Recommended publications
  • METACYC ID Description A0AR23 GO:0004842 (Ubiquitin-Protein Ligase
    Electronic Supplementary Material (ESI) for Integrative Biology This journal is © The Royal Society of Chemistry 2012 Heat Stress Responsive Zostera marina Genes, Southern Population (α=0.
    [Show full text]
  • Supplementary Materials
    DEPs in osteosarcoma cells comparing to osteoblastic cells Biological Process Protein Percentage of Hits metabolic process (GO:0008152) 29.3 29.3% cellular process (GO:0009987) 20.2 20.2% localization (GO:0051179) 9.4 9.4% biological regulation (GO:0065007) 8 8.0% developmental process (GO:0032502) 7.8 7.8% response to stimulus (GO:0050896) 5.6 5.6% cellular component organization (GO:0071840) 5.6 5.6% multicellular organismal process (GO:0032501) 4.4 4.4% immune system process (GO:0002376) 4.2 4.2% biological adhesion (GO:0022610) 2.7 2.7% apoptotic process (GO:0006915) 1.6 1.6% reproduction (GO:0000003) 0.8 0.8% locomotion (GO:0040011) 0.4 0.4% cell killing (GO:0001906) 0.1 0.1% 100.1% Genes 2179Hits 3870 biological adhesion apoptotic process … reproduction (GO:0000003) , 0.8% (GO:0022610) , 2.7% locomotion (GO:0040011) ,… immune system process cell killing (GO:0001906) , 0.1% (GO:0002376) , 4.2% multicellular organismal process (GO:0032501) , metabolic process 4.4% (GO:0008152) , 29.3% cellular component organization (GO:0071840) , 5.6% response to stimulus (GO:0050896), 5.6% developmental process (GO:0032502) , 7.8% biological regulation (GO:0065007) , 8.0% cellular process (GO:0009987) , 20.2% localization (GO:0051179) , 9.
    [Show full text]
  • United States Patent 19 11 Patent Number: 5,780,253 Subramanian Et Al
    III USOO5780253A United States Patent 19 11 Patent Number: 5,780,253 Subramanian et al. (45) Date of Patent: Jul. 14, 1998 54 SCREENING METHOD FOR DETECTION OF 4.433.999 2/1984 Hyzak ....................................... 71.03 HERBCDES 4.6–552 2/1987 Anoti et al. if O3. 4,802,912 2/1989 Baker ........................................ 7/103 Inventors: Wenkiteswaran Subramanian Danville: Anne G. Toschi. Burlingame. OTHERTHER PPUBLICATION CATIONS both of Calif. Heim et al. Pesticide Biochem & Physiol; vol. 53, pp. 138-145 (1995). 73) Assignee: Sandoz Ltd., Basel. Switzerland Hatch. MD.: Phytochem. vol. 6... pp. 115 to 119, (1967). Haworth et al. J. Agric. Food Chem, vol. 38, pp. 1271-1273. 21 Appl. No.:752.990 1990. Nishimura et al: Phytochem: vol. 34, pp. 613-615. (1993). 22 Filed: Nov. 21, 1996 Primary Examiner-Louise N. Leary Related U.S. Application Data Attorney, Agent, or Firm-Lynn Marcus-Wyner: Michael P. Morris 63 Continuation of Ser. No. 434.826, May 4, 1995, abandoned. 6 57 ABSTRACT 51 Int. Cl. ............................... C12Q 1/48: C12Q 1/32: C12Q 1/37; C12O 1/00 This invention relates to novel screening methods for iden 52 U.S. Cl. ................................. 435/15:435/18: 435/26: tifying compounds that specifically inhibit a biosynthetic 435/23: 435/4, 536/23.6:536/23.2:536/24.3 pathway in plants. Enzymes which are specifically affected 536/26.11:536/26.12:536/26.13 by the novel screening method include plant purine biosyn 58 Field of Search .................................. 435/15, 8, 26, thetic pathway enzymes and particularly the enzymes 435/23 4: 536/23.6, 23.2, 24.3, 26.1, involved in the conversion of inosine monophosphate to 26.12, 26.13 adenosine monophosphate and inosine monophosphate to guanosine monophosphate.
