ADVISORY COMMISSION on CHILDHOOD VACCINES TABLE of CONTENTS December 8, 2017
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Supplementary Materials
DEPs in osteosarcoma cells comparing to osteoblastic cells Biological Process Protein Percentage of Hits metabolic process (GO:0008152) 29.3 29.3% cellular process (GO:0009987) 20.2 20.2% localization (GO:0051179) 9.4 9.4% biological regulation (GO:0065007) 8 8.0% developmental process (GO:0032502) 7.8 7.8% response to stimulus (GO:0050896) 5.6 5.6% cellular component organization (GO:0071840) 5.6 5.6% multicellular organismal process (GO:0032501) 4.4 4.4% immune system process (GO:0002376) 4.2 4.2% biological adhesion (GO:0022610) 2.7 2.7% apoptotic process (GO:0006915) 1.6 1.6% reproduction (GO:0000003) 0.8 0.8% locomotion (GO:0040011) 0.4 0.4% cell killing (GO:0001906) 0.1 0.1% 100.1% Genes 2179Hits 3870 biological adhesion apoptotic process … reproduction (GO:0000003) , 0.8% (GO:0022610) , 2.7% locomotion (GO:0040011) ,… immune system process cell killing (GO:0001906) , 0.1% (GO:0002376) , 4.2% multicellular organismal process (GO:0032501) , metabolic process 4.4% (GO:0008152) , 29.3% cellular component organization (GO:0071840) , 5.6% response to stimulus (GO:0050896), 5.6% developmental process (GO:0032502) , 7.8% biological regulation (GO:0065007) , 8.0% cellular process (GO:0009987) , 20.2% localization (GO:0051179) , 9. -
Immunizations for Preteens
INVITED COMMENTARY Immunizations for Preteens Emmanuel B. Walter, Richard J. Chung As a part of health supervision visits, all preteens should figure 1. receive the combined tetanus, diphtheria, and pertussis vac- Immunizations Universally Recommended for North cine, the meningococcal conjugate vaccine, the human pap- Carolina Preteens 11-12 Years of Age illomavirus vaccine series, and an annual influenza vaccine. Because levels of vaccine coverage among preteens are gen- Meningococcal conjugate vaccine First dose (to be followed by a second dose at age 16 years). erally suboptimal, strategies for improving coverage should Tetanus, diphtheria, pertussis vaccine be devised and implemented. Human papillomavirus vaccine 3 doses mmunizations are a major component of health supervi- Females – either HPV4 or HPV2 Ision visits for children and adolescents. Because immuni- Males – HPV4 zation recommendations change frequently, Bright Futures, Influenza vaccine an initiative of the American Academy of Pediatrics (AAP) Yearly that promotes the health of children and adolescents, has 2010 [3, 4]. In 2010, only 14 cases were reported in North issued guidelines that refer providers to the Web sites of the Carolina, and 11 of those cases were caused by serogroups Centers for Disease Control and Prevention (CDC) [1] and included in the current vaccine [4]. Although meningococ- the AAP [2] for the most up-to-date immunization sched- cal disease is uncommon, vaccination is critical, because the ules. For no other age group have routine immunization rec- consequences of infection can be devastating. ommendations evolved more rapidly in the past 8 years than In 2005 the US Food and Drug Administration (FDA) for preteens. -
February 17, 2021
January 30 – February 17, 2021 This weekly science review is a snapshot of the new and emerging scientific evidence related to COVID-19 during the period specified. It is a review of important topics and articles, not a guide for policy or program implementation. The findings captured are subject to change as new information is made available. We welcome comments and feedback at [email protected]. In depth: Should second doses of COVID-19 vaccines be delayed? Main message: While the rollout of multiple vaccines has offered hope to control or end the COVID-19 pandemic, global vaccine demand will continue to outpace supply for the foreseeable future. To date, people in 130 countries have not yet received a single dose of COVID-19 vaccine. In countries where vaccination has begun, limited supplies of vaccine in combination with surges in cases and deaths have overwhelmed health care systems. Further, the emergence of more transmissible SARS-CoV-2 variants has led many to question existing vaccine rollout plans and propose alternative strategies. Some countries and experts have recommended delaying second doses of vaccine to maximize the number of people who receive at least one dose. This raises a critical question: What do we know about vaccines, especially the vaccines for COVID-19, that may allow flexibility in vaccine schedules? This is a complex question and there may not be a straightforward answer. Our knowledge is evolving rapidly as vaccine trials progress and rollout continues, and we must keep in mind that different approaches to vaccine scheduling may be appropriate in different settings. -
