Astro-Ph.HE] 10 Nov 2010 CORE Nvriyo Ehooy Aton Itra32,Austra 3122, Victoria Hawthorn, Technology, of University Netherlands

Total Page:16

File Type:pdf, Size:1020Kb

Astro-Ph.HE] 10 Nov 2010 CORE Nvriyo Ehooy Aton Itra32,Austra 3122, Victoria Hawthorn, Technology, of University Netherlands CORE Metadata, citation and similar papers at core.ac.uk Provided by University of Hertfordshire Research Archive Draft version November 12, 2010 A Preprint typeset using LTEX style emulateapj v. 11/10/09 DETAILED RADIO VIEW ON TWO STELLAR EXPLOSIONS AND THEIR HOST GALAXY: XRF080109/SN2008D AND SN2007UY IN NGC2770 A. J. van der Horst1, A. P. Kamble2, Z. Paragi3,4, L. J. Sage5, S. Pal6, G. B. Taylor7, C. Kouveliotou8, J. Granot9, E. Ramirez-Ruiz10, C. H. Ishwara-Chandra11, T. A. Oosterloo12,13, R. A. M. J. Wijers2, K. Wiersema14, R. G. Strom12,2, D. Bhattacharya15, E. Rol2, R. L. C. Starling14, P. A. Curran16, M. A. Garrett12,17,18 Draft version November 12, 2010 ABSTRACT The galaxy NGC 2770 hosted two core-collapse supernova explosions, SN2008D and SN2007uy, within 10 days of each other and 9 years after the first supernova of the same type, SN1999eh, was found in that galaxy. In particular SN 2008D attracted a lot of attention due to the detection of an X-ray outburst, which has been hypothesized to be caused by either a (mildly) relativistic jet or the supernova shock breakout. We present an extensive study of the radio emission from SN 2008D and SN 2007uy: flux measurements with the Westerbork Synthesis Radio Telescope and the Giant Metrewave Radio Telescope, covering ∼600 days with observing frequencies ranging from 325 MHz to 8.4 GHz. The results of two epochs of global Very Long Baseline Interferometry observations are also discussed. We have examined the molecular gas in the host galaxy NGC 2770 with the Arizona Radio Observatory 12-m telescope, and present the implications of our observations for the star formation and seemingly high SN rate in this galaxy. Furthermore, we discuss the near-future observing possibilities of the two SNe and their host galaxy at low radio frequencies with the Low Frequency Array. Subject headings: Gamma rays: bursts 1. INTRODUCTION According to the prevailing model, gamma-ray bursts (GRBs) of the long duration class (LGRBs; Kouveliotou et al. 1993) and the spectrally soft and less- 1 energetic X-ray flashes (XRFs; e.g. Heise et al. 2001) are NASA Postdoctoral Program Fellow, Space Science Office, caused by a relativistic jet emerging from the collapse of a NASA/Marshall Space Flight Center, Huntsville, AL 35812; [email protected]. massive star, e.g. the collapsar model (Woosley 1993) or 2 Astronomical Institute, University of Amsterdam, Science through the production of a millisecond magnetar (Usov Park 904, 1098 XH Amsterdam, The Netherlands. 1992; Bucciantini et al. 2009). This drives a long-lived 3 Joint Institute for VLBI in Europe (JIVE), Postbus 2, 7990 AA Dwingeloo, The Netherlands. relativistic blast wave into the ambient medium, which 4 MTA Research Group for Physical Geodesy and Geodynam- accelerates relativistic electrons that emit synchrotron ics, H-1585 Budapest, P. O. Box 585, Hungary. radiation observed from radio to X-ray frequencies − the 5 University of Maryland, Department of Astronomy, College afterglow (Meszaros & Rees 1997; Wijers et al. 1997). Park, MD 20742. 6 International Centre for Radio Astronomical Research, Uni- Since 1998 a firm association has been estab- versity of Western Australia, 7 Fairway, Crawley, 6009, Aus- lished between LGRBs/XRFs and core-collapse super- tralia. novae (SNe; Galama et al. 1998; Hjorth et al. 2003; 7 University of New Mexico, Department of Physics and As- Stanek et al. 2003; Malesani et al. 2004; Pian et al. 2006; tronomy, MSC07 4220, 800 Yale Blvd NE Albuquerque, New Mexico 87131-0001. G.B. Taylor is also an Adjunct Astronomer Starling et al. 2010; Chornock et al. 2010). Up to now, at the National Radio Astronomy Observatory. five LGRBs (of which two are