    [Show full text]
  • Implications in Parkinson's Disease
    Journal of Clinical Medicine Review Lysosomal Ceramide Metabolism Disorders: Implications in Parkinson’s Disease Silvia Paciotti 1,2 , Elisabetta Albi 3 , Lucilla Parnetti 1 and Tommaso Beccari 3,* 1 Laboratory of Clinical Neurochemistry, Department of Medicine, University of Perugia, Sant’Andrea delle Fratte, 06132 Perugia, Italy; [email protected] (S.P.); [email protected] (L.P.) 2 Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia, Sant’Andrea delle Fratte, 06132 Perugia, Italy 3 Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti, 06123 Perugia, Italy; [email protected] * Correspondence: [email protected] Received: 29 January 2020; Accepted: 20 February 2020; Published: 21 February 2020 Abstract: Ceramides are a family of bioactive lipids belonging to the class of sphingolipids. Sphingolipidoses are a group of inherited genetic diseases characterized by the unmetabolized sphingolipids and the consequent reduction of ceramide pool in lysosomes. Sphingolipidoses include several disorders as Sandhoff disease, Fabry disease, Gaucher disease, metachromatic leukodystrophy, Krabbe disease, Niemann Pick disease, Farber disease, and GM2 gangliosidosis. In sphingolipidosis, lysosomal lipid storage occurs in both the central nervous system and visceral tissues, and central nervous system pathology is a common hallmark for all of them. Parkinson’s disease, the most common neurodegenerative movement disorder, is characterized by the accumulation and aggregation of misfolded α-synuclein that seem associated to some lysosomal disorders, in particular Gaucher disease. This review provides evidence into the role of ceramide metabolism in the pathophysiology of lysosomes, highlighting the more recent findings on its involvement in Parkinson’s disease. Keywords: ceramide metabolism; Parkinson’s disease; α-synuclein; GBA; GLA; HEX A-B; GALC; ASAH1; SMPD1; ARSA * Correspondence [email protected] 1.
    [Show full text]
  • Molecular Mechanisms Involved Involved in the Interaction Effects of HCV and Ethanol on Liver Cirrhosis
    Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2010 Molecular Mechanisms Involved Involved in the Interaction Effects of HCV and Ethanol on Liver Cirrhosis Ryan Fassnacht Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Physiology Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/2246 This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. Ryan C. Fassnacht 2010 All Rights Reserved Molecular Mechanisms Involved in the Interaction Effects of HCV and Ethanol on Liver Cirrhosis A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at Virginia Commonwealth University. by Ryan Christopher Fassnacht, B.S. Hampden Sydney University, 2005 M.S. Virginia Commonwealth University, 2010 Director: Valeria Mas, Ph.D., Associate Professor of Surgery and Pathology Division of Transplant Department of Surgery Virginia Commonwealth University Richmond, Virginia July 9, 2010 Acknowledgement The Author wishes to thank his family and close friends for their support. He would also like to thank the members of the molecular transplant team for their help and advice. This project would not have been possible with out the help of Dr. Valeria Mas and her endearing
    [Show full text]
  • HEMOLYTIC ANEMIA in DISORDERS of REO CELL METABOLISM TOPICS in HEMATOLOGY Series Editor: Maxwell M
    HEMOLYTIC ANEMIA IN DISORDERS OF REO CELL METABOLISM TOPICS IN HEMATOLOGY Series Editor: Maxwell M. Wintrobe, M.D. University of Utah, Salt Lake City THE RESPIRATORY FUNCTIONS OF BLOOD Lars Garby, M.D. and Jerry Meldon, M.D. HEMOLYTIC ANEMIA IN DISORDERS OF RED CELL METABOLISM Ernest Beutler, MD. TRACE ELEMENTS AND IRON IN HUMAN METABOLISM Ananda S. Prasad, M.D. HEMOLYTIC ANEMIA IN DISORDERS OF REO CELL METABOLISM Ernest Beutler, M. O. City of Hope National Medical Center Duarte, California PLENUM MEDICAL BOOK COMPANY· New York and London Library of Congress Cataloging in Publication Data Beutler, Ernest. Hemolytic anemia in disorders of red cell metabolism. (Topics in hematology) Includes index. 1. Hemolytic anemia. 2. Erythrocyte disorders. I. Title. II. Series. CR641.7.H4B48 616.1'52 78-2391 ISBN 978-1-4684-2459-1 ISBN 978-1-4684-2457-7 (eBook) DOI 10.1007/978-1-4684-2457-7 © 1978 Plenum Publishing Corporation Softcover reprint of the hardcover 1st edition 1978 227 West 17th Street, New York, N.Y. 10011 Plenum Medical Book Company is an imprint of Plenum Publishing Corporation All rights reserved No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the Publisher FOREWORD I am prepared to predict that this monograph by Dr. Ernest Beutler will long serve as a model for monographs dealing with topics in medical science. I make this bold statement because we encounter in this work a degree of accuracy and authoritativeness well beyond that found in much of the medical literature.
