Pathogen Receptor Discovery with a Microfluidic Human Membrane Protein Array

Total Page:16

File Type:pdf, Size:1020Kb

Pathogen Receptor Discovery with a Microfluidic Human Membrane Protein Array Pathogen receptor discovery with a microfluidic human membrane protein array Yair Glicka,1,Ya’ara Ben-Aria,1, Nir Draymanb, Michal Pellacha, Gregory Neveuc,d, Jim Boonyaratanakornkitc,d, Dorit Avrahamia, Shirit Einavc,d, Ariella Oppenheimb, and Doron Gerbera,2 aMina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, 5290002, Israel; bFaculty of Medicine, Hebrew University, Jerusalem, 9112001, Israel; cDepartment of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA 94305; and dDepartment of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305 Edited by Stephen R. Quake, Stanford University, Stanford, CA, and approved March 1, 2016 (received for review September 20, 2015) The discovery of how a pathogen invades a cell requires one to and translate into proteins in situ (10, 11). This approach has determine which host cell receptors are exploited. This determina- enabled the study of the Pseudomonas aeruginosa outer mem- tion is a challenging problem because the receptor is invariably a brane protein for immunity (12). membrane protein, which represents an Achilles heel in proteomics. Combining integrated microfluidics with microarrays and We have developed a universal platform for high-throughput ex- in vitro transcription and translation (TNT) systems may over- – pression and interaction studies of membrane proteins by creating a come all of the above mentioned difficulties (Fig. 1A) (13 16). microfluidic-based comprehensive human membrane protein array The integrated microfluidic device allows smart liquid manage- (MPA). The MPA is, to our knowledge, the first of its kind and offers ment in very low volumes, partitioning, and process integration a powerful alternative to conventional proteomics by enabling the (i.e., protein expression, immobilization, and interaction exper- simultaneous study of 2,100 membrane proteins. We characterized iments). Microarray technology provides the means for pro- direct interactions of a whole nonenveloped virus (simian virus 40), gramming thousands of different experiments (17). In vitro TNT as well as those of the hepatitis delta enveloped virus large form expression systems allow protein biosynthesis and are compatible with high throughput (18). Such systems are commercially avail- antigen, with candidate host receptors expressed on the MPA. Se- able and benefit from fast protein expression, low reaction vol- lected newly discovered membrane protein–pathogen interactions umes, and short reaction times and enable expression of synthetic were validated by conventional methods, demonstrating that the proteins with inserted epitope tags. Adding microsomal mem- MPA is an important tool for cellular receptor discovery and for branes enable the correct folding of membrane proteins and understanding pathogen tropism. support posttranslational modifications, such as glycosylation (9). In short, the microfluidic platform facilitates using in vitro pathogen–host interactions | membrane protein array | TNT systems to produce a reliable membrane protein array receptor discovery | integrated microfluidics (MPA) from DNA with high sensitivity, low material and protein consumption, and compatibility with membrane proteins. he human genome contains ∼21,000 distinct protein-coding In this study, we used a microfluidic platform to combine Tgenes (1), out of which ∼5,360 code for membrane proteins microarray technology, cell-free protein expression, and integrated (2). Membrane proteins are critical for many cellular processes, microfluidics, allowing high-throughput screening of pathogens such as signaling, transport, cell–cell communication, and also with a human membrane proteome library. As a proof-of-concept, interaction with pathogens leading to various cellular responses. we screened two pathogens differing in structure and physiology. It is not surprising that 60% of drugs currently in the market The first was simian virus 40 (SV40), a nonenveloped polyomavirus target proteins at the cell surface (3). Mapping molecular inter- containing circular double-stranded DNA, which can induce actions of membrane proteins is, therefore, of utmost importance. membrane invaginations, similarly to other polyomaviruses. It Pathogen–host recognition involves surface interactions regulated causes infections of the