Full Text (PDF)
ASSESSMENT: NEUROLOGIC RISK OF IMMUNIZATION Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology Gerald M. Fenichel, MD Immunization programs are among the most cost-effective public health measures. They are the first line of defense against infectious disease, and when abandoned, epidemics often follow. Vaccines are biological products and some differences exist from lot to lot. Although no vaccine is 100% effective or safe, modern vaccines have an excellent safety record. Smallpox was eradicated by a global immunization program, and the eradication of poliomyelitis is within reach for the year 2000. Physicians are quick to blame vaccines for adverse neurologic events that follow immunizations. This bias probably originated with the first vaccines for rabies. They were grown in the CNS of mature animals, contained myelin basic protein, and often caused encephalomyelitis. In fact, no vaccine currently licensed for use in the United States is known to cause or exacerbate a demyelinating disorder of the CNS. The United States maintains the most extensive obligatory childhood immunization schedule of any country, but has one of the worst records of infant immunization (table 1). The main reasons for the low immunization rate are deficiencies in health care delivery and access in the public sector. Full immunization is only realized at age 5, when it becomes prerequisite for school entry. Immunization practices are recommended to the Surgeon General by the Advisory Committee on Immunization Practices (ACIP) of the Centers of Disease Control and Prevention. New recommendations of the ACIP are published in Morbidity and Mortality Weekly Reports and are the standard of care for immunization practice. -
Review Article Risk of Seizures After Immunization with Vaccine in Children MD MIZANUR RAHMAN1, KANIJ FATEMA 2
40 BANGLADESH J CHILD HEALTH 2020; VOL 44 (1) : 40-47 Review Article Risk of Seizures after Immunization with Vaccine in Children MD MIZANUR RAHMAN1, KANIJ FATEMA 2 Abstract: Adverse neurological event particularly seizure after vaccination is not uncommon. The most linked vaccines are Diphtheria, Pertussis and Tetanus toxoid (DPT), Measles, Mumps and Rubella (MMR) and other combination vaccines. It is documented that increased febrile seizure after DPT and MMR vaccine is due to increase febrile episodes precipitating seizure and it is time related. Concomitant administration of vaccines cause seizure due to synergistic effect of those vaccines. When these vaccines are given separately, the risk of seizure is decreased. These type of vaccines are MMR + varicella (MMRV), DTaP-HepB-IPV etc. Regarding etiology, genetic mutation is most important. Some genes are closely related to vaccine induced FS and afebrile seizure like SCN1A, SCN2A, IFI44L, PCDH19 etc. Other causes are endotoxin mediated endothelial damage, IL-1â production and non CNS infection. It is well evident that consequences of not giving vaccine are far more than the adverse events. So Vaccinations should be performed without contraindication in children with previous febrile and afebrile seizures with proper counseling. Key words: seizure, febrile seizure (FS), vaccine, epilepsy. Introduction associated with diphtheria and tetanus toxoids and Immunization is an important part of child care whole-cell pertussis (DTwP). One study found that practice and millions of children are vaccinated every vaccination with DPT was associated with an year. The vaccine is generally well tolerated but elevated risk of seizures (relative risk, 3.3; 95 percent transient adverse events like seizures are rarely confidence interval, 1.4 to 8.2).2 In another study, encountered after vaccination. -
