Bulletin of the Geological Society of America Vol. 68. Pp. 413-420. 1 Pl. April 1957 Frenchman Formation of Eastern Cypress Hill

Total Page:16

File Type:pdf, Size:1020Kb

Bulletin of the Geological Society of America Vol. 68. Pp. 413-420. 1 Pl. April 1957 Frenchman Formation of Eastern Cypress Hill BULLETIN OF THE GEOLOGICAL SOCIETY OF AMERICA VOL. 68. PP. 413-420. 1 PL. APRIL 1957 FRENCHMAN FORMATION OF EASTERN CYPRESS HILLS, SASKATCHEWAN, CANADA BY W. O. KTJPSCH ABSTRACT In the eastern Cypress Hills the Frenchman Formation (Upper Cretaceous), a correla- tive of the Hell Creek in Montana, consists of a clay lithosome and a sand lithesome. Study of sections shows that either lithological unit may form the lowest unit of the Frenchman and that they may alternate vertically. Equivalence of the two lithologies is suggested also by their similar fossil content. The Frenchman is distributed over a larger area than previously assumed. Certain sands formerly interpreted as belonging to the Eastend Formation (the Fox Hills of Montana) are assigned to the Frenchman because of their fossil content. Differences in grain size, color, accessory minerals, stratification, and other characteristics can be used to distinguish Eastend sands from the sand lithosome of the Frenchman. The Frenchman rests on a surface of erosion; the upper contact is abrupt but conforma- able. CONTENTS TEXT ILLUSTRATIONS Page Plate Facing page 1. Distribution of Frenchman Formation in the Introduction and acknowledgments 413 eastern Cypress Hills, Saskatchewan, General stratigraphy 413 Canada 418 Definition of the Frenchman Formation 414 Distribution and thickness 415 TABLES Lithology 415 Table Page Description of two Frenchman lithostrati- 1. Development of stratigraphic nomenclature graphic units 415 in the Cypress Hills 414 Relationship of the two lithostratigraphic 2. Lithological characteristics of Eastend and units 417 Frenchman sands 416 Paleontology 419 3. Fossils from Frenchman Formation, eastern References cited 419 Cypress Hills 418 INTRODUCTION AND ACKNOWLEDGMENTS and Mr. N. L. Mclver who assisted in measur- ing stratigraphic sections in the field, and Mr. The Frenchman Formation of southwestern B. K. Smith who conducted heavy-mineral and Saskatchewan presents three problems: (1) mechanical analyses. Mr. R. Rudichuk of the sands belonging to the Frenchman Formation University of Saskatchewan prepared the map are not everywhere easily distinguishable from for publication. Thanks are also due the Sas- sands belonging to the stratigraphically lower katchewan Research Council for financial aid. Eastend Formation; (2) the relationship of The author is indebted to Dr. F. H. McLearn, two different lithostratigraphical units of the Dr. L. S. Russell, and Mr. William E. Benson Frenchman has been differently interpreted for offering valuable criticism of the manuscript. by various workers; (3) some geologists de- scribed the upper boundary of the Frenchman GENERAL STRATIGRAPHY as conformable with the overlying Ravenscrag, others suggested a disconformable relationship. Rocks of late Cretaceous and early Tertiary The writer wishes to thank Mr. S. P. Jordan age are well exposed in the eastern part of the 413 Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/68/4/413/3426947/i0016-7606-68-4-413.pdf by guest on 29 September 2021 414 W. O. KUPSCH—FRENCHMAN FORMATION, SASKATCHEWAN Cypress Hills, especially in the valley of the ous day and impure lignite, and the upper of Frenchman River (formerly called White Mud refractory white, gray, and mauve clays, sandy River) between Ravenscrag and Eastend, in places. In addition McLearn recognized Saskatchewan. The stratigraphic section in this an uppermost or fourth member consisting of valley attracted geologists as early as 1883, dark, bentonitic, nonrefractory shales. Lithol- TABLE 1.