group from ornithine (Orn) to α-ketoglutarate (aKG), yielding glutamate-5-semialdehyde and glutamate (Glu), and vice versa. In mammals, OAT is a mitochondrial enzyme, mainly located in the liver, intestine, brain, and kidney. In general, OAT serves to form glutamate from ornithine, with the notable exception of the intestine, where citrulline (Cit) or arginine (Arg) are end products. -
UCSD MOLECULE PAGES Doi:10.6072/H0.MP.A002549.01 Volume 1, Issue 2, 2012 Copyright UC Press, All Rights Reserved
UCSD MOLECULE PAGES doi:10.6072/H0.MP.A002549.01 Volume 1, Issue 2, 2012 Copyright UC Press, All rights reserved. Review Article Open Access WAVE2 Tadaomi Takenawa1, Shiro Suetsugu2, Daisuke Yamazaki3, Shusaku Kurisu1 WASP family verprolin-homologous protein 2 (WAVE2, also called WASF2) was originally identified by its sequence similarity at the carboxy-terminal VCA (verprolin, cofilin/central, acidic) domain with Wiskott-Aldrich syndrome protein (WASP) and N-WASP (neural WASP). In mammals, WAVE2 is ubiquitously expressed, and its two paralogs, WAVE1 (also called suppressor of cAMP receptor 1, SCAR1) and WAVE3, are predominantly expressed in the brain. The VCA domain of WASP and WAVE family proteins can activate the actin-related protein 2/3 (Arp2/3) complex, a major actin nucleator in cells. Proteins that can activate the Arp2/3 complex are now collectively known as nucleation-promoting factors (NPFs), and the WASP and WAVE families are a founding class of NPFs. The WAVE family has an amino-terminal WAVE homology domain (WHD domain, also called the SCAR homology domain, SHD) followed by the proline-rich region that interacts with various Src-homology 3 (SH3) domain proteins. The VCA domain located at the C-terminus. WAVE2, like WAVE1 and WAVE3, constitutively forms a huge heteropentameric protein complex (the WANP complex), binding through its WHD domain with Abi-1 (or its paralogs, Abi-2 and Abi-3), HSPC300 (also called Brick1), Nap1 (also called Hem-2 and NCKAP1), Sra1 (also called p140Sra1 and CYFIP1; its paralog is PIR121 or CYFIP2). The WANP complex is recruited to the plasma membrane by cooperative action of activated Rac GTPases and acidic phosphoinositides. -
Differential Expression Profiling of Gene Response to Ionizing Radiation in Two Endometrial Cancer Cell Lines with Distinct Radiosensitivities
625-634 28/1/2009 12:32 ÌÌ ™ÂÏ›‰·625 ONCOLOGY REPORTS 21: 625-634, 2009 625 Differential expression profiling of gene response to ionizing radiation in two endometrial cancer cell lines with distinct radiosensitivities XUE-LIAN DU1,2, TAO JIANG2, ZE-QING WEN1, QING-SHUI LI2, RONG GAO2 and FEI WANG1 1Department of Gynecologic Oncology, Shandong Tumor Hospital, Shandong University, Jinan 250117; 2Department of Obstetrics and Gynecology, Provincial Hospital Affiliated to Shandong University, Jinan 250021, P.R. China Received November 4, 2008; Accepted December 17, 2008 DOI: 10.3892/or_00000265 Abstracts. Although radiotherapy is routinely administered Introduction to high-risk endometrial carcinoma and offer a significant disease-free survival advantage, the therapeutic effect is Endometrial cancer is one of the most common gynecological sometimes limited by the occurrence of radioresistance. To malignancies worldwide. Surgery is the preferred initial determine the patterns of gene expression responsible for treatment and most women with early-stage, low-risk disease the radioresistance and to search for potential target genes for will do well without adjuvant radiotherapy. However, both radiotherapy, we selected two cell lines with distinct radio- intermediate-risk and high-risk patients are at risk for local- sensitivities using colony-formation assay from four endo- regional relapse and therefore adjuvant radiotherapy, such as metrial cancer cell lines. The cell cycle distribution showed pelvic radiation, vaginal brachytherapy, and whole-abdomen higher fractions of G2/M phase cells in the radiosensitive cell radiation, is essential for local control (1). Johnson and line KLE after radiation compared with the radioresistant cell colleagues reported that adjuvant external-beam pelvic radio- line ISK. -