Immunization Dialogue
INDIAN PEDIATRICS VOLUME 34-SEPTEMBER 1997 Immunization Dialogue Should We Revise the Primary have two competing demands. Increasing Immunization Schedule the intervals between the first and second and second and third doses to two months On page 17 of the "IAP Guide Book on (or 8 weeks) instead of one month (or 4 Immunization" (Dec. 1996) courtesy Smith- weeks) would certainly improve antibody Kline Beecham, it is stated that "Between 2 levels in the case of most non-replicating doses of the same vaccine (DPT and OPV), antigens such as pertussis vaccine, toxoids a minimum interval of 4 weeks should be and injectable polio vaccine. For hepatitis B observed. Increasing the interval between vaccine, the manufacturers recommend doses to 2 or 3 months actually improves intervals of 1 month between the first and antibody levels. The maximum allowed in- second doses and 5 months between the terval between the first and second dose of second and third doses, for obtaining high a non-live (DPT) vaccine is arbitrarily one antibody titers. year. Between 2nd and 3rd dose also, the minimum interval is 4 weeks, the optimum On the other hand, 2 or 3 doses of vac- 3 to 6 months, and the maximum again cines given in quicker succession provides arbitrarily five years." protective immunity much sooner. When interval between doses is reduced, the One would like to know that in the light seroconversion (development of detectable of the above statement, why the Time Table antibody level) would be faster, but the for DPT along with OPV during the first level (titer) achieved would be lower. -
COVID-19 Vaccine: Critical Questions with Complicated Answers
Review Biomol Ther 29(1), 1-10 (2021) COVID-19 Vaccine: Critical Questions with Complicated Answers Mohammad Faisal Haidere1,†, Zubair Ahmed Ratan2,3,†, Senjuti Nowroz4, Sojib Bin Zaman5, You-Jung Jung6, Hassan Hosseinzadeh2,* and Jae Youl Cho7,* 1Department of Soil, Water and Environment, University of Dhaka, Dhaka 1000, Bangladesh 2School of Health & Society, University of Wollongong, NSW 2500, Australia 3Department of Biomedical Engineering, Khulna University of Engineering and Technology, Khulna 9203, Bangladesh 4Department of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh 5Department of Medicine, School of Clinical Sciences, Monash University, Victoria 3800, Australia 6Biological Resources Utilization Department, National Institute of Biological Resources, Incheon 22689, Republic of Korea 7Department of Integrative Biotechnology, and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea Abstract COVID-19 has caused extensive human casualties with significant economic impacts around the globe, and has imposed new challenges on health systems worldwide. Over the past decade, SARS, Ebola, and Zika also led to significant concerns among the scientific community. Interestingly, the SARS and Zika epidemics ended before vaccine development; however, the scholarly com- munity and the pharmaceutical companies responded very quickly at that time. Similarly, when the genetic sequence of SARS- CoV-2 was revealed, global vaccine companies and scientists have stepped forward to develop a vaccine, triggering a race toward vaccine development that the whole world is relying on. Similarly, an effective and safe vaccine could play a pivotal role in eradi- cating COVID-19. However, few important questions regarding SARS-CoV-2 vaccine development are explored in this review. Key Words: COVID-19, Vaccine, Vaccine backfires, Vaccine safety INTRODUCTION vember 2002 in the Guangdong province of China. -
British Anti-Smallpox Vaccination and the Development of Multifaceted Anti-Vaccine Rhetoric on Internet Parenting Forums Marta B