—DEVELOPMENT or STRATIGRAPHIC NOMENCLATURE IN THE CYPRESS HILLS Correlatives in adjacent McConnell, 1885 McLearn (in Eraser et al., 1935) Furnival, 1946 areas of the U.S.A. Upper Ravenscrag Fort Union Ravenscrag Lower Frenchman Hell Creek No. 4 zone Battle Laramie No. 3 zone Colgate \ Whitemud member / No. 2 zone Whitemud No. 1 zone / Fox Hills Fox Hill Eastend Eastend Pierre Bearpaw Bearpaw Bearpaw and a lithologic description was published ogy and stratigraphic position indicate that the (McConnell, 1885, p. 27c). White sands and Whitemud Formation is the Canadian equiva- clays, now referred to as the Whitemud Forma- lent of the Colgate member of the Fox Hills tion, constitute the most conspicuous unit of Formation in Montana and North Dakota. the section. These and all overlying strata were Furnival (1946) adopted McLearn's divi- assigned to the Laramie by McConnell, whereas sions for the lower part of the section but he designated the underlying sands as Fox Hill. removed the uppermost dark-shale member The Pierre shales are at the base of McConnell's from the Whitemud and called it the Battle section, the division of which has undergone Formation. Through his work the Lower many changes introduced by various workers Ravenscrag became known as the Frenchman (Table 1). Formation, whereas the Upper Ravenscrag Detailed work was done by McLearn in the became simply Ravenscrag Formation. Eastend area, and the results were summarized in Fraser et al. (1935). McLearn used the name DEFINITION or THE FRENCHMAN FORMATION Bearpaw Formation for the Upper Cretaceous marine shales, which were referred to as Pierre Furnival (1946, p. 94) defines the Frenchman by McConnell. The overlying very fine sands Formation as the strata lying above the Battle and silts, representing the youngest marine Formation and underlying the restricted deposits of the plains, were no longer called Ravenscrag Formation. The type area of the Fox Hill but Eastend. The name Whitemud Frenchman is along the Frenchman River was used for the conspicuous white sediments between Ravenscrag and Eastend, but no type which were treated as a separate formation. section was designated by Furnival. McLearn divided the Whitemud Formation of The upper boundary of the Frenchman is the Cypress Hills into three members, or zones the lowest commerical and mappable coal as he called them. The lowest consists of gray seam, which is placed in the Ravenscrag For- kaolinitic sand, the middle of brown carbonace- mation. In the Eastend area this lignite seam Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/68/4/413/3426947/i0016-7606-68-4-413.pdf by guest on 29 September 2021 DEFINITION OF THE FRENCHMAN FORMATION 415 is called the No. 1 or Ferris seam. It is several These banks are mapped as Eastend on the feet thick and has a break of carbonaceous Regina sheet (Fraser et al., 1935, map) and no shale of about 6 inches separating a lower Ravenscrag (which would include the French- thicker bed from an upper. In Montana, where man) is shown east of the creek. From these the Hell Creek is the correlative of the French- key outcrops the Frenchman sand can be man and the Fort Union of the Ravenscrag, followed north where other fossil localities the lowest mappable lignite is also taken as the verify in places the lithologic correlations. base of the Fort Union (Colton, 1955). Plate 1 does not show the distribution of the The lower boundary of the Frenchman is Eastend, but it can be seen from the abbrevi- marked by a surface of erosion as McLearn ated sections that no Eastend beds are present had already recognized (in Fraser et al., 1935, north of T. 8, where the Frenchman everywhere p. 37). Where the pre-Frenchman erosion is lies directly on Bearpaw. nil or very slight, the Frenchman Formation The thickness of the Frenchman varies with rests on the Battle. In other places the French- the depth of erosion that took place before the man rests on one of the three members of the formation was deposited. It ranges from a Whitemud, the Eastend, or the Bearpaw. The minimum of 28 feet to more than 222 feet greatest amount of erosion took place in the where the Frenchman rests on some horizon northern and eastern parts of the area on the in the Bearpaw. The Frenchman increases in flanks of the Cypress Hills, where