Novel Targets of Apparently Idiopathic Male Infertility
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Multiple Activities of Arl1 Gtpase in the Trans-Golgi Network Chia-Jung Yu1,2 and Fang-Jen S
© 2017. Published by The Company of Biologists Ltd | Journal of Cell Science (2017) 130, 1691-1699 doi:10.1242/jcs.201319 COMMENTARY Multiple activities of Arl1 GTPase in the trans-Golgi network Chia-Jung Yu1,2 and Fang-Jen S. Lee3,4,* ABSTRACT typical features of an Arf-family GTPase, including an amphipathic ADP-ribosylation factors (Arfs) and ADP-ribosylation factor-like N-terminal helix and a consensus site for N-myristoylation (Lu et al., proteins (Arls) are highly conserved small GTPases that function 2001; Price et al., 2005). In yeast, recruitment of Arl1 to the Golgi as main regulators of vesicular trafficking and cytoskeletal complex requires a second Arf-like GTPase, Arl3 (Behnia et al., reorganization. Arl1, the first identified member of the large Arl family, 2004; Setty et al., 2003). Yeast Arl3 lacks a myristoylation site and is an important regulator of Golgi complex structure and function in is, instead, N-terminally acetylated; this modification is required for organisms ranging from yeast to mammals. Together with its effectors, its recruitment to the Golgi complex by Sys1. In mammalian cells, Arl1 has been shown to be involved in several cellular processes, ADP-ribosylation-factor-related protein 1 (Arfrp1), a mammalian including endosomal trans-Golgi network and secretory trafficking, lipid ortholog of yeast Arl3, plays a pivotal role in the recruitment of Arl1 droplet and salivary granule formation, innate immunity and neuronal to the trans-Golgi network (TGN) (Behnia et al., 2004; Panic et al., development, stress tolerance, as well as the response of the unfolded 2003b; Setty et al., 2003; Zahn et al., 2006). -
ATP6V0C Rabbit Pab
Leader in Biomolecular Solutions for Life Science ATP6V0C Rabbit pAb Catalog No.: A16350 Basic Information Background Catalog No. This gene encodes a component of vacuolar ATPase (V-ATPase), a multisubunit enzyme A16350 that mediates acidification of eukaryotic intracellular organelles. V-ATPase dependent organelle acidification is necessary for such intracellular processes as protein sorting, Observed MW zymogen activation, receptor-mediated endocytosis, and synaptic vesicle proton 16kDa gradient generation. V-ATPase is composed of a cytosolic V1 domain and a transmembrane V0 domain. The V1 domain consists of three A and three B subunits, two Calculated MW G subunits plus the C, D, E, F, and H subunits. The V1 domain contains the ATP catalytic 15kDa site. The V0 domain consists of five different subunits: a, c, c', c", and d. This gene encodes the V0 subunit c. Alternative splicing results in transcript variants. Pseudogenes Category have been identified on chromosomes 6 and 17. Primary antibody Applications WB, IF Cross-Reactivity Mouse, Rat Recommended Dilutions Immunogen Information WB 1:500 - 1:2000 Gene ID Swiss Prot 527 P27449 IF 1:50 - 1:100 Immunogen A synthetic peptide corresponding to a sequence within amino acids 1-100 of human ATP6V0C (NP_001185498.1). Synonyms ATP6V0C;ATP6C;ATP6L;ATPL;VATL;VPPC;Vma3 Contact Product Information www.abclonal.com Source Isotype Purification Rabbit IgG Affinity purification Storage Store at -20℃. Avoid freeze / thaw cycles. Buffer: PBS with 0.02% sodium azide,50% glycerol,pH7.3. Validation Data Western blot analysis of extracts of various cell lines, using ATP6V0C Rabbit pAb (A16350) at 1:1000 dilution. Secondary antibody: HRP Goat Anti-Rabbit IgG (H+L) (AS014) at 1:10000 dilution. -
Seq2pathway Vignette