XRFs) have been associ- 8 Space Science Office, NASA/Marshall Space Flight Center, ated with spectroscopically identified type Ic SNe. It arXiv:1011.2521v1 [astro-ph.HE] 10 Nov 2010 Huntsville, AL 38512, USA. has, however, been shown that not all LGRBs/XRFs 9 Centre for Astrophysics Research, University of Hertford- shire, College Lane, Hatfield, Herts, AL10 9AB, UK. have an associated SN (Gehrels et al. 2006; Fynbo et al. 10 Department of Astronomy and Astrophysics, University of 2006). Their relative event rates suggest that only a California, Santa Cruz, CA 95064. small fraction (∼ 10−3) of Ic SNe produce highly lumi- 11 National Centre for Radio Astrophysics, Post Bag 3, Ganeshkind, Pune 411007, India. nous GRBs (Podsiadlowski et al. 2004; Soderberg et al. 12 Netherlands Institute for Radio Astronomy (ASTRON), 2006b). A detailed study of the first four GRB-SN as- Postbus 2, 7990 AA Dwingeloo, The Netherlands. sociations (Kaneko et al. 2007) has demonstrated that 13 Kapteyn Astronomical Institute, University of Groningen, the total energy budget of the SN explosion only moder- Postbus 800, 9700 AV Groningen, the Netherlands. 14 Department of Physics & Astronomy, University of Leices- ately varies between different events, while the fraction ter, Leicester, LE1 7RH, UK. of that energy that ends up in highly relativistic ejecta 15 Inter-University Center for Astronomy and Astrophysics, (GRB) can vary much more dramatically between differ- Pune, Ganeshkhind, Post-bag No. 4, India. ent events. In fact, only one GRB out of these five GRB- 16 Mullard Space Science Laboratory, University College of London, Holmbury St Mary, Dorking, Surrey RH5 6NT, UK. SN associations, GRB030329, can be considered a mem- 17 Leiden Observatory, University of Leiden, P.B. 9513, Leiden ber of the high-luminosity long GRB class, both in terms 2300 RA, the Netherlands. 18 of its prompt and afterglow emission, albeit at the lower Centre for Astrophysics and Supercomputing, Swinburne end of the distributions in terms of its isotropic equiv- University of Technology, Hawthorn, Victoria 3122, Australia. 2 van der Horst et al. alent energy output in gamma rays (e.g. Kaneko et al. The nature of the X-ray outburst observed in SN 2008D 2007). Therefore, a much larger fraction (≤ 5 − 10%) has been extensively discussed in the literature. It has of type Ic SNe may produce less relativistic collimated been claimed that the outburst is a weak XRF caused outflows with Lorentz factors of 2 < Γ ≪ 100 that by a mildly relativistic outflow (Li 2008; Mazzali et al. can power XRFs, compared to Γ ≥ 100 jets that pro- 2008). However, there are counter-claims that we have duce bright GRBs (e.g. Granot & Ramirez-Ruiz 2004; witnessed the X-ray emission from a supernova shock Soderberg et al. 2006b). breakout (Soderberg et al. 2008; Chevalier & Fransson Paragi et al. (2010) argue that it is very well possi- 2008; Wang et al. 2008), caused by the transition ble that most or even all Ib/c SNe produce (mildly) from a radiation dominated to a collisionless shock. relativistic ejecta, but in most cases these ejecta carry Soderberg et al. (2008) have collected 2 months of (high- a much smaller fraction of the explosion energy than frequency) radio observations from this source and con- in GRBs/XRFs, making them detectable in the ra- cluded that the outflow is freely expanding at non- dio only for very nearby events. Current observational relativistic velocities. They also argued that the flux constraints (e.g. Soderberg et al. 2006c) on these radio of the X-ray outburst in combination with the non- sources could be satisfied by low-energy mildly relativis- detections at UV/optical wavelengths is inconsistent tic jets and/or relatively low values for external density with a (mildly) relativistic outflow. On the other hand, or shock microphysics parameters. It has also been pro- the measured variable optical polarization suggests an posed (Paczynski 2001; Granot & Loeb 2003) that some axisymmetric