kidney and possibly also other tissues by membrane proteins. Many interactions between membrane proteins and pathogens are unknown, partly because of the low Significance sensitivity and limited compatibility of current methodologies with membrane proteins (4). These limitations pose a major obstacle in In this work, we report, to our knowledge, the first in vitro tool understanding pathogen tropism, a public health concern in view for host–pathogen screening that encompasses thousands of of emerging diseases, e.g., severe acute respiratory syndrome and functional insoluble proteins—primarily transmembrane pro- Ebola. There is therefore a need for new approaches that would teins—immobilized within a microfluidic device. We discovered recapitulate the pathogen–host molecular recognition, let alone in previously unknown protein–pathogen interactions, and then the context of intact pathogens. selected interactions were further validated by conventional Mapping protein–protein interaction (PPI) is a major chal- methods. Considering the tremendous difficulty in discovering lenge in proteomics. Many molecular interactions are transient pathogen receptors, this in vitro high-throughput approach is and weak, leading to low yield of bound material and thus de- extremely important and efficient for receptor discovery and manding highly sensitive detection methods. Current methods understanding pathogen tropism, with relevance to emerging for characterizing PPI networks suffer from several basic disad- human diseases. vantages: low sensitivity, leading to high false negative rate; low specificity, leading to high false positive rate (5–7); low coverage Author contributions: Y.G., Y.B.-A., N.D., D.A., S.E., A.O., and D.G. designed research; Y.G., of known interactions; and high variability, even in screens from Y.B.-A., N.D., G.N., J.B., and S.E. performed research; A.O. contributed new reagents/ the same species (4). Protein arrays could potentially override analytic tools; Y.G., Y.B.-A., N.D., M.P., G.N., J.B., D.A., S.E., A.O., and D.G. analyzed data; and Y.G., Y.B.-A., M.P., A.O., and D.G. wrote the paper. such limitations (8), but suffer from a purification bottleneck and limited functionality after deposition (9). These difficulties are The authors declare no conflict of interest. even more pronounced with membrane proteins. Membrane pro- This article is a PNAS Direct Submission. teins are usually in low abundance; in addition, they are in- 1Y.G. and Y.B.-A. contributed equally to this work. compatible with high-throughput methods (e.g., yeast two-hybrid) 2To whom correspondence should be addressed. E-mail: [email protected]. and are difficult to purify in functional form (e.g., protein ar- This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. rays). One partial solution to these obstacles was to print DNA 1073/pnas.1518698113/-/DCSupplemental. 4344–4349 | PNAS | April 19, 2016 | vol. 113 | no. 16 www.pnas.org/cgi/doi/10.1073/pnas.1518698113 Downloaded by guest on September 24, 2021 Fig. 1. Membrane protein array generated by integrated microfluidic platform. (A) An integrated microfluidics platform (Left) was used for on-chip ex- pression of membrane proteins, to serve as “baits” for protein interactions or modifications (29). The device consists of two polydimethylsiloxane (PDMS) layers, a flow layer with 64 × 64 unit cells array (gray), and a control layer with micromechanical valves (colored) that manipulate the flow of fluids in the experiment (Center). The sandwich valves (pink) separate neighboring unit cells; the neck valves (green) divide each unit cell into a DNA compartment and a reaction compartment. The button valves (blue) enable surface patterning to promote binding of proteins to an antibody surface. The button valves serve as mechanical traps of molecular interactions (MITOMI) and allow measurement at equilibrium concentration. MITOMI increases the sensitivity of the system, facilitating detection of weak and transient interactions (SI Appendix, Fig. S6). Combining the microfluidic platform with microarray technology enables BIOPHYSICS AND programming of the device with up to several thousand spotted genes (Right). Using assembly PCR (SI Appendix, Fig. S1), we added c-Myc (N-terminal) and COMPUTATIONAL BIOLOGY His6 (C-terminal) tags to the ORFs, creating synthetic genes. On-chip in vitro protein expression, following the synthetic gene programming, combined with the corresponding antibody surface patterning, facilitates the self-assembly of a MPA using cell-free TNT (rabbit reticulocyte). The immobilized bait proteins are labeled with fluorescent antibodies and quantified by using a microarray scanner. Expressed proteins form a green circle below the button valve (Right). (B) We expressed 2,686 different human membrane proteins on chip. The z axis represents the average expression level (n = 4); x and y axes represent the position on-chip in the 2D protein array. Membrane proteins were immobilized on the surface by their C terminus (B) or N terminus (C). Unspotted (red) chambers were used as negative controls. Levels of expression