as much as thickness from the town of Eastend to the 200 feet of older formations was removed before north and to the east. deposition of the Frenchman. Less material was removed from the center of the hills in the LITHOLOGY Ravenscrag-Eastend area. Here the Frenchman commonly rests on Battle or on some stratum Description of Two Frenchman Lithostratigraphic of the Whitemud Formation and has some Units local channelling down to the Eastend sands. Two lithostratigraphic units make up the To the east the Frenchman lies on progressively Frenchman Formation. One is here referred lower strata down to some part of the Bearpaw to as the sand lithosome, the other as the clay shale at the eastern boundary of the map area. lithosome. These units were previously referred On the northern slope of the Cypress Hills also, to as zones (McLearn, in Fraser et al., 1935, the Frenchman overlies the Bearpaw. p. 41), phases (Russell, 1948, p. 32), and facies (Kupsch, 1956, p. 20). The increased knowledge DISTRIBUTION AND THICKNESS of the stratigraphical relationships between the Plate 1 shows the distribution of the French- two lithological units of the Frenchman and man Formation in the eastern Cypress Hills. the recent redefinition and clarification of many On older geological maps covering this general lithostratigraphical terms seem to justify the region (Fraser et al., 1935, Regina sheet) the adoption of the term lithosome. Wheeler and Frenchman was included in the Ravenscrag. Mallory (1956, p. 2718-2719) define a lithosome In general the Frenchman on Plate 1 coincides as a lithostratigraphic body which is mutually with the outer, lower border of the Ravenscrag intertongued with one or more bodies of differ- as mapped on the Regina sheet. Important ing lithic constitution. They point out that differences are noticeable in the northeastern several writers previously referred to such sector of Plate 1 where large areas previously vertico-laterally delineated units as "facies," mapped as Eastend are now shown as French- but that the restricted definition of lithofacies man.
Recommended publications
  • A King-Size Theropod Coprolite
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/232796267 A king-size theropod coprolite Article in Nature · June 1998 DOI: 10.1038/31461 CITATIONS READS 154 2,385 4 authors, including: Karen Chin Tim Tokaryk University of Colorado Boulder Royal Saskatchewan Museum 32 PUBLICATIONS 1,143 CITATIONS 39 PUBLICATIONS 488 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: The Dinosaur Park Formation of Saskatchewan View project Paleobiodiverity and the K-Pg Boundary View project All content following this page was uploaded by Tim Tokaryk on 10 June 2015. The user has requested enhancement of the downloaded file. letters to nature compositions, though the ground mass contains more silicon and aluminium (Table 2). X-ray powder-diffraction analyses indicate A king-sized theropod that carbonate fluorapatite is the predominant phosphate mineral in both the bone and the ground mass. coprolite Several factors confirm that this specimen is a coprolite. The most diagnostic feature is a phosphatic composition, which is character- Karen Chin, Timothy T. Tokaryk*, Gregory M. Erickson†‡ istic of carnivore coprolites9. As phosphorus normally constitutes & Lewis C. Calk 10 only about 0.1% of the Earth’s crustal rocks , concentrated phos- United States Geological Survey, 345 Middlefield Road, MS 975, Menlo Park, phate deposits usually indicate biotic accumulations, and the overall 8 California 94025, USA configuration of the mass is consistent with the irregular faecal * Eastend Fossil Research Station, Royal Saskatchewan Museum, Box 460, deposits produced by very large animals. The matrix-supported Eastend, Saskatchewan S0N 0T0, Canada distribution of bone fragments argues against the possibility that the † Department of Integrative Biology & Museums of Vertebrate Zoology and mass represents regurgitated material or fluvially aggregated bone Paleontology, University of California, Berkeley, California 94720, USA debris.