    [Show full text]
  • 35 Disorders of Purine and Pyrimidine Metabolism
    35 Disorders of Purine and Pyrimidine Metabolism Georges van den Berghe, M.- Françoise Vincent, Sandrine Marie 35.1 Inborn Errors of Purine Metabolism – 435 35.1.1 Phosphoribosyl Pyrophosphate Synthetase Superactivity – 435 35.1.2 Adenylosuccinase Deficiency – 436 35.1.3 AICA-Ribosiduria – 437 35.1.4 Muscle AMP Deaminase Deficiency – 437 35.1.5 Adenosine Deaminase Deficiency – 438 35.1.6 Adenosine Deaminase Superactivity – 439 35.1.7 Purine Nucleoside Phosphorylase Deficiency – 440 35.1.8 Xanthine Oxidase Deficiency – 440 35.1.9 Hypoxanthine-Guanine Phosphoribosyltransferase Deficiency – 441 35.1.10 Adenine Phosphoribosyltransferase Deficiency – 442 35.1.11 Deoxyguanosine Kinase Deficiency – 442 35.2 Inborn Errors of Pyrimidine Metabolism – 445 35.2.1 UMP Synthase Deficiency (Hereditary Orotic Aciduria) – 445 35.2.2 Dihydropyrimidine Dehydrogenase Deficiency – 445 35.2.3 Dihydropyrimidinase Deficiency – 446 35.2.4 Ureidopropionase Deficiency – 446 35.2.5 Pyrimidine 5’-Nucleotidase Deficiency – 446 35.2.6 Cytosolic 5’-Nucleotidase Superactivity – 447 35.2.7 Thymidine Phosphorylase Deficiency – 447 35.2.8 Thymidine Kinase Deficiency – 447 References – 447 434 Chapter 35 · Disorders of Purine and Pyrimidine Metabolism Purine Metabolism Purine nucleotides are essential cellular constituents 4 The catabolic pathway starts from GMP, IMP and which intervene in energy transfer, metabolic regula- AMP, and produces uric acid, a poorly soluble tion, and synthesis of DNA and RNA. Purine metabo- compound, which tends to crystallize once its lism can be divided into three pathways: plasma concentration surpasses 6.5–7 mg/dl (0.38– 4 The biosynthetic pathway, often termed de novo, 0.47 mmol/l). starts with the formation of phosphoribosyl pyro- 4 The salvage pathway utilizes the purine bases, gua- phosphate (PRPP) and leads to the synthesis of nine, hypoxanthine and adenine, which are pro- inosine monophosphate (IMP).