Recommended publications
  • Function in Vertebrates Receptor-Containing Adaptor
    Evidence for Evolving Toll-IL-1 Receptor-Containing Adaptor Molecule Function in Vertebrates This information is current as Con Sullivan, John H. Postlethwait, Christopher R. Lage, of September 30, 2021. Paul J. Millard and Carol H. Kim J Immunol 2007; 178:4517-4527; ; doi: 10.4049/jimmunol.178.7.4517 http://www.jimmunol.org/content/178/7/4517 Downloaded from References This article cites 60 articles, 30 of which you can access for free at: http://www.jimmunol.org/content/178/7/4517.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 30, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2007 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Evidence for Evolving Toll-IL-1 Receptor-Containing Adaptor Molecule Function in Vertebrates1 Con Sullivan,* John H. Postlethwait,† Christopher R. Lage,* Paul J. Millard,‡ and Carol H. Kim2* In mammals, Toll-IL-1R-containing adaptor molecule 1 (TICAM1)-dependent TLR pathways induce NF-␬B and IFN-␤ re- sponses.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supporting Information
    Supporting Information Edgar et al. 10.1073/pnas.1601895113 SI Methods (Actimetrics), and recordings were analyzed using LumiCycle Mice. Sample size was determined using the resource equation: Data Analysis software (Actimetrics). E (degrees of freedom in ANOVA) = (total number of exper- – Cell Cycle Analysis of Confluent Cell Monolayers. NIH 3T3, primary imental animals) (number of experimental groups), with −/− sample size adhering to the condition 10 < E < 20. For com- WT, and Bmal1 fibroblasts were sequentially transduced − − parison of MuHV-4 and HSV-1 infection in WT vs. Bmal1 / with lentiviral fluorescent ubiquitin-based cell cycle indicators mice at ZT7 (Fig. 2), the investigator did not know the genotype (FUCCI) mCherry::Cdt1 and amCyan::Geminin reporters (32). of the animals when conducting infections, bioluminescence Dual reporter-positive cells were selected by FACS (Influx Cell imaging, and quantification. For bioluminescence imaging, Sorter; BD Biosciences) and seeded onto 35-mm dishes for mice were injected intraperitoneally with endotoxin-free lucif- subsequent analysis. To confirm that expression of mCherry:: Cdt1 and amCyan::Geminin correspond to G1 (2n DNA con- erin (Promega E6552) using 2 mg total per mouse. Following < ≤ anesthesia with isofluorane, they were scanned with an IVIS tent) and S/G2 (2 n 4 DNA content) cell cycle phases, Lumina (Caliper Life Sciences), 15 min after luciferin admin- respectively, cells were stained with DNA dye DRAQ5 (abcam) and analyzed by flow cytometry (LSR-Fortessa; BD Biosci- istration. Signal intensity was quantified using Living Image ences). To examine dynamics of replicative activity under ex- software (Caliper Life Sciences), obtaining maximum radiance perimental confluent conditions, synchronized FUCCI reporter for designated regions of interest (photons per second per − − − monolayers were observed by time-lapse live cell imaging over square centimeter per Steradian: photons·s 1·cm 2·sr 1), relative 3 d (Nikon Eclipse Ti-E inverted epifluorescent microscope).
    [Show full text]
  • WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT (51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C12Q 1/68 (2018.01) A61P 31/18 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12Q 1/70 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2018/056167 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 16 October 2018 (16. 10.2018) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/573,025 16 October 2017 (16. 10.2017) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, ΓΕ , IS, IT, LT, LU, LV, (71) Applicant: MASSACHUSETTS INSTITUTE OF MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Cambridge, Massachusetts 02139 (US).