    [Show full text]
  • TGI Strat Column 2009.Cdr
    STRATIGRAPHIC CORRELATION CHART TGI II: Williston Basin Architecture and Hydrocarbon Potential in Eastern Saskatchewan and Western Manitoba EASTERN MANITOBA PERIOD MANITOBA SUBSURFACE SASKATCHEWAN OUTCROP ERA glacial drift glacial drift glacial drift Quaternary Wood Mountain Formation Peace Garden Peace Garden Member Tertiary Member Ravenscrag Formation CENOZOIC Formation Goodlands Member Formation Goodlands Member Turtle Mountain Turtle Mountain Turtle Frenchman Formation Whitemud Formation Boissevain Formation Boissevain Formation Eastend Formation Coulter Member Coulter Member Bearpaw Formation Odanah Member Belly River “marker” Odanah Member Belly River Formation “lower” Odanah Member Millwood Member Lea Park Formation Millwood Member MONTANA GROUP Pembina Member Pembina Member Pierre Shale Pierre Shale Milk River Formation Gammon Ferruginous Member Gammon Ferruginous Member Niobrara Formation Chalky Unit Boyne Member Boyne Member Boyne Calcareous Shale Unit Member Carlile Morden Member Carlile upper Formation Morden Member Formation Morden Member Carlile Formation Assiniboine Marco Calcarenite Assiniboine Member Member CRETACEOUS Second White Specks Laurier Limestone Beds Favel Favel Keld Keld Member Member Formation Formation Belle Fourche Formation Belle Fourche Member MESOZOIC COLORADO GROUP Belle Fourche Member upper Fish Scale Formation Fish Scale Zone upper Base of Fish Scale marker Base of Fish Scale marker Westgate Formation Westgate Member lower Westgate Member Newcastle Formation Newcastle Member lower Viking Sandstone
    [Show full text]
  • The Fauna from the Tyrannosaurus Rex Excavation, Frenchman Formation (Late Maastrichtian), Saskatchewan
    The Fauna from the Tyrannosaurus rex Excavation, Frenchman Formation (Late Maastrichtian), Saskatchewan Tim T. Tokaryk 1 and Harold N. Bryant 2 Tokaryk, T.T. and Bryant, H.N. (2004): The fauna from the Tyrannosaurus rex excavation, Frenchman Formation (Late Maastrichtian), Saskatchewan; in Summary of Investigations 2004, Volume 1, Saskatchewan Geological Survey, Sask. Industry Resources, Misc. Rep. 2004-4.1, CD-ROM, Paper A-18, 12p. Abstract The quarry that contained the partial skeleton of the Tyrannosaurus rex, familiarly known as “Scotty,” has yielded a diverse faunal and floral assemblage. The site is located in the Frenchman River valley in southwestern Saskatchewan and dates from approximately 65 million years, at the end of the Cretaceous Period. The faunal assemblage from the quarry is reviewed and the floral assemblage is summarized. Together, these assemblages provide some insight into the biological community that lived in southwestern Saskatchewan during the latest Cretaceous. Keywords: Frenchman Formation, Maastrichtian, Late Cretaceous, southwestern Saskatchewan, Tyrannosaurus rex. 1. Introduction a) Geological Setting The Frenchman Formation, of latest Maastrichtian age, is extensively exposed in southwestern Saskatchewan (Figure 1; Fraser et al., 1935; Furnival, 1950). The lithostratigraphic units in the formation consist largely of fluvial sandstones and greenish grey to green claystones. Outcrops of the Frenchman Formation are widely distributed in the Frenchman River valley, southeast of Eastend. Chambery Coulee, on the north side of the valley, includes Royal Saskatchewan Museum (RSM) locality 72F07-0022 (precise locality data on file with the RSM), the site that contained the disarticulated skeleton of a Tyrannosaurus rex. McIver (2002) subdivided the stratigraphic sequence at this locality into “lower” and “upper” beds.
    [Show full text]
  • The Rock Record – March 2005
    The Rock Record – March 2005 2004 Executive President Mike Gunning 787-2618 In This Issue Vice-President ¾ Speaker Program Announcements & Abstracts p. 1-3 Andre Costa 787-9104 ¾ Upcoming Events p. 4 ¾ AGM Recap & Honour Roll Citation p. 5,6 Secretary ¾ Curling Summary p. 7 Vacant Treasurer Bob Troyer 787-2562 Business Manager Wednesday, March 2nd, 2005 Jeff Coolican 787-0651 Program Chair Steve Whittaker 787-2577 Verdant, Volcanic Vistas on the Assistant Program Chair Island of St. Lucia, West Indies Kate MacLachlan 787-9059 Past President Erik Nickel 787-0169 Charlie Harper Northern Geological Survey School Liaison Committee Saskatchewan Industry and Resources Melinda Yurkowski 787-0650 Field Trip Committee Lancaster Room, Royal Canadian Legion John Lake 787-2621 Cash Bar: 11:30; Lunch: 11:50 Meeting: 12:15 – 13:00 Golf Tournament Committee Bob Troyer 787-2562 Members $7.00, Non-members $11.00 Contact: Andre Costa 787-9104 By NOON, Wednesday, January 26, 2005 Please contribute to the SGS Newsletter The SGS Newsletter is produced by the SGS executive. Wednesday, March 23, 2005 Letters, announcements, notices, comments, photos, news and information about SGS members, etc. are always T-Rex Excavation, Frenchman welcome. Call an executive member or write to us at: Formation, Southwest Saskatchewan Saskatchewan Geological Society Tim Tokaryk P.O. Box 234 Royal Saskatchewan Museum Fossil Research Station Regina, SK S4P 2Z6 Eastend, Saskatchewan SGS e-mail address: Lancaster Room, Royal Canadian Legion [email protected] Cash Bar: 11:30; Lunch: 11:50 Meeting: 12:15 – 13:00 SGS Website: Members $7.00, Non-members $11.00 www.sgshome.ca Contact: Andre Costa 787-9104 By NOON, Wednesday, January 26, 2005 All advertising inquiries should be directed to Andre Costa 1 Speakers Program; Mar.