Human Placenta Exosomes: Biogenesis, Isolation, Composition, and Prospects for Use in Diagnostics
International Journal of Molecular Sciences Review Human Placenta Exosomes: Biogenesis, Isolation, Composition, and Prospects for Use in Diagnostics Evgeniya E. Burkova 1,* , Sergey E. Sedykh 1,2 and Georgy A. Nevinsky 1,2 1 SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia; [email protected] (S.E.S.); [email protected] (G.A.N.) 2 Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia * Correspondence: [email protected]; Tel.: +7-(383)-363-51-27 Abstract: Exosomes are 40–100 nm nanovesicles participating in intercellular communication and transferring various bioactive proteins, mRNAs, miRNAs, and lipids. During pregnancy, the placenta releases exosomes into the maternal circulation. Placental exosomes are detected in the maternal blood even in the first trimester of pregnancy and their numbers increase significantly by the end of pregnancy. Exosomes are necessary for the normal functioning of the placenta and fetal development. Effects of exosomes on target cells depend not only on their concentration but also on their intrinsic components. The biochemical composition of the placental exosomes may cause various complications of pregnancy. Some studies relate the changes in the composition of nanovesicles to placental dysfunction. Isolation of placental exosomes from the blood of pregnant women and the study of protein, lipid, and nucleic composition can lead to the development of methods for early diagnosis of pregnancy pathologies. This review describes the biogenesis of exosomes, methods Citation: Burkova, E.E.; Sedykh, S.E.; of their isolation, analyzes their biochemical composition, and considers the prospects for using Nevinsky, G.A. Human Placenta exosomes to diagnose pregnancy pathologies. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Focus on the Small Heat Shock Protein HSPB1 Autofagie in De Erfelij
Faculteit Faculteit Farmaceutische, Biomedische en Diergeneeskundige wetenschappen Biochemie en Biotechnologie Autophagy in inherited peripheral neuropathies: Focus on the small heat shock protein HSPB1 Autofagie in de erfelijke perifere neuropathieën: Focus op de kleine heat shock proteïne HSPB1 Proefschrift voorgelegd tot het behalen van de graad van Doctor in de Wetenschappen: Biochemie en Biotechnologie aan de Universiteit Antwerpen. te verdedigen door Mansour HAIDAR Promotor Prof. Dr. Vincent Timmerman Antwerpen, 2018 1 2 “Haud igitur redit ad Nihilum res ulla, sed omnes Discidio redeunt in corpora materiai” Lucretius, De Rerum Natura, Book I. 250 3 4 Members of the jury Chair Prof. Dr. Wim Vanden Berghe, PhD (UA, Antwerp, Belgium) Promotor Prof. Dr. Vincent Timmerman, PhD (UA, Antwerp, Belgium) Internal jury member Prof. Dr. Wim Martinet, PhD (UA, Antwerp, Belgium) External jury members Prof. Dr. Joy Irobi (UHasselt, Hasselt, Belgium) Prof. Dr. Maurizio D’Antonio (San Raffaele Institute, Milan, Italy) Prof. Dr. Ir. Winnok De Vos (UA, Antwerp, Belgium) 5 6 Table of Contents Summary/Samenvatting 9 Rationale and Aims 13 Introduction Chapter 1 Autophagy as an emerging common pathomechanism in inherited 15 peripheral neuropathies Chapter 2 Small heat shock proteins: Their role in proteostasis 79 and neurodegeneration Results Chapter 3 HSPB1 is required for Autophagy: Insights from CMT-causing mutations 103 Chapter 4 An interactomics study of HSPB1 wild-type and mutant links it to the 129 autophagy receptor P62 Discussion 179 List of abbreviations 195 Curriculum Vitae 199 Acknowledgements 203 7 8 Summary Inherited peripheral neuropathies (IPNs) are genetically heterogeneous disorders affecting mainly the peripheral nervous system and with over 1500 mutations in more than 80 affected genes discovered so far. -