Claremont Colleges Scholarship @ Claremont Scripps Senior Theses Scripps Student Scholarship 2014 Shots, Everybody? : British Anti-smallpox Vaccination and the Development of Multifaceted Anti-vaccine Rhetoric on Internet Parenting Forums Marta B. Bean Scripps College Recommended Citation Bean, Marta B., "Shots, Everybody? : British Anti-smallpox Vaccination and the Development of Multifaceted Anti-vaccine Rhetoric on Internet Parenting Forums" (2014). Scripps Senior Theses. Paper 390. http://scholarship.claremont.edu/scripps_theses/390 This Open Access Senior Thesis is brought to you for free and open access by the Scripps Student Scholarship at Scholarship @ Claremont. It has been accepted for inclusion in Scripps Senior Theses by an authorized administrator of Scholarship @ Claremont. For more information, please contact [email protected]. SHOTS, EVERYBODY? : BRITISH ANTI-SMALLPOX VACCINATION AND THE DEVELOPMENT OF MULTIFACETED ANTI-VACCINE RHETORIC ON INTERNET PARENTING FORUMS by MARTA B. BEAN SUBMITTED TO SCRIPPS COLLEGE IN PARTIAL FULFILLMENT OF THE DEGREE OF BACHELOR OF ARTS PROFESSOR VIVIEN HAMILTON PROFESSOR JACQUELINE WERNIMONT APRIL 25, 2014 Introduction The Internet serves much of the population as an easy way to learn about almost any topic, including health information. Approximately eighty percent of Internet users search for health information online, and surveys indicate that the Internet now rivals physicians as the most common source of health advice. 1 The Internet is also a place where information can be spread quickly and easily. Information is available in many venues, including user-generated Internet forums. Parenting forums are good places for information to spread quickly because of highly dedicated readership and personal connections made on the forums between parents. -
Scientific Consultation on Zika Virus Vaccine Development
World Health Organization and National Institute of Allergy and Infectious Diseases, National Institutes of Health Scientific Consultation on Zika Virus Vaccine Development January 10–11, 2017 5601 Fishers Lane Rockville, Maryland Meeting Summary Tuesday, January 10, 2017 INTRODUCTION Anthony S. Fauci, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), United States The National Institute of Allergy and Infectious Diseases (NIAID) and the World Health Organization (WHO) convened the Scientific Consultation on Zika Virus Vaccine Development to discuss challenges and recent advances in the development of Zika virus (ZIKV) vaccines. The NIAID Director opened the meeting by stating that the recent spread of ZIKV mirrors that of other emerging arboviruses in the Americas in the past several years, including chikungunya, West Nile, and dengue. The NIAID research response to Zika builds on those experiences. A primary goal of this research is to develop medical countermeasures including diagnostics, therapeutics, and vaccines. Challenges specific to the development of a Zika vaccine include: the lack of adequate animal models; uncertainties in the epidemiology, which affect clinical trial site selection; the likelihood that the vaccine will need to induce sterilizing immunity to prevent congenital Zika syndrome (CZS); preexisting immunity to other flaviviruses in some regions; and potential specific risks such as Guillain-Barré syndrome (GBS) and the administration of live vaccines to pregnant women. Several Zika vaccine candidates are being developed with different development timelines and likely target populations. The planned timelines include large, well-controlled clinical trials to evaluate safety and efficacy, and if successful, subsequent licensure; should public health need and available safety and efficacy data justify deployment of vaccine before licensure, access through appropriate regulatory mechanisms could be considered. -
Vaccines Prevent Illness Vaccinations, Also Called Immunizations, Can Prevent Many Illnesses That Might Otherwise Make People Sick Or Even Cause Death
Vaccines Prevent Illness Vaccinations, also called immunizations, can prevent many illnesses that might otherwise make people sick or even cause death. Vaccines work by strengthening the body’s immune system, the part of the body that fights off infection and disease so the body can regain health. If the immune system is prepared and strong, it quickly recognizes threats to health and already knows how to fight them. Vaccines do not give you the illness. How do vaccines work? A vaccine is made of a mild or inactive germ and its presence shows the body how to stop similar germs in the future, before they make the person sick. The way the body builds this protection is by creating specific “antibodies” to successfully fight illness. These antibodies protect you and others that live around you against the germs that cause the illness. Babies are born with some of the antibodies they need, which come directly from their mother. When mothers breastfeed, this strengthens the baby’s immune system even more. Vaccinations build the baby’s immune system as they get older. Just as good nutrition helps a child’s body grow, vaccinations help grow the immune system. Vaccinations work. Some sicknesses that killed or disabled many people in the past, such as smallpox, are now gone and the vaccine is no longer needed. Others illnesses targeted by vaccines are becoming less common. Vaccinating all babies and children, and also adults as needed, can keep many illnesses from spreading or returning. 18 January 2019 NEW WHERE THERE IS NO DOCTOR: ADVANCE CHAPTERS 2 VACCINES PREVENT ILLNESS A vaccine protects the person who receives it, and this protects others when enough people are vaccinated. -
Studies on the Level of Neutralizing Antibodies Produced by Inactivated COVID-19 Vaccines in the Real World
medRxiv preprint doi: https://doi.org/10.1101/2021.08.18.21262214; this version posted August 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Studies on the level of neutralizing antibodies produced by inactivated COVID-19 vaccines in the real world Haiying Zhang¶, Yuyuan Jia¶, Ying Ji, Xu Cong, Yan Liu, Ruifeng Yang, Xiangsha Kong, Yijun Shi, Ling Zhu, Zhenyu Wang, Wei Wang, Ran Fei, Feng Liu, Fengmin Lu, Hongsong Chen*, Huiying Rao* Peking University People’s Hospital, Peking University Hepatology Institute, National Clinical Research Center for Infectious Disease,Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis,Beijing,China *Corresponding author E-mail: [email protected](HR); [email protected](HC) ¶These authors contributed equally to this work. Funding: This work is funded in part by a grant from the National Natural Science Foundation of China (NSFC) (81870406), Beijing Natural Science Foundation (7182174), and the China National Science and Technology Major Project for Infectious Diseases Control during the 13th Five-Year Plan Period (2017ZX10202202),the National Key Sci-Tech Special Project of China (No. 2018ZX10302207-002). NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2021.08.18.21262214; this version posted August 22, 2021. -
Malonylation of GAPDH Is an Inflammatory Signal in Macrophages
ARTICLE https://doi.org/10.1038/s41467-018-08187-6 OPEN Malonylation of GAPDH is an inflammatory signal in macrophages Silvia Galván-Peña1,2, Richard G. Carroll3, Carla Newman4, Elizabeth C. Hinchy5, Eva Palsson-McDermott1, Elektra K. Robinson6, Sergio Covarrubias 6, Alan Nadin7, Andrew M. James5, Moritz Haneklaus1, Susan Carpenter6, Vincent P. Kelly 1, Michael P. Murphy 5, Louise K. Modis2 & Luke A. O’Neill1,2 Macrophages undergo metabolic changes during activation that are coupled to functional 1234567890():,; responses. The gram negative bacterial product lipopolysaccharide (LPS) is especially potent at driving metabolic reprogramming, enhancing glycolysis and altering the Krebs cycle. Here we describe a role for the citrate-derived metabolite malonyl-CoA in the effect of LPS in macrophages. Malonylation of a wide variety of proteins occurs in response to LPS. We focused on one of these, glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In resting macrophages, GAPDH binds to and suppresses translation of several inflammatory mRNAs, including that encoding TNFα. Upon LPS stimulation, GAPDH undergoes malonylation on lysine 213, leading to its dissociation from TNFα mRNA, promoting translation. We therefore identify for the first time malonylation as a signal, regulating GAPDH mRNA binding to promote inflammation. 1 School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College, Dublin D2, Ireland. 2 Immunology Catalyst, GlaxoSmithKline, Stevenage SG1 2NY, UK. 3 Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin D2, Ireland. 4 In Vitro/In Vivo Translation, GlaxoSmithKline, Stevenage SG1 2NY, UK. 5 MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK. 6 Department of Molecular Cell and Developmental Biology, UC Santa Cruz, Santa Cruz 95064 CA, USA.