    [Show full text]
  • Early Modifications of Gene Expression Induced in Liver by Azo-Dye Diet
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Volume 206, number 2 FEBS 4070 October 1986 Early modifications of gene expression induced in liver by azo-dye diet EugCnia Lamas, Fabien Schweighoffer and Axe1 Kahn Unit& de Recherches en GP&tique et Pathologie Mol&ulaires, INSERM U 129, CHU COCHIN, 24, Rue du Faubourg Saint Jacques, 75674 Paris Cedex 14, France Received 5 August 1986 The expression and regulation of the phosphoenolpyruvate carboxykinase gene were not grossly modified by feeding rats a 3’-methyl-4-(dimethylamino)azobenzene-containing diet despite maximum expression of the L-type pyruvate kinase gene being dramatically reduced as early as the 24th hour of the carcinogenic diet. Inhibition of aldolase B mRNA synthesis occurred more slowly, being maximum at the 3rd day. After stopping administration of the carcinogen, a very rapid, but transient increase of the L-type pyruvate kinase mRNA was observed at the 24th hour, whereas aldolase B mRNA increased only slowly. The amount of aldolase A mRNA fell quickly after termination of carcinogen administration, levels being normal at the 2nd-3rd day. At this time, the histological structure of the liver was indistinguishable from that of animals still receiving the azo-dye diet. It appears, therefore, that in the rat both administration and withdrawal of the azo-dye carcinogen induce rapid modifications of the expression of some genes, before any cellular modification is distinguishable. Azo-dye diet mRNA Hepatocarcinogenesis Phosphoenolpyruvate carboxykinase Aldolase Pyruvate kinase 1. INTRODUCTION some genes. Such a possibility is of theoretical im- portance because it could constitute the basis for The azo-dye 3’-methyl-4-(dimethylamino)azo- the carcinogenic action of the dye.
    [Show full text]
  • Molecular Analysis of the Aldolase B Gene in Patients with Hereditary
    1of8 J Med Genet: first published as 10.1136/jmg.39.9.e56 on 1 September 2002. Downloaded from ONLINE MUTATION REPORT Molecular analysis of the aldolase B gene in patients with hereditary fructose intolerance from Spain J C Sánchez-Gutiérrez, T Benlloch, M A Leal, B Samper, I García-Ripoll, J E Felíu ............................................................................................................................. J Med Genet 2002;39:e56 (http://www.jmedgenet.com/cgi/content/full/39/9/e56) ereditary fructose intolerance (HFI) is an autosomal resident in the following regions: Madrid (11 families), Anda- recessive metabolic disorder caused by aldolase (fructo- lusia (4), Galicia (3), Estremadura (1), Valencia (1), and Hsediphosphate aldolase, EC 4.1.2.13) B deficiency.1 The Spanish possessions in North Africa (1). HFI diagnosis was B isoform of aldolase is critical for the metabolism of based on enzymatic studies (deficient aldolase B activity in exogenous fructose by the liver, kidney, and intestine, since it hepatic biopsies from 16 patients) or clinical symptoms (six can use fructose-1-phosphate as substrate at physiological patients). Another six subjects were suspected to suffer from concentrations, unlike aldolases A and C. Affected subjects HFI on the basis of dietary intolerance with episodes sugges- suffer abdominal pain, vomiting, and hypoglycaemia after the tive of hypoglycaemia and occurrence of the disease in their ingestion of fructose, sucrose, or sorbitol. Continued ingestion first degree relatives. of noxious sugars causes hepatic and renal injury, which eventually leads to liver cirrhosis and sometimes death, Reagents particularly in small infants.1 Treatment consists of strict Thermostable DNA polymerase, deoxynucleotides, and gen- elimination of fructose, sucrose, and sorbitol from the diet eral PCR products were from Biotools (Madrid, Spain).
    [Show full text]
  • Open Full Page
    Research Article Glutathione Transferase P Plays a Critical Role in the Development of Lung Carcinogenesis following Exposure to Tobacco-Related Carcinogens and Urethane Kenneth J. Ritchie,1 Colin J. Henderson,1 Xiu Jun Wang,1 Olga Vassieva,1 Dianne Carrie,1 Peter B. Farmer,2 Margaret Gaskell,2 Kevin Park,3 and C. Roland Wolf1 1Cancer Research UK Molecular Pharmacology Unit, Biomedical Research Centre, Ninewells Hospital and Medical School, Dundee, United Kingdom; 2Cancer Biomarkers and Prevention Group, Biocentre, University of Leicester, Leicester, United Kingdom;and 3Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom Abstract family of dimeric enzymes (EC 2.5.1.18;GST a, A, k, u, j, ~, n, and N) Human cancer is controlled by a complex interaction between identified on the basis of their amino acid sequence and substrate genetic and environmental factors. Such environmental specificity (4). GSTs are regarded as being important detoxification factors are well defined for smoking-induced lung cancer; enzymes due to their capacity to catalyze the addition of reduced however, the roles of specific genes have still to be elucidated. glutathione (GSH) to reactive electrophiles produced by cyto- Glutathione transferase P (GSTP) catalyzes the detoxification chrome P450 metabolism. As a consequence, there has been a of electrophilic diol epoxides produced by the metabolism of significant interest in elucidating the relationship between GSTP polycyclic aromatic hydrocarbons such as benzo[a]pyrene function and resistance to cancer chemotherapeutic agents and the development of cancer (5–7). In a genetic approach to study GST (BaP), a common constituent of tobacco smoke. Activity- altering polymorphisms in Gstp have therefore been speculated functions, we have generated mice nulled at the Gstp gene locus to be potential risk modifiers in lung cancer development.