aspherical expansion with variable eccen- Ib/c SNe are producing relativistic GRB/XRF jets that tricity (Gorosabel et al. 2008), as expected in the collap- point away from our line of sight and are thus not de- sar model (Woosley 1993). This asphericity has also been tected at early times in optical and X-rays, but could be inferred from optical spectra of SN2008D (Modjaz et al. detected in radio bands after a few months to years (or- 2008). We note, however, that the optical and radio phan afterglows). After initially unsuccessful efforts to emission are not unambiguously coming from the same find this latter type of afterglow (e.g. Soderberg et al. emission region. 2006c), there is currently evidence that two of these In this paper we present the results from our ex- events, SN2007gr (Paragi et al. 2010) and SN2009bb tensive radio follow-up campaigns of SN 2008D with (Soderberg et al. 2010) have been observed, although the WSRT and the Giant Metrewave Radio Telescope their radio emission was already detected within days (GMRT). Combined with VLA and CARMA data from of the initial explosions. In the case of the very nearby Soderberg et al. (2008), we study these well-sampled SN2007gr (d ≈ 11 Mpc), mildly-relativistic expansion of light curves up to 17 months after the initial explo- the radio source was measured using Very Long Base- sion, across a broad frequency range, from 325 MHz to line Interferometry (VLBI) observations, while for the 95 GHz. We also discuss here the Type Ib SN2007uy radio-luminous SN 2009bb (at d ≈ 40 Mpc) a similar ex- (Nakano et al. 2008; Blondin & Calkins 2008) that went pansion speed of the ejecta was inferred from modeling off in the same galaxy ten days before the discovery of the broadband radio data. We note that the inferred en- SN 2008D. Besides radio photometry measurements, we ergy in (mildly) relativistic ejecta was significantly larger present the results of two epochs of global VLBI obser- in SN 2009bb than in SN 2007gr, ∼ 1049 and ∼ 1046 erg, vations of SN 2008D and discuss their implications for respectively.
Recommended publications
  • Memo 67 SKA Demonstrators, 2005 Assessment by the Engineering Working Group
    Memo 67 SKA Demonstrators, 2005 Assessment by the Engineering Working Group P. J. Hall (EWG Chair), On Behalf of the Group 01/12/05 www.skatelescope.org/pages/page_memos.htm 2 Table of Contents Section Page Summary Remarks 3 Appendix 1 – Reviews of 2005 SKA Demonstrator Updates Chinese Demonstrator (FAST) 10 Canadian Demonstrator (CLAR) 13 US Demonstrators (ATA, DSAN) 16 European Demonstrator (EMBRACE) 19 South African Demonstrator (KAT) 22 Appendix 2 – Guidelines for Reviewers 29 Appendix 3 – SKA Demonstrator Updates for 2005 33 (PDF documents Appended as Submitted) 3 SKA Demonstrators – Summary Remarks Peter Hall, 1 December 2005 1. Introduction The EWG has considered the five SKA demonstrator submissions received. In four cases these submissions were brief updates of previous (2004) detailed expositions. However, an initial outline of the Karoo Array Telescope (KAT) was received from the South African SKA Consortium and the EWG devoted extra effort to a more thorough assessment of this project. No demonstrator updates were received from Australia or India although the Australian SKA Consortium submitted a background report in the form of the statutory annual report for their Major National Research Facility program (available at http://www.atnf.csiro.au/projects/mnrf2001/Astronomy_MNRF_0405.pdf). While this report does not contain detailed schedule information for the proposed Extended New Technology Demonstrator (xNTD) project, it does indicate that the SKA Molonglo Prototype (SKAMP) program is still largely on track. However, additional enquiries indicate that SKAMP development beyond mid-2007 still depends on as yet uncertain funding. It should also be mentioned that KAT and xNTD are very similar instruments and much of the EWG commentary is likely to apply to both projects.