seq2pathway Vignette Bin Wang, Xinan Holly Yang, Arjun Kinstlick May 19, 2021 Contents 1 Abstract 1 2 Package Installation 2 3 runseq2pathway 2 4 Two main functions 3 4.1 seq2gene . .3 4.1.1 seq2gene flowchart . .3 4.1.2 runseq2gene inputs/parameters . .5 4.1.3 runseq2gene outputs . .8 4.2 gene2pathway . 10 4.2.1 gene2pathway flowchart . 11 4.2.2 gene2pathway test inputs/parameters . 11 4.2.3 gene2pathway test outputs . 12 5 Examples 13 5.1 ChIP-seq data analysis . 13 5.1.1 Map ChIP-seq enriched peaks to genes using runseq2gene .................... 13 5.1.2 Discover enriched GO terms using gene2pathway_test with gene scores . 15 5.1.3 Discover enriched GO terms using Fisher's Exact test without gene scores . 17 5.1.4 Add description for genes . 20 5.2 RNA-seq data analysis . 20 6 R environment session 23 1 Abstract Seq2pathway is a novel computational tool to analyze functional gene-sets (including signaling pathways) using variable next-generation sequencing data[1]. Integral to this tool are the \seq2gene" and \gene2pathway" components in series that infer a quantitative pathway-level profile for each sample. The seq2gene function assigns phenotype-associated significance of genomic regions to gene-level scores, where the significance could be p-values of SNPs or point mutations, protein-binding affinity, or transcriptional expression level. The seq2gene function has the feasibility to assign non-exon regions to a range of neighboring genes besides the nearest one, thus facilitating the study of functional non-coding elements[2]. Then the gene2pathway summarizes gene-level measurements to pathway-level scores, comparing the quantity of significance for gene members within a pathway with those outside a pathway. -
Gpr161 Anchoring of PKA Consolidates GPCR and Camp Signaling
Gpr161 anchoring of PKA consolidates GPCR and cAMP signaling Verena A. Bachmanna,1, Johanna E. Mayrhofera,1, Ronit Ilouzb, Philipp Tschaiknerc, Philipp Raffeinera, Ruth Röcka, Mathieu Courcellesd,e, Federico Apeltf, Tsan-Wen Lub,g, George S. Baillieh, Pierre Thibaultd,i, Pia Aanstadc, Ulrich Stelzlf,j, Susan S. Taylorb,g,2, and Eduard Stefana,2 aInstitute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Austria; bDepartment of Chemistry and Biochemistry, University of California, San Diego, CA 92093; cInstitute of Molecular Biology, University of Innsbruck, 6020 Innsbruck, Austria; dInstitute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, Canada H3C 3J7; eDépartement de Biochimie, Université de Montréal, Montreal, QC, Canada H3C 3J7; fOtto-Warburg Laboratory, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; gDepartment of Pharmacology, University of California, San Diego, CA 92093; hInstitute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom; iDepartment of Chemistry, Université de Montréal, Montreal, QC, Canada H3C 3J7; and jInstitute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, 8010 Graz, Austria Contributed by Susan S. Taylor, May 24, 2016 (sent for review February 18, 2016; reviewed by John J. G. Tesmer and Mark von Zastrow) Scaffolding proteins organize the information flow from activated G accounts for nanomolar binding affinities to PKA R subunit dimers protein-coupled receptors (GPCRs) to intracellular effector cascades (12, 13). Moreover, additional components of the cAMP signaling both spatially and temporally. By this means, signaling scaffolds, such machinery, such as GPCRs, adenylyl cyclases, and phosphodiester- as A-kinase anchoring proteins (AKAPs), compartmentalize kinase ases, physically interact with AKAPs (1, 5, 11, 14). -
Dual Proteome-Scale Networks Reveal Cell-Specific Remodeling of the Human Interactome
bioRxiv preprint doi: https://doi.org/10.1101/2020.01.19.905109; this version posted January 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Dual Proteome-scale Networks Reveal Cell-specific Remodeling of the Human Interactome Edward L. Huttlin1*, Raphael J. Bruckner1,3, Jose Navarrete-Perea1, Joe R. Cannon1,4, Kurt Baltier1,5, Fana Gebreab1, Melanie P. Gygi1, Alexandra Thornock1, Gabriela Zarraga1,6, Stanley Tam1,7, John Szpyt1, Alexandra Panov1, Hannah Parzen1,8, Sipei Fu1, Arvene Golbazi1, Eila Maenpaa1, Keegan Stricker1, Sanjukta Guha Thakurta1, Ramin Rad1, Joshua Pan2, David P. Nusinow1, Joao A. Paulo1, Devin K. Schweppe1, Laura