    [Show full text]
  • Alberta Basin. See Western Canada Foreland Basin. Alexander Terrane
    — ♦ — Index — ♦ — Alberta basin. See Western Canada foreland basin. Cardium Formation, 33, 35, 201, 202, 265, 302 Alexander terrane, 85 Cardium reservoir unit, 177, 178 Andean-type continental margin magmatic arc, Cascade basin, 273, 274 subduction along, 10 Cascade terrane, 85 Arctic Alaska plate, 376 Cassiar terrane, 85 Arctic National Wildlife Refuge (ANWR), 363 Charlie Lake Formation, 296 Arkoma basin, 436, 437, 443 Chinook Member, 36 Asmari reservoir, 331-332 Chugach terrane, 85, 116 Chungo Member, 33, 36 Bangestan/Qamchuqa reservoir, 332-333 Clearwater Formation, 27 Barrow arch, 375 Coastal belt terrane, 116, 118 Basal Colorado Sand reservoir unit, 170, 171 Coast plutonic complex, 11, 83 Bearpaw sandstones, 236 Colony Formation, 28 Beattie Peaks Formation, 18 Colorado Assemblage, 192,196-197, 199-201, 210-212, Belloy Formation, 297 224-226 Belly River Formation, 38, 117, 272 Colorado Group, 281-286, 300-303 Belly River reservoir unit, 181, 182 Colorado Group oils, 300 Belly River sandstones, 236 Colorado Shale, 284, 286 Belt Supergroup, 275 Crescent terrane, 116 Black Warrior basin, 431, 435, 436 Cummings Member, 24 Bluesky Formation, 22, 25 Cypress Hills/Hand Hills Assemblage, 192-193, 196-197, Boulder Batholith, 238 202-203 Bow Island Formation, 31, 32 Cypress Hills Formation, 42 Bowser basin, 85 Brazeau Formation, 39 Dakota sandstone, 414 Bridge River terrane, 85 Deep basin, Rock-Eval pyrolysis and TOC data, 283 Brookian sequence, 369-370, 370-374 Deformed belt, 84, 268-269 Dezful embayment. See Zagros foreland basin. Cache Creek
    [Show full text]
  • Paleontological Discoveries in the Chorrillo Formation (Upper Campanian-Lower Maastrichtian, Upper Cretaceous), Santa Cruz Province, Patagonia, Argentina
    Rev. Mus. Argentino Cienc. Nat., n.s. 21(2): 217-293, 2019 ISSN 1514-5158 (impresa) ISSN 1853-0400 (en línea) Paleontological discoveries in the Chorrillo Formation (upper Campanian-lower Maastrichtian, Upper Cretaceous), Santa Cruz Province, Patagonia, Argentina Fernando. E. NOVAS1,2, Federico. L. AGNOLIN1,2,3, Sebastián ROZADILLA1,2, Alexis M. ARANCIAGA-ROLANDO1,2, Federico BRISSON-EGLI1,2, Matias J. MOTTA1,2, Mauricio CERRONI1,2, Martín D. EZCURRA2,5, Agustín G. MARTINELLI2,5, Julia S. D´ANGELO1,2, Gerardo ALVAREZ-HERRERA1, Adriel R. GENTIL1,2, Sergio BOGAN3, Nicolás R. CHIMENTO1,2, Jordi A. GARCÍA-MARSÀ1,2, Gastón LO COCO1,2, Sergio E. MIQUEL2,4, Fátima F. BRITO4, Ezequiel I. VERA2,6, 7, Valeria S. PEREZ LOINAZE2,6 , Mariela S. FERNÁNDEZ8 & Leonardo SALGADO2,9 1 Laboratorio de Anatomía Comparada y Evolución de los Vertebrados. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Avenida Ángel Gallardo 470, Buenos Aires C1405DJR, Argentina - fernovas@yahoo. com.ar. 2 Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina. 3 Fundación de Historia Natural “Felix de Azara”, Universidad Maimonides, Hidalgo 775, C1405BDB Buenos Aires, Argentina. 