    [Show full text]
  • NRAO Enews: Vol. 10, Issue 7
    NRAO eNews Volume 10, Issue 7 • 10 August 2017 Upcoming Events ALMA Long Baseline Workshop (http://alma­ intweb.mtk.nao.ac.jp/~diono/meetings/longBL2017/) Oct 3 ­ 5, 2017 | Mielparque Kyoto, Japan 6th VLA Data Reduction Workshop (http://go.nrao.edu/vla­drw) Oct 23 ­ 27, 2017 | Socorro, NM 2017 Jansky Lecture (https://science.nrao.edu/science/jansky­lecture/speakers/2017­jansky­ lecturer­dr­bernard­fanaroff) Oct 24, 2017 | Charlottesville, VA 2017 Jansky Lecture (https://science.nrao.edu/science/jansky­lecture/speakers/2017­jansky­ lecturer­dr­bernard­fanaroff) Oct 27, 2017 | Green Bank Observatory, WV 2017 Jansky Lecture (https://science.nrao.edu/science/jansky­lecture/speakers/2017­jansky­ lecturer­dr­bernard­fanaroff) Nov 3, 2017 | Socorro, NM NRAO Town Hall at the Jan 2018 AAS Meeting (https://science.nrao.edu/science/meetings/2018/aas­231/town­hall) Jan 11, 2018 | National Harbor, MD The Very Large Array Today and Tomorrow: First Molecules to Life on Exoplanets (https://science.nrao.edu/science/meetings/2018/aas­231/vla) Jan 11, 2018 | National Harbor, MD The Very Large Array Today and Tomorrow: First Molecules to Life on Exoplanets Eric Murphy The NRAO will convene a Special Session entitled The Very Large Array Today and Tomorrow: First Molecules to Life on Exoplanets on 11 January 2018 in National Harbor, Maryland, near Washington, D.C. during the 231st Meeting of the American Astronomical Society (AAS). The Very Large Array (VLA) has had a major impact on nearly every branch of astronomy, and the results of its research are abundant in the pages of scientific journals and textbooks.
    [Show full text]
  • Arxiv:0809.2227V1
    Astronomy & Astrophysics manuscript no. 8893 c ESO 20181 October 31, 2018 Testing the inverse-Compton catastrophe scenario in the intra-day variable blazar S50716+71 III. Rapid and correlated flux density variability from radio to sub-mm bands L. Fuhrmann1,2,3, T. P. Krichbaum1, A. Witzel1, A. Kraus1, S. Britzen1, S. Bernhart1, C. M. V. Impellizzeri1, I. Agudo1,4, J. Klare1, B. W. Sohn1,5, E. Angelakis1, U. Bach1,3, K. E.´ Gab´anyi1,6,7, E. K¨ording8, A. Pagels1,J. A. Zensus1, S. J. Wagner9, L. Ostorero10,11, H. Ungerechts12, M. Grewing13, M. Tornikoski14, A. J. Apponi15, B. Vila-Vilar´o16, L. M. Ziurys15, R. G. Strom17 1 Max-Planck-Institut f¨ur Radioastronomie, Auf dem H¨ugel 69, 53121 Bonn, Germany 2 Dipartimento di Fisica, Universit`adi Perugia, Via A. Pascoli, 06123 Perugia, Italy 3 INAF, Osservatorio Astronomico di Torino, via Osservatorio 20, 10025 Pino Torinese (TO), Italy 4 Instituto de Astrof´ısica de Andaluc´ıa, CSIC, Apartado 3004, 18080 Granada, Spain 5 Korea Astronomy & Space Science Institute, 61-1 Hwaam-dong, 305-348 Daejeon 6 Hungarian Academy of Sciences Research Group for Physical Geodesy and Geodynamics, Budapest, Hungary 7 FOMI¨ Satellite Geodetic Observatory, Budapest, Hungary 8 School of Physics & Astronomy, University of Southampton, Southampton, Hampshire, SO17 1BJ, United Kingdom 9 Landessternwarte Heidelberg-K¨onigstuhl, K¨onigstuhl, D-69117 Heidelberg, Germany 10 Dipartimento di Fisica Generale “Amedeo Avogadro”, Universit`adegli Studi di Torino, Via P. Giuria 1, 10125 TORINO, Italy 11 Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Torino, Via P. Giuria 1, 10125 Torino, Italy 12 Institut de Radio Astronomie Millim´etrique, Avenida Divina Pastora 7, Local 20, 18012 Granada, Spain 13 Institut de Radio Astronomie Millim´etrique, 300 Rue de la Piscine, Domaine Universitaire de Grenoble, St.