Pontano Vaites1, J. Wade Harper1*, Steven P. Gygi1*# 1Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA. 2Broad Institute, Cambridge, MA, 02142, USA. 3Present address: ICCB-Longwood Screening Facility, Harvard Medical School, Boston, MA, 02115, USA. 4Present address: Merck, West Point, PA, 19486, USA. 5Present address: IQ Proteomics, Cambridge, MA, 02139, USA. 6Present address: Vor Biopharma, Cambridge, MA, 02142, USA. 7Present address: Rubius Therapeutics, Cambridge, MA, 02139, USA. 8Present address: RPS North America, South Kingstown, RI, 02879, USA. *Correspondence: [email protected] (E.L.H.), [email protected] (J.W.H.), [email protected] (S.P.G.) #Lead Contact: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.01.19.905109; this version posted January 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Systems Analysis Implicates WAVE2&Nbsp
JACC: BASIC TO TRANSLATIONAL SCIENCE VOL.5,NO.4,2020 ª 2020 THE AUTHORS. PUBLISHED BY ELSEVIER ON BEHALF OF THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION. THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY-NC-ND LICENSE (http://creativecommons.org/licenses/by-nc-nd/4.0/). PRECLINICAL RESEARCH Systems Analysis Implicates WAVE2 Complex in the Pathogenesis of Developmental Left-Sided Obstructive Heart Defects a b b b Jonathan J. Edwards, MD, Andrew D. Rouillard, PHD, Nicolas F. Fernandez, PHD, Zichen Wang, PHD, b c d d Alexander Lachmann, PHD, Sunita S. Shankaran, PHD, Brent W. Bisgrove, PHD, Bradley Demarest, MS, e f g h Nahid Turan, PHD, Deepak Srivastava, MD, Daniel Bernstein, MD, John Deanfield, MD, h i j k Alessandro Giardini, MD, PHD, George Porter, MD, PHD, Richard Kim, MD, Amy E. Roberts, MD, k l m m,n Jane W. Newburger, MD, MPH, Elizabeth Goldmuntz, MD, Martina Brueckner, MD, Richard P. Lifton, MD, PHD, o,p,q r,s t d Christine E. Seidman, MD, Wendy K. Chung, MD, PHD, Martin Tristani-Firouzi, MD, H. Joseph Yost, PHD, b u,v Avi Ma’ayan, PHD, Bruce D. Gelb, MD VISUAL ABSTRACT Edwards, J.J. et al. J Am Coll Cardiol Basic Trans Science. 2020;5(4):376–86. ISSN 2452-302X https://doi.org/10.1016/j.jacbts.2020.01.012 JACC: BASIC TO TRANSLATIONALSCIENCEVOL.5,NO.4,2020 Edwards et al. 377 APRIL 2020:376– 86 WAVE2 Complex in LVOTO HIGHLIGHTS ABBREVIATIONS AND ACRONYMS Combining CHD phenotype–driven gene set enrichment and CRISPR knockdown screening in zebrafish is an effective approach to identifying novel CHD genes. -
Gateways to the FANTOM5 Promoter Level Mammalian Expression Atlas
Lizio et al. Genome Biology (2015) 16:22 DOI 10.1186/s13059-014-0560-6 SOFTWARE Open Access Gateways to the FANTOM5 promoter level mammalian expression atlas Marina Lizio1,2, Jayson Harshbarger1,2, Hisashi Shimoji1,2, Jessica Severin1,2, Takeya Kasukawa2, Serkan Sahin1,2, Imad Abugessaisa2, Shiro Fukuda1, Fumi Hori1,2, Sachi Ishikawa-Kato1,2, Christopher J Mungall5, Erik Arner1,2, J Kenneth Baillie7, Nicolas Bertin1,2,19, Hidemasa Bono10, Michiel de Hoon1,2, Alexander D Diehl13, Emmanuel Dimont12, Tom C Freeman7, Kaori Fujieda10, Winston Hide12,17, Rajaram Kaliyaperumal8, Toshiaki Katayama15, Timo Lassmann1,2,18, Terrence F Meehan6, Koro Nishikata16, Hiromasa Ono10, Michael Rehli9, Albin Sandelin11, Erik A Schultes8,14, Peter AC ‘t Hoen8, Zuotian Tatum8, Mark Thompson8, Tetsuro Toyoda16, Derek W Wright7, Carsten O Daub1, Masayoshi Itoh1,2,3, Piero Carninci1,2, Yoshihide Hayashizaki1,3, Alistair RR Forrest1,2*, Hideya Kawaji1,2,3,4* and the FANTOM consortium Abstract The FANTOM5 project investigates transcription initiation activities in more than 1,000 human and mouse primary cells, cell lines and tissues using CAGE. Based on manual curation of sample information and development of an ontology for sample classification, we assemble the resulting data into a centralized data resource (http://fantom. gsc.riken.jp/5/). This resource contains web-based tools and data-access points for the research community to search and extract data related to samples, genes, promoter activities, transcription factors and enhancers across the FANTOM5 atlas. Introduction ontologies [10]). However, the ability of these surveys to One of the most comprehensive ways to study the mo- quantify RNA abundance was limited mainly due to se- lecular basis of cellular function is to quantify the pres- quencing performance. -