Systems Analysis Implicates WAVE2&Nbsp
JACC: BASIC TO TRANSLATIONAL SCIENCE VOL.5,NO.4,2020 ª 2020 THE AUTHORS. PUBLISHED BY ELSEVIER ON BEHALF OF THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION. THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY-NC-ND LICENSE (http://creativecommons.org/licenses/by-nc-nd/4.0/). PRECLINICAL RESEARCH Systems Analysis Implicates WAVE2 Complex in the Pathogenesis of Developmental Left-Sided Obstructive Heart Defects a b b b Jonathan J. Edwards, MD, Andrew D. Rouillard, PHD, Nicolas F. Fernandez, PHD, Zichen Wang, PHD, b c d d Alexander Lachmann, PHD, Sunita S. Shankaran, PHD, Brent W. Bisgrove, PHD, Bradley Demarest, MS, e f g h Nahid Turan, PHD, Deepak Srivastava, MD, Daniel Bernstein, MD, John Deanfield, MD, h i j k Alessandro Giardini, MD, PHD, George Porter, MD, PHD, Richard Kim, MD, Amy E. Roberts, MD, k l m m,n Jane W. Newburger, MD, MPH, Elizabeth Goldmuntz, MD, Martina Brueckner, MD, Richard P. Lifton, MD, PHD, o,p,q r,s t d Christine E. Seidman, MD, Wendy K. Chung, MD, PHD, Martin Tristani-Firouzi, MD, H. Joseph Yost, PHD, b u,v Avi Ma’ayan, PHD, Bruce D. Gelb, MD VISUAL ABSTRACT Edwards, J.J. et al. J Am Coll Cardiol Basic Trans Science. 2020;5(4):376–86. ISSN 2452-302X https://doi.org/10.1016/j.jacbts.2020.01.012 JACC: BASIC TO TRANSLATIONALSCIENCEVOL.5,NO.4,2020 Edwards et al. 377 APRIL 2020:376– 86 WAVE2 Complex in LVOTO HIGHLIGHTS ABBREVIATIONS AND ACRONYMS Combining CHD phenotype–driven gene set enrichment and CRISPR knockdown screening in zebrafish is an effective approach to identifying novel CHD genes. -
Supplementary Materials
1 Supplementary Materials: Supplemental Figure 1. Gene expression profiles of kidneys in the Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice. (A) A heat map of microarray data show the genes that significantly changed up to 2 fold compared between Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice (N=4 mice per group; p<0.05). Data show in log2 (sample/wild-type). 2 Supplemental Figure 2. Sting signaling is essential for immuno-phenotypes of the Fcgr2b-/-lupus mice. (A-C) Flow cytometry analysis of splenocytes isolated from wild-type, Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice at the age of 6-7 months (N= 13-14 per group). Data shown in the percentage of (A) CD4+ ICOS+ cells, (B) B220+ I-Ab+ cells and (C) CD138+ cells. Data show as mean ± SEM (*p < 0.05, **p<0.01 and ***p<0.001). 3 Supplemental Figure 3. Phenotypes of Sting activated dendritic cells. (A) Representative of western blot analysis from immunoprecipitation with Sting of Fcgr2b-/- mice (N= 4). The band was shown in STING protein of activated BMDC with DMXAA at 0, 3 and 6 hr. and phosphorylation of STING at Ser357. (B) Mass spectra of phosphorylation of STING at Ser357 of activated BMDC from Fcgr2b-/- mice after stimulated with DMXAA for 3 hour and followed by immunoprecipitation with STING. (C) Sting-activated BMDC were co-cultured with LYN inhibitor PP2 and analyzed by flow cytometry, which showed the mean fluorescence intensity (MFI) of IAb expressing DC (N = 3 mice per group). 4 Supplemental Table 1. Lists of up and down of regulated proteins Accession No.