4 Laboratorio de Malacología terrestre. División Invertebrados Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Avenida Ángel Gallardo 470, Buenos Aires C1405DJR, Argentina. 5 Sección Paleontología de Vertebrados. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Avenida Ángel Gallardo 470, Buenos Aires C1405DJR, Argentina. 6 División Paleobotánica. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Avenida Ángel Gallardo 470, Buenos Aires C1405DJR, Argentina. 7 Área de Paleontología. Departamento de Geología, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria (C1428EGA) Buenos Aires, Argentina. 8 Instituto de Investigaciones en Biodiversidad y Medioambiente (CONICET-INIBIOMA), Quintral 1250, 8400 San Carlos de Bariloche, Río Negro, Argentina.
    [Show full text]
  • Competition Structured a Late Cretaceous Megaherbivorous Dinosaur Assemblage Jordan C
    www.nature.com/scientificreports OPEN Competition structured a Late Cretaceous megaherbivorous dinosaur assemblage Jordan C. Mallon 1,2 Modern megaherbivore community richness is limited by bottom-up controls, such as resource limitation and resultant dietary competition. However, the extent to which these same controls impacted the richness of fossil megaherbivore communities is poorly understood. The present study investigates the matter with reference to the megaherbivorous dinosaur assemblage from the middle to upper Campanian Dinosaur Park Formation of Alberta, Canada. Using a meta-analysis of 21 ecomorphological variables measured across 14 genera, contemporaneous taxa are demonstrably well-separated in ecomorphospace at the family/subfamily level. Moreover, this pattern is persistent through the approximately 1.5 Myr timespan of the formation, despite continual species turnover, indicative of underlying structural principles imposed by long-term ecological competition. After considering the implications of ecomorphology for megaherbivorous dinosaur diet, it is concluded that competition structured comparable megaherbivorous dinosaur communities throughout the Late Cretaceous of western North America. Te question of which mechanisms regulate species coexistence is fundamental to understanding the evolution of biodiversity1. Te standing diversity (richness) of extant megaherbivore (herbivores weighing ≥1,000 kg) com- munities appears to be mainly regulated by bottom-up controls2–4 as these animals are virtually invulnerable to top-down down processes (e.g., predation) when fully grown. Tus, while the young may occasionally succumb to predation, fully-grown African elephants (Loxodonta africana), rhinoceroses (Ceratotherium simum and Diceros bicornis), hippopotamuses (Hippopotamus amphibius), and girafes (Girafa camelopardalis) are rarely targeted by predators, and ofen show indiference to their presence in the wild5.
    [Show full text]
  • MAY 2014 VOLUME 41, ISSUE 05 Canadian Publication Mail Contract – 40070050 MORE THAN MAPPING WANT to LIFT YOUR PETREL® WORKFLOWS to NEW HEIGHTS?