Emerging Genetic Alterations Linked to Male Infertility: X-Chromosome Copy Number Variation and Spermatogenesis Regulatory Genes’ Expression
Central Annals of Reproductive Medicine and Treatment Bringing Excellence in Open Access Research Article *Corresponding author Susana Fernandes, Department of Genetics, Faculty of Medicine of University of Porto, Al. Prof. Hernâni Emerging Genetic Alterations Monteiro, 4200 - 319 Porto, Portugal; Tel: 351 22 551 36 47; Email: Submitted: 12 October 2016 Linked to Male Infertility: Accepted: 10 February 2017 Published: 14 February 2017 X-Chromosome Copy Number Copyright © 2017 Fernandes et al. Variation and Spermatogenesis OPEN ACCESS Keywords Regulatory Genes’ Expression • Male infertility • Spermatogenesis Catarina Costa1, Maria João Pinho1,2, Alberto Barros1,2,3, and • DNA copy number variations • Gene expression Susana Fernandes1,2* 1Department of Genetics, Faculty of Medicine of University of Porto, Portugal 2i3S – Instituto de Investigação e Inovação em Saúde, University of Porto, Portugal 3Centre for Reproductive Genetics A Barros, Portugal Abstract The etiopathogenesis of primary testicular failure remains undefined in 50% of cases. Most of these idiopathic cases probably result from genetic mutations/anomalies. Novel causes, like Copy Number Variation and gene expression profile, are being explored thanks to recent advances in the field of genetics. Our aim was to study Copy Number Variation (CNV) 67, a patient-specific CNV related to spermatogenic anomaly and evaluate the expression of regulatory genes AKAP4, responsible for sperm fibrous sheet assembly, and STAG3, essential for sister chromatid cohesion during meiosis. One hundred infertile men were tested for CNV67 with quantitative PCR (qPCR). Quantitative real-time PCR was performed to evaluate gene expression patterns of the two mentioned genes in testicular biopsies from 22 idiopathic infertile patients. CNV67 deletion was found in 2% of patients, with the same semen phenotype described in previous studies. -
Identification and Characterization of RHOA-Interacting Proteins in Bovine Spermatozoa1
BIOLOGY OF REPRODUCTION 78, 184–192 (2008) Published online before print 10 October 2007. DOI 10.1095/biolreprod.107.062943 Identification and Characterization of RHOA-Interacting Proteins in Bovine Spermatozoa1 Sarah E. Fiedler, Malini Bajpai, and Daniel W. Carr2 Department of Medicine, Oregon Health & Sciences University and Veterans Affairs Medical Center, Portland, Oregon 97239 ABSTRACT Guanine nucleotide exchange factors (GEFs) catalyze the GDP for GTP exchange [2]. Activation is negatively regulated by In somatic cells, RHOA mediates actin dynamics through a both guanine nucleotide dissociation inhibitors (RHO GDIs) GNA13-mediated signaling cascade involving RHO kinase and GTPase-activating proteins (GAPs) [1, 2]. Endogenous (ROCK), LIM kinase (LIMK), and cofilin. RHOA can be RHO can be inactivated via C3 exoenzyme ADP-ribosylation, negatively regulated by protein kinase A (PRKA), and it and studies have demonstrated RHO involvement in actin-based interacts with members of the A-kinase anchoring (AKAP) cytoskeletal response to extracellular signals, including lyso- family via intermediary proteins. In spermatozoa, actin poly- merization precedes the acrosome reaction, which is necessary phosphatidic acid (LPA) [2–4]. LPA is known to signal through for normal fertility. The present study was undertaken to G-protein-coupled receptors (GPCRs) [4, 5]; specifically, LPA- determine whether the GNA13-mediated RHOA signaling activated GNA13 (formerly Ga13) promotes RHO activation pathway may be involved in acrosome reaction in bovine through GEFs [4, 6]. Activated RHO-GTP then signals RHO caudal sperm, and whether AKAPs may be involved in its kinase (ROCK), resulting in the phosphorylation and activation targeting and regulation. GNA13, RHOA, ROCK2, LIMK2, and of LIM-kinase (LIMK), which in turn phosphorylates and cofilin were all detected by Western blot in bovine caudal inactivates cofilin, an actin depolymerizer, the end result being sperm. -