    [Show full text]
  • Radio Astronomy Institute"-Radioscience Laboratory, Stanford Univefsity - Frank D
    Up 1h~ {~Ji()}Oec41.,! t;7/JI~,.rt5 vel ,J-~cpt:fT ~)11. I ~ SqP1~ /? /lA.f "'6~n~ ~ 6V"C~Mk';, .-.If?t)J M4fer Z,I/ lCJop.r - ~.t'1 ..r I'e-t ".r . !l4'C~1/ ,-1"1/}'/ , 70. f!ql'~ ~ N.~ - 1. .. I. r--/,./r ~ ~ J ! "c ~r~1H ,-~/~ POT- SHors NO · IISI Don't take the -Pr'esent m oment too sertousld;J gt ~"n' be h ere for to~. :TABLE b: SCORECARD ;1Lt. ,A. ,Never /yery REPORT Numbel' of Number i* Operation Number in operation Number eventually Number 'eventually unlikely Identifiable ~ 15 yr *fter report ,;;; 15 yr after report built with built with Items with mostly federal with mostly other ' mostly federal mostly other Requested funding , fundingCs tate, funding funding ptiyate, foreign) Whitford 13 6 0 0 , 1 6 Greenstein 21 5 (+1 similar) 2' 4 1 8 Fie ld 21 3 (+2 similar) 2 3 2 9 Baheall 29 11 6 5 () 7 McKee-Taylor 23 8 1 5 3 6 TOTAL 106 33 (::t, 3 similar) 11 17 7 36 /" PANEL ON ASTRONOMICAL FACILITIES A. E. W bittw:d.. Chairman, Lick ObsefvatofY, University of California R. N. lJrqcewell, Radio Astronomy Institute"-Radioscience Laboratory, Stanford Univefsity - Frank D. Drake, Department of Astronomy, Cornell Univefsity Frederick T. Haddock, Jr., Radio Astronomy Observatory, University of Michigan ,..-----William Liller, Department of Astronomy, Harvard University W. W. Morgan, Yerkes Observatory, University of Chicago Bruce H. Rule, California Institute of Technology · ·-~\llan R. Sandage, Mt. Wilson and Palomar Observatories, California Institute of Technology, Carnegie Institution of Washington Whit£ODd - publ .
    [Show full text]
  • Major Facilities by 2030
    Major facilities by 2030 Table 1 Summary of operational and planned facilities Wavelength Ground based Space missions In operations Under Under In operation Under Under study Proposals construction study construction Radio GMRT, WSRT, J- SKA-P(MeerKAT, SKA1, RadioAstron Millimetron Low-frequency (m to mm) VLA, eMerlin, ASKAP), FAST, SKA2,? arrays VLBI arrays, SKA1, SKA2, 10-50 MHz Effelsberg, GBT, Arecibo, LOFAR, MWA, LWA, PAPER mm/submm/FIR SMA, NOEMA, CCAT, ASTE-2, mmVLBI- SOFIA SPICA, Far-IR APEX, IRAM-30m, LST LLAMA, Millimetron interferometers mm-VLBI, GMVA, Dome A (FIRI), PRISMA, BICEP3,.. IR/optical/UV 2-6.5 m TAO, LSST, HST, Gaia, JWST, Euclid, WFIRST-AFTA, PFI telescopes, VLTs, EELT, GMT, TMT TESS, HDST, GTC, VLTI, LBTi, CHEOPS, Subaru, Kecks, Large apertures (>8 Geminis m): ATLAST X-rays/Gamma MAGIC,HESS, CTA INTEGRAl,Swift, Astro-H, SMART-X rays VERITAS FGST, AGILE, eRosita, GRAVITAS Chandra, XMM- Athena, LOFT, .. Newton, NICER Suzaku, NuSTAR Solar System Chang’e, LRO, Bepi Colombo MarcoPolo LABSR Messenger Hayabusa II Europaclipper ARM Venus express, OSIRIS-REX Comethopper DAWN, JUICE TSSM ROSETTA, JUNO INSIGHT Saturn CASSINI, Exomars Uranus NEW HORIZON Mars2020 Mars Odissey Mars exploration rover Mars Express MRO, MSL/Curiosity MAVEN, MOM Connection between facilities 2030 and science themes By 2030 it is expected that ALMA could be contributing to the main scientific topics to be addressed by the operational and planned facilities summarised in table 1: Radio (m to cm) ALMA ● Dark ages: HI at z=30-50 Primordial chemistry?:
    [Show full text]
  • Radio Astronomy