    20 Fossils Hunting for Provinces 28 Go Take a Hike 34 GeoConvention 2014: Focus 36 Bringing the Cretaceous Sea to Mount Royal University: A Proposal to Fund the East Gate Entrance Fossil Display $10.00 MAY 2014 VOLUME 41, ISSUE 05 Canadian Publication Mail Contract – 40070050 MORE THAN MAPPING WANT TO LIFT YOUR PETREL® WORKFLOWS TO NEW HEIGHTS? Seamlessly bring more data into the fold. Dynamically present your insight like never before. SOFTWARE SERVICES CONNECTIVITY DATA MANAGEMENT The Petrosys Plug-in for Petrel® gives you access to powerful Petrosys mapping, surface modeling and data exchange from right where you need it – inside Petrel. Now you have the power to effortlessly and meticulously bring your critical knowledge together on one potent mapping canvas. Work intuitively with your Petrel knowledge and, should you so require, simultaneously aggregate, map and model data direct from multiple other sources – OpenWorks®, ArcSDE®, IHS™ Kingdom®, PPDM™ and more. Refine, enhance and then present your results in beautiful, compelling detail. The result? Decision-making is accelerated through consistent mapping and surface modeling as focus moves from regional overview through to the field and reservoir scale. To learn more go to www.petrosys.com.au/petrel. Petrel is a registered trademark of Schlumberger Limited and/or its affiliates. OpenWorks is a registered trademark of Halliburton. ESRI trademarks provided under license from ESRI. IHS and Kingdom are trademarks or registered trademarks of IHS, Inc. PPDM is a trademark of the Professional Petroleum Data Management (PPDM) Association. MAY 2014 – VOLUME 41, ISSUE 05 ARTICLES Fossils Hunting for Provinces ..................................................................................................... 20 CSPG OFFICE Tools to Tackle the Riddle of the Sands ...............................................................................
    [Show full text]
  • Aplodontid, Sciurid, Castorid, Zapodid and Geomyoid Rodents of the Rodent Hill Locality, Cypress Hills Formation, Southwest Saskatchewan
    APLODONTID, SCIURID, CASTORID, ZAPODID AND GEOMYOID RODENTS OF THE RODENT HILL LOCALITY, CYPRESS HILLS FORMATION, SOUTHWEST SASKATCHEWAN A Thesis Submitted to the College of Graduate Studies and Research in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Department of Geological Sciences University of Saskatchewan Saskatoon By Sean D. Bell © Copyright Sean D. Bell, December 2004. All rights reserved. PERMISSION TO USE In presenting this thesis in partial fulfilment of the requirements for a Master’s degree from the University of Saskatchewan, I agree that the libraries of the University of Saskatchewan may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professors who supervised my thesis work or, in their absence, by the Head of the Department of Geological Sciences or the Dean of the College of Graduate Studies and Research. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Head of the Department of Geological Sciences 114 Science Place University of Saskatchewan Saskatoon, Saskatchewan S7N 5E2 i ABSTRACT The Rodent Hill Locality is a fossil-bearing site that is part of the Cypress Hills Formation, and is located roughly 15 km northwest of the town of Eastend, Saskatchewan.
    [Show full text]
  • Ecosystem-Based Management Plan for Cypress Hills Interprovincial Park
    Cypress Hills Interprovincial Park ECOSYSTEM-BASED MANAGEMENT PLAN Saskatchewan.ca Ecosystem-Based Management Plan February 19, 2020 Cypress Hills Interprovincial Park ECOSYSTEM-BASED MANAGEMENT PLAN PROJECT REFERENCE NUMBER: 1467-5 March 11, 2020 Revised: March 2021 Prepared for: Saskatchewan Ministry of Parks, Culture and Sport 3211 Albert St Regina, SK S4S 5W6 Cypress Hills Interprovincial Park Page | 1 Approval Form The Ecosystem-based Management Plan for Cypress Hills Interprovincial Park (2020) is hereby approved for use by the Ministry of Parks, Culture and Sport in the management of the ecosystem and landscape of Cypress Hills Interprovincial Park. March 11, 2020 Darryl Sande, RPF, Plan Author Date FORSITE Inc. Recommended for approval by: March 1, 2021 Thuan Chu, Senior Park Landscape Ecologist Date Landscape Protection Unit Ministry of Parks, Culture and Sport Cypress Hills Interprovincial Park Page | ii EXECUTIVE SUMMARY Cypress Hills Interprovincial Park (CHIPP) is a 183 square kilometre Natural Environment Park within the southwestern corner of Saskatchewan. The park encompasses the unique geological features and elevation of the Cypress Hills formation. The area contains a mix of Boreal and Montane forest elements as well as Prairie grassland elements. The area is surrounded by agricultural and pasture lands. The park is made up of a mix of natural forests and grasslands, which is classified into nine ecosites. Upland ecosites include plains rough fescue grassland on silty clay loam, lodgepole pine-dominated stands on sandy clay, white spruce stands on silty clay, aspen stands on clay loam, aspen-white spruce mixedwoods on silty clay soils, and aspen-lodgepole pine mixedwoods on clay loam.