743914V1.Full.Pdf
bioRxiv preprint doi: https://doi.org/10.1101/743914; this version posted August 24, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Cross-talks of glycosylphosphatidylinositol biosynthesis with glycosphingolipid biosynthesis 2 and ER-associated degradation 3 4 Yicheng Wang1,2, Yusuke Maeda1, Yishi Liu3, Yoko Takada2, Akinori Ninomiya1, Tetsuya 5 Hirata1,2,4, Morihisa Fujita3, Yoshiko Murakami1,2, Taroh Kinoshita1,2,* 6 7 1Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan 8 2WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, 9 Japan 10 3Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, 11 School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China 12 4Current address: Center for Highly Advanced Integration of Nano and Life Sciences (G- 13 CHAIN), Gifu University, 1-1 Yanagido, Gifu-City, Gifu 501-1193, Japan 14 15 *Correspondence and requests for materials should be addressed to T.K. (email: 16 [email protected]) 17 18 19 Glycosylphosphatidylinositol (GPI)-anchored proteins and glycosphingolipids interact with 20 each other in the mammalian plasma membranes, forming dynamic microdomains. How their 21 interaction starts in the cells has been unclear. Here, based on a genome-wide CRISPR-Cas9 22 genetic screen for genes required for GPI side-chain modification by galactose in the Golgi 23 apparatus, we report that b1,3-galactosyltransferase 4 (B3GALT4), also called GM1 24 ganglioside synthase, additionally functions in transferring galactose to the N- 25 acetylgalactosamine side-chain of GPI. -
Bromodomain Protein BRDT Directs ΔNp63 Function and Super
Cell Death & Differentiation (2021) 28:2207–2220 https://doi.org/10.1038/s41418-021-00751-w ARTICLE Bromodomain protein BRDT directs ΔNp63 function and super-enhancer activity in a subset of esophageal squamous cell carcinomas 1 1 2 1 1 2 Xin Wang ● Ana P. Kutschat ● Moyuru Yamada ● Evangelos Prokakis ● Patricia Böttcher ● Koji Tanaka ● 2 3 1,3 Yuichiro Doki ● Feda H. Hamdan ● Steven A. Johnsen Received: 25 August 2020 / Revised: 3 February 2021 / Accepted: 4 February 2021 / Published online: 3 March 2021 © The Author(s) 2021. This article is published with open access Abstract Esophageal squamous cell carcinoma (ESCC) is the predominant subtype of esophageal cancer with a particularly high prevalence in certain geographical regions and a poor prognosis with a 5-year survival rate of 15–25%. Despite numerous studies characterizing the genetic and transcriptomic landscape of ESCC, there are currently no effective targeted therapies. In this study, we used an unbiased screening approach to uncover novel molecular precision oncology targets for ESCC and identified the bromodomain and extraterminal (BET) family member bromodomain testis-specific protein (BRDT) to be 1234567890();,: 1234567890();,: uniquely expressed in a subgroup of ESCC. Experimental studies revealed that BRDT expression promotes migration but is dispensable for cell proliferation. Further mechanistic insight was gained through transcriptome analyses, which revealed that BRDT controls the expression of a subset of ΔNp63 target genes. Epigenome and genome-wide occupancy studies, combined with genome-wide chromatin interaction studies, revealed that BRDT colocalizes and interacts with ΔNp63 to drive a unique transcriptional program and modulate cell phenotype. Our data demonstrate that these genomic regions are enriched for super-enhancers that loop to critical ΔNp63 target genes related to the squamous phenotype such as KRT14, FAT2, and PTHLH.