    Dark and Quiet Skies for Science and Society Report for review Online workshop 5-9 October 2020 Protection of radio astronomy Working Group Members Harvey Liszt, National Radio Astronomy Observatory, IUCAF Chair (USA) Federico DiVruno, SKA Telescope (UK) Michael Lindqvist, Chalmers, Onsala Space Observatory (Sweden) Masatoshi Ohishi, National Astronomical Observatory of Japan Adrian Tiplady, South African Radio Astronomy Observatory Tasso Tzioumis, CSIRO (Australia) Bevin Ashley Zauderer, National Science Foundation (USA) Liese van Zee, Indiana University (USA) RADIO ASTRONOMY AS A DISCIPLINE ......................................................................................................... 3 5.1.1 INTRODUCTION ................................................................................................................................................ 3 5.1.2. A History of discovery ............................................................................................................................ 4 5.1.3 RADIO ASTRONOMY AS AN ENGINE OF TECHNOLOGY AND INNOVATION ...................................................................... 4 5.1.4 HOW RADIO ASTRONOMY IS DONE ...................................................................................................................... 5 5.1.4.1 Radio contrasted with optical astronomy ..................................................................................... 5 5.1.4.2 The sensitivity of radio telescopes ...............................................................................................
    [Show full text]
  • The Arizona Radio Observatory: a New 12-M Telescope and Other Developments
    The Arizona Radio Observatory: A New 12-M Telescope and Other Developments Robert W. Freund*1, Lucy M. Ziurys2, Eugene F. Lauria3, George P. Reiland4 lThe University of Arizona, Tucson, Arizona 85721-0065, USA, (520)626-7714, (520)621-5554 FAX, [email protected], 2(520)621-6525, [email protected], 3(520)626-1098, [email protected], 4(520)626-6744, [email protected] Abstract The Arizona Radio Observatory (ARO) operates two radio telescopes in the millimeter and sub-millimeter wavelength region. Recently, one of these instruemnts, the aging, former NRAO 12 meter telescope on Kitt Peak, was replaced with one of the 12 m ALMA prototype antennas. The high performance design of this new instrument, including its 20 microns surface and sub-arcsecond pointing, will expand observational capabilites at the ARO. New receivers and backends are also in development at ARO. A dual polarization sideband separating SIS mixer covering the 0.7 mm atmospheric windw, ranging from 385 GHz to 500 GHz, has been installed as a facility instrument on the Sub-Millimeter Telescope (SMT) on Mount Graham. A prototype Band 2 receiever, based on HEMT amplifier technology, has been built and tested on the sky. These new additions and other developments will be presented. 1. Introduction Astronomical observations at millimeter and sub-millimeter wavelengths are routinely performed at the two telescopes operated by the Arizona Radio Observatory (ARO) at the University of Arizona. One telescope, the 10-meter diameter Sub-Millimeter Telescope (SMT), is located at an exceptional site at 3186.0 m on Mount Graham, 160 km east of Tucson, Arizona.