    [Show full text]
  • Petroleum Geology of Canada
    CANADA DEPARTMENT OF MINES AND RESOURCES MINES AND GEOLOGY BRANCH GEOLOGICAL SURVEY ECONOMIC GEOLOGY SERIES No. 14 PETROLEUM GEOLOGY OF CANADA BY G. S. Hume Geologist for Oil Controller for Canada OTI'AWA EDMOND CLOUTIER P RINTER TO THE KING'S MOST EXCELLENT MAJESTY 1944 Price, 25 cents CANADA DEPARTMENT OF MINES AND RESOURCES MINES AND GEOLOGY BRANCH GEOLOGICAL SURVEY ECONOMIC GEOLOGY SERIES No. 14 PETROLEUM GEOLOGY OF CANADA BY G. S. Hume Geologist for Oil Con troller for Can ada OTTAWA EDMOND CLOUTIER Pfl !NTER TO THE KTKG 'S MOST EXCELLENT MAJESTY 1944 Price. 25 cents CONTENTS PAGE Introduction ... .. ............. .. ........... ... .............. ...... 1 Hudson Bay Lo\Yland ........................... .... .. .. ... .. ...... 5 Gaspe, Quebec ......... .. .. .. ... .......... .. ..... ..................... ... 7 New Brunswick. .. ... ..... .. .. .... ..... .... .. .. .. .. .... .. .... 10 Prince Edward Island .. ..... .. ................................. .. .. .... .. 15 Nova Scotia. ..... .................. 15 Ontario........ ........ .... ....... ... ........... .. ..... ... ....... 17 The Interior Plains ........................................ ...... .. .... ........ 21 General statement.... .. ....... ............ ........ 21 Southern Alberta . ... ........... ....... .. .. .. .. .. ... ........... 25 East-ccn tral Alberta . ... .... ... .. .. .. .. ..... .... .. .... ..... 27 Northwest Alberta-Peace River area ..... ................ .... .. .... .. ... 30 Athabaska bituminous sands. ...... ..... ... ... 30 Foothills of south
    [Show full text]
  • Synoptic Taxonomy of Major Fossil Groups
    APPENDIX Synoptic Taxonomy of Major Fossil Groups Important fossil taxa are listed down to the lowest practical taxonomic level; in most cases, this will be the ordinal or subordinallevel. Abbreviated stratigraphic units in parentheses (e.g., UCamb-Ree) indicate maximum range known for the group; units followed by question marks are isolated occurrences followed generally by an interval with no known representatives. Taxa with ranges to "Ree" are extant. Data are extracted principally from Harland et al. (1967), Moore et al. (1956 et seq.), Sepkoski (1982), Romer (1966), Colbert (1980), Moy-Thomas and Miles (1971), Taylor (1981), and Brasier (1980). KINGDOM MONERA Class Ciliata (cont.) Order Spirotrichia (Tintinnida) (UOrd-Rec) DIVISION CYANOPHYTA ?Class [mertae sedis Order Chitinozoa (Proterozoic?, LOrd-UDev) Class Cyanophyceae Class Actinopoda Order Chroococcales (Archean-Rec) Subclass Radiolaria Order Nostocales (Archean-Ree) Order Polycystina Order Spongiostromales (Archean-Ree) Suborder Spumellaria (MCamb-Rec) Order Stigonematales (LDev-Rec) Suborder Nasselaria (Dev-Ree) Three minor orders KINGDOM ANIMALIA KINGDOM PROTISTA PHYLUM PORIFERA PHYLUM PROTOZOA Class Hexactinellida Order Amphidiscophora (Miss-Ree) Class Rhizopodea Order Hexactinosida (MTrias-Rec) Order Foraminiferida* Order Lyssacinosida (LCamb-Rec) Suborder Allogromiina (UCamb-Ree) Order Lychniscosida (UTrias-Rec) Suborder Textulariina (LCamb-Ree) Class Demospongia Suborder Fusulinina (Ord-Perm) Order Monaxonida (MCamb-Ree) Suborder Miliolina (Sil-Ree) Order Lithistida
    [Show full text]