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • The Tumor Suppressor Notch Inhibits Head and Neck Squamous Cell
    The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 12-2015 THE TUMOR SUPPRESSOR NOTCH INHIBITS HEAD AND NECK SQUAMOUS CELL CARCINOMA (HNSCC) TUMOR GROWTH AND PROGRESSION BY MODULATING PROTO-ONCOGENES AXL AND CTNNAL1 (α-CATULIN) Shhyam Moorthy Shhyam Moorthy Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Biochemistry, Biophysics, and Structural Biology Commons, Cancer Biology Commons, Cell Biology Commons, and the Medicine and Health Sciences Commons Recommended Citation Moorthy, Shhyam and Moorthy, Shhyam, "THE TUMOR SUPPRESSOR NOTCH INHIBITS HEAD AND NECK SQUAMOUS CELL CARCINOMA (HNSCC) TUMOR GROWTH AND PROGRESSION BY MODULATING PROTO-ONCOGENES AXL AND CTNNAL1 (α-CATULIN)" (2015). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 638. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/638 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. THE TUMOR SUPPRESSOR NOTCH INHIBITS HEAD AND NECK SQUAMOUS CELL CARCINOMA (HNSCC) TUMOR GROWTH AND PROGRESSION BY MODULATING PROTO-ONCOGENES AXL AND CTNNAL1 (α-CATULIN) by Shhyam Moorthy, B.S.
    [Show full text]
  • RNA-Seq Transcriptome Reveals Different Molecular Responses
    Zhao et al. BMC Genomics (2020) 21:475 https://doi.org/10.1186/s12864-020-06885-4 RESEARCH ARTICLE Open Access RNA-Seq transcriptome reveals different molecular responses during human and mouse oocyte maturation and fertilization Zheng-Hui Zhao1,2, Tie-Gang Meng1,3, Ang Li1, Heide Schatten4, Zhen-Bo Wang1,2* and Qing-Yuan Sun1,3* Abstract Background: Female infertility is a worldwide concern and the etiology of infertility has not been thoroughly demonstrated. Although the mouse is a good model system to perform functional studies, the differences between mouse and human also need to be considered. The objective of this study is to elucidate the different molecular mechanisms underlying oocyte maturation and fertilization between human and mouse. Results: A comparative transcriptome analysis was performed to identify the differentially expressed genes and associated biological processes between human and mouse oocytes. In total, 8513 common genes, as well as 15, 165 and 6126 uniquely expressed genes were detected in human and mouse MII oocytes, respectively. Additionally, the ratios of non-homologous genes in human and mouse MII oocytes were 37 and 8%, respectively. Functional categorization analysis of the human MII non-homologous genes revealed that cAMP-mediated signaling, sister chromatid cohesin, and cell recognition were the major enriched biological processes. Interestingly, we couldn’t detect any GO categories in mouse non-homologous genes. Conclusions: This study demonstrates that human and mouse oocytes exhibit significant differences in gene expression profiles during oocyte maturation, which probably deciphers the differential molecular responses to oocyte maturation and fertilization. The significant differences between human and mouse oocytes limit the generalizations from mouse to human oocyte maturation.
    [Show full text]
  • Exosome‑Derived Microrna‑433 Inhibits Tumorigenesis Through Incremental Infiltration of CD4 and CD8 Cells in Non‑Small Cell Lung Cancer
    ONCOLOGY LETTERS 22: 607, 2021 Exosome‑derived microRNA‑433 inhibits tumorigenesis through incremental infiltration of CD4 and CD8 cells in non‑small cell lung cancer BOYANG LIU1, RUIPING ZHANG2, YUNGANG ZHU3 and RUISHENG HAO1 Departments of 1Radiation and 2Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060; 3Department of Radiation Oncology, Tianjin Teda Hospital, Tianjin 300457, P.R. China Received August 3, 2020; Accepted April 22, 2021 DOI: 10.3892/ol.2021.12868 Abstract. Tumor‑derived exosomal microRNAs (miRNAs/ It is estimated that the United States alone had >230,000 new miRs) serve a vital biological role in tumorigenesis and develop‑ cases in 2018 (1). Lung cancer is a very heterogeneous disease at ment, but the effects and underlying mechanisms remain unclear. a cellular and histological level. It is well known that 80‑85% of To explore the impact of exosomal miR‑433 in non‑small cell lung cancer cases are classified as non‑small cell lung cancer lung cancer (NSCLC) and understand its mechanism of action (NSCLC), which includes several subtypes, including undif‑ in NSCLC progression, the present study isolated the exosomes ferentiated carcinoma or large cell carcinoma, squamous from the plasma of patients with NSCLC after chemotherapy and cell carcinoma, adenocarcinoma and other subtypes (2). The found that miR‑433 expression was lower in plasma of patients average 5‑year overall survival rate for patients with lung with resistant NSCLC compared with in plasma of patients with cancer is 18% due to the advanced stages of disease diagnosed sensitive NSCLC and in normal serum.