    [Show full text]
  • Detailed Radio View on Two Stellar Explosions and Their Host Galaxy
    Draft version June 7, 2018 A Preprint typeset using LTEX style emulateapj v. 11/10/09 DETAILED RADIO VIEW ON TWO STELLAR EXPLOSIONS AND THEIR HOST GALAXY: XRF080109/SN2008D AND SN2007UY IN NGC2770 A. J. van der Horst1, A. P. Kamble2, Z. Paragi3,4, L. J. Sage5, S. Pal6, G. B. Taylor7, C. Kouveliotou8, J. Granot9, E. Ramirez-Ruiz10, C. H. Ishwara-Chandra11, T. A. Oosterloo12,13, R. A. M. J. Wijers2, K. Wiersema14, R. G. Strom12,2, D. Bhattacharya15, E. Rol2, R. L. C. Starling14, P. A. Curran16, M. A. Garrett12,17,18 Draft version June 7, 2018 ABSTRACT The galaxy NGC 2770 hosted two core-collapse supernova explosions, SN2008D and SN2007uy, within 10 days of each other and 9 years after the first supernova of the same type, SN1999eh, was found in that galaxy. In particular SN 2008D attracted a lot of attention due to the detection of an X-ray outburst, which has been hypothesized to be caused by either a (mildly) relativistic jet or the supernova shock breakout. We present an extensive study of the radio emission from SN 2008D and SN 2007uy: flux measurements with the Westerbork Synthesis Radio Telescope and the Giant Metrewave Radio Telescope, covering ∼600 days with observing frequencies ranging from 325 MHz to 8.4 GHz. The results of two epochs of global Very Long Baseline Interferometry observations are also discussed. We have examined the molecular gas in the host galaxy NGC 2770 with the Arizona Radio Observatory 12-m telescope, and present the implications of our observations for the star formation and seemingly high SN rate in this galaxy.
    [Show full text]
  • ALMA 2030 Reports
    White Paper: ASAC recommendations for ALMA 2030 Alberto D. Bolatto (chair), John Carpenter, Simon Casassus, Daisuke Iono, Rob Ivison, Kelsey Johnson, Huib van Langevelde, Jesús Martín-Pintado, Munetake Momose, Raphael Moreno, Kentaro Motohara, Roberto Neri, Nagayoshi Ohashi, Tomoharu Oka, Rachel Osten, Richard Plambeck, Eva Schinnerer, Douglas Scott, Leonardo Testi, & Alwyn Wootten This document summarizes the recommendations emerging from the ALMA 2030 process. The findings are discussed in three documents: 1) the Major Science Themes in the 2020-2030 decade, 2) the landscape of Major Facilities by 2030, and 3) the Pathways to Developing ALMA, which describes a number of possible developments. After compiling this information, the ALMA Science Advisory Committee discussed together with the Regional Program Scientists and the JAO at its February 2015 face-to-face meeting the best avenues for mid- and long-term improvement of the observatory, arriving at the conclusions presented here. The purpose of these recommendations is to guide the regional ALMA Development process in a coherent fruitful direction, by presenting a list of broad themes we foresee as the highest priority among the developments considered. It is important to keep in mind, however, that the development process also includes a creative, bottom-up element. Innovative technical ideas well grounded in astronomy should also have space in the future development of ALMA, and in that sense this is not an exclusive list. It also assumes that completion of the baseline capabilities of ALMA (adding bands 1 and 2) will proceed. Separately from these developments, the ASAC notes that a large single-dish telescope equipped with cameras capable of fast large-scale mapping would be an important scientific complement to the interferometer.
    [Show full text]
  • NASA Space Geodesy Program: Catalogue of Site Information
    https://ntrs.nasa.gov/search.jsp?R=19930012185 2020-03-17T08:03:52+00:00Z NASA Technical Memorandum 4482 NASA Space Geodesy Program: Catalogue of Site Information M. A. Bryant and C. E. Noll March 1993 N93-2137_ (NASA-TM-4482) NASA SPACE GEODESY PROGRAM: CATALOGUE OF SITE INFORMATION (NASA) 688 p Unclas Hl146 0154175 v ,,_r NASA Technical Memorandum 4482 NASA Space Geodesy Program: Catalogue of Site Information M. A. Bryant McDonnell Douglas A erospace Seabro'ok, Maryland C. E. Noll NASA Goddard Space Flight Center Greenbelt, Maryland National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland 20771 1993 . _= _qum_ Table of Contents Introduction .......................................... ..... ix Map of Geodetic Sites - Global ................................... xi Map of Geodetic Sites - Europe .................................. xii Map of Geodetic Sites - Japan .................................. xiii Map of Geodetic Sites - North America ............................. xiv Map of Geodetic Sites - Western United States ......................... xv Table of Sites Listed by Monument Number .......................... xvi Acronyms ............................................... xxvi Subscription Application ..................................... xxxii Site Information ............................................. Site Name Site Number Page # ALGONQUIN 67 ............................ 1 AMERICAN SAMOA 91 ............................ 5 ANKARA 678 ............................ 9 AREQUIPA 98 ...........................