    [Show full text]
  • Genetic Landscape of Papillary Thyroid Carcinoma and Nuclear Architecture: an Overview Comparing Pediatric and Adult Populations
    cancers Review Genetic Landscape of Papillary Thyroid Carcinoma and Nuclear Architecture: An Overview Comparing Pediatric and Adult Populations 1, 2, 2 3 Aline Rangel-Pozzo y, Luiza Sisdelli y, Maria Isabel V. Cordioli , Fernanda Vaisman , Paola Caria 4,*, Sabine Mai 1,* and Janete M. Cerutti 2 1 Cell Biology, Research Institute of Oncology and Hematology, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada; [email protected] 2 Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo/EPM, São Paulo, SP 04039-032, Brazil; [email protected] (L.S.); [email protected] (M.I.V.C.); [email protected] (J.M.C.) 3 Instituto Nacional do Câncer, Rio de Janeiro, RJ 22451-000, Brazil; [email protected] 4 Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy * Correspondence: [email protected] (P.C.); [email protected] (S.M.); Tel.: +1-204-787-2135 (S.M.) These authors contributed equally to this paper. y Received: 29 September 2020; Accepted: 26 October 2020; Published: 27 October 2020 Simple Summary: Papillary thyroid carcinoma (PTC) represents 80–90% of all differentiated thyroid carcinomas. PTC has a high rate of gene fusions and mutations, which can influence clinical and biological behavior in both children and adults. In this review, we focus on the comparison between pediatric and adult PTC, highlighting genetic alterations, telomere-related genomic instability and changes in nuclear organization as novel biomarkers for thyroid cancers. Abstract: Thyroid cancer is a rare malignancy in the pediatric population that is highly associated with disease aggressiveness and advanced disease stages when compared to adult population.
    [Show full text]
  • Fructose in Medicine Jussi K. HUTTUNEN
    Postgrad Med J: first published as 10.1136/pgmj.47.552.654 on 1 October 1971. Downloaded from Poitgraduate Medical Journal (October 1971) 47, 654-659. CURRENT SURVEY Fructose in medicine A review with particular reference to diabetes mellitus Jussi K. HUTTUNEN M.D. Third Department of Medicine, University of Helsinki, Finland Summary and in experimental animals. Earlier suggestions con- A review is given of the metabolism of fructose in the cerned with the atherogenic properties of fructose mammalian organism, and its significance in medicine. have recently been challenged. The apparent increase Emphasis is laid upon the absorption and assimilation in the incidence of coronary disease among sucrose of fructose through pathways not identical with those users seems to be a statistical artefact, caused by the of glucose. The metabolism of fructose is largely increased ingestion of coffee and soft drinks by insulin-independent, although the ultimate fate of cigarette smokers. fructose carbons is determined by the presence or the absence of insulin. Introduction Clinical and experimental work has suggested that The metabolism of fructose has engaged the atten- fructose may exert beneficial effects as a component tion of clinicians since 1874, when Kulz suggestedProtected by copyright. of the diet for patients with mild and well-balanced that diabetic patients can assimilate fructose better diabetes. Fructose is absorbed slowly from the gut, than glucose. These observations have been con- and does not induce drastic changes in blood sugar firmed in a number of experimental and clinical levels. Secondly, fructose is metabolized by insulin- studies (Minkowski, 1893; Naunyn, 1906; Joslin, independent pathways in the liver, intestinal wall, 1923), it being further shown that in some patients kidney and adipose tissue.
    [Show full text]