    [Show full text]
  • Genome-Wide Association and Gene Enrichment Analyses of Meat Sensory Traits in a Crossbred Brahman-Angus
    Proceedings of the World Congress on Genetics Applied to Livestock Production, 11. 124 Genome-wide association and gene enrichment analyses of meat tenderness in an Angus-Brahman cattle population J.D. Leal-Gutíerrez1, M.A. Elzo1, D. Johnson1 & R.G. Mateescu1 1 University of Florida, Department of Animal Sciences, 2250 Shealy Dr, 32608 Gainesville, Florida, United States. [email protected] Summary The objective of this study was to identify genomic regions associated with meat tenderness related traits using a whole-genome scan approach followed by a gene enrichment analysis. Warner-Bratzler shear force (WBSF) was measured on 673 steaks, and tenderness and connective tissue were assessed by a sensory panel on 496 steaks. Animals belong to the multibreed Angus-Brahman herd from University of Florida and range from 100% Angus to 100% Brahman. All animals were genotyped with the Bovine GGP F250 array. Gene enrichment was identified in two pathways; the first pathway is involved in negative regulation of transcription from RNA polymerase II, and the second pathway groups several cellular component of the endoplasmic reticulum membrane. Keywords: tenderness, gene enrichment, regulation of transcription, cell growth, cell proliferation Introduction Identification of quantitative trait loci (QTL) for any complex trait, including meat tenderness, is the first most important step in the process of understanding the genetic architecture underlying the phenotype. Given a large enough population and a dense coverage of the genome, a genome-wide association study (GWAS) is usually successful in uncovering major genes and QTLs with large and medium effect on these type of traits. Several GWA studies on Bos indicus (Magalhães et al., 2016; Tizioto et al., 2013) or crossbred beef cattle breeds (Bolormaa et al., 2011b; Hulsman Hanna et al., 2014; Lu et al., 2013) were successful at identifying QTL for meat tenderness; and most of them include the traditional candidate genes µ-calpain and calpastatin.
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • Differentially Expressed Genes That Were Identified Between the Offspring of Wild Born Fish (Wxw) and the Offspring of First-Generation Hatchery Fish (Hxh)
    Supplementary Data 1: Differentially expressed genes that were identified between the offspring of wild born fish (WxW) and the offspring of first-generation hatchery fish (HxH). Genes are sorted by log fold change (log FC). Also reported are the standardized protein names, full gene names, and false discovery rate adjusted p-value (FDR) for tests of differential expression. Num Protein DE gene logFC FDR 1 I7KJK9 Trout C-polysaccharide binding protein 1, isoform 1 -6.312E+00 5.800E-05 2 C1QT3 Complement C1q tumor necrosis factor-related protein 3 -5.861E+00 1.955E-04 3 CASPE Caspase-14 -5.060E+00 1.998E-02 4 E3NQ84 Putative uncharacterized protein -4.963E+00 2.710E-04 5 E3NQ84 Putative uncharacterized protein -4.187E+00 5.983E-03 6 CASPE Caspase-14 -3.851E+00 2.203E-02 7 M4A454 Uncharacterized protein -3.782E+00 9.526E-04 8 HS12A Heat shock 70 kDa protein 12A -3.644E+00 2.531E-04 9 M4A454 Uncharacterized protein -3.441E+00 4.287E-04 10 E3NQ84 Putative uncharacterized protein -3.364E+00 4.293E-02 11 M4A454 Uncharacterized protein -3.094E+00 9.110E-06 12 M4A454 Uncharacterized protein -2.903E+00 9.450E-06 13 RTXE Probable RNA-directed DNA polymerase from transposon X-element -2.785E+00 5.800E-05 14 E9QED5 Uncharacterized protein -2.710E+00 7.887E-03 15 RTXE Probable RNA-directed DNA polymerase from transposon X-element -2.624E+00 9.960E-05 16 E9QED5 Uncharacterized protein -2.480E+00 8.145E-03 17 RTXE Probable RNA-directed DNA polymerase from transposon X-element -2.474E+00 2.584E-04 18 E9QED5 Uncharacterized protein -2.221E+00 6.411E-02
    [Show full text]