    [Show full text]
  • DOCUMENT RESUME TITLE Study-Hearings Volume 13
    DOCUMENT RESUME ED 276 623 SE 047 622 TITLE British_Science Evaluation Methods._ Science Policy Study-Hearings Volume 13. Hearing before the Task Force on Science Policy of the Committee on Science and Technology, Rouse of Representatives, Ninety-Ninth Congress, First Session. October 30, 1985. No. 59. INSTITUTION Congress of the U.S., Washington, D.C. House Committee on Science and Technology. PUB DATE 86 NOTE 408p.; Contains small and broken type. PUB TYPE Legal/Legislative/Regulatory Materials (090) EDRS-PRICE MF01/PC17 Plus Postage. DESCRIPTORS *Evaluation Methods; Foreign Countries; Hearings; *International Cooperation; Research Methodology; Research Needs; *Research Utilization; *Science and Society IDENTIFIERS Congress 99th; *Science Policy; United Kingdom ABSTRACT The need for an increased use of statistical data and quantitative analysis in many areas of science policy_is_emphasized in this report of the hearing_on_science_evaluation methods_used in Great Britain. The testimony given_by Professor Benjamin Martin of the Science Policy_Research_Unit at the University of Sussex in England explains how quantitative information is used by the British in developing policies for science. Appendices consist-of the selected papers by Professor Martin and his colleague Professor John Irvine and also contain seven critiques of Martin and Irvine's methodology. (ML) *********************************************************************** Reproductions supplied by EDRS are the best that can be made from the original document. *********************************************************************** ED1276 Si Science Po liq StudyHearinjo Volume 13 BRITISH SCIENCE EVALUATION METHODS HEARING BEFORE THE TASK FORCE ON SCIENCE POLICY OF THE COIDA1TTEE ON SCIENCE AND TECHNOLOGY HOUSE OF REPRESENTATIVES NINETY-NEITH CONGRESS FIRST SESSION OCTOBER 30, 1985 [No. 59J Printed for the use of the Committee on Science and Technology U.S.
    [Show full text]
  • Major Facilities by 2030
    Major facilities by 2030 Table 1 Summary of operational and planned facilities Wavelength Ground based Space missions In operations Under Under In operation Under Under study Proposals construction study construction Radio GMRT, WSRT, J- SKA-P(MeerKAT, SKA1, RadioAstron Millimetron Low-frequency (m to mm) VLA, eMerlin, ASKAP), FAST, SKA2,? arrays VLBI arrays, SKA1, SKA2, 10-50 MHz Effelsberg, GBT, Arecibo, LOFAR, MWA, LWA, PAPER mm/submm/FIR SMA, NOEMA, CCAT, ASTE-2, mmVLBI- SOFIA SPICA, Far-IR APEX, IRAM-30m, LST LLAMA, Millimetron interferometers mm-VLBI, GMVA, Dome A (FIRI), PRISMA, BICEP3,.. IR/optical/UV 2-6.5 m TAO, LSST, HST, Gaia, JWST, Euclid, WFIRST-AFTA, PFI telescopes, VLTs, EELT, GMT, TMT TESS, HDST, GTC, VLTI, LBTi, CHEOPS, Subaru, Kecks, Large apertures (>8 Geminis m): ATLAST X-rays/Gamma MAGIC,HESS, CTA INTEGRAl,Swift, Astro-H, SMART-X rays VERITAS FGST, AGILE, eRosita, GRAVITAS Chandra, XMM- Athena, LOFT, .. Newton, NICER Suzaku, NuSTAR Solar System Chang’e, LRO, Bepi Colombo MarcoPolo LABSR Messenger Hayabusa II Europaclipper ARM Venus express, OSIRIS-REX Comethopper DAWN, JUICE TSSM ROSETTA, JUNO INSIGHT Saturn CASSINI, Exomars Uranus NEW HORIZON Mars2020 Mars Odissey Mars exploration rover Mars Express MRO, MSL/Curiosity MAVEN, MOM Connection between facilities 2030 and science themes By 2030 it is expected that ALMA could be contributing to the main scientific topics to be addressed by the operational and planned facilities summarised in table 1: Radio (m to cm) ALMA ● Dark ages: HI at z=30-50 Primordial chemistry?:
    [Show full text]