Dark and Quiet Skies for Science and Society

Total Page:16

File Type:pdf, Size:1020Kb

Dark and Quiet Skies for Science and Society On-line Workshop Dark and Quiet Skies for Science and Society Report and recommendations Cover picture: Jupiter and Saturn photographed over the “Tre Cime di Lavaredo” (The three peaks of La- varedo), a famous dolomitic group. The picture symbolically joins two UNESCO World Heritage items, the terrestrial Dolomites and the celestial starry sky. Courtesy of Giorgia Hofer, Photographer Dark and Quiet Skies for Science and Society «Zwei Dinge erfüllen das Gemüt mit immer neuer und zuneh- mender Bewunderung und Ehrfurcht, je öfter und anhaltender sich das Nachdenken damit beschäftigt: Der bestirnte Himmel über mir, und das moralische Gesetz in mir.» I. Kant - Kritik der praktischen Vernunft «Two things fill the mind with ever new and increasing admira- tion and awe, the more often and longer the reflection occupies itself with it: the starry sky above me, and the moral law within me.» I. Kant - Critique of Practical Reason Dark and Quiet Skies for Science and Society Table of Contents About the Authors .....................................................................................................7 1. Introduction ........................................................................................................12 2. Executive summary .............................................................................................14 2.1. General executive summary ............................................................................... 14 2.2. Dark Sky Oases executive summary ................................................................... 16 2.3. Optical Astronomy executive summary ............................................................. 19 2.4. Bio-Environment executive summary ................................................................. 24 2.5. Satellite constellations executive summary ....................................................... 28 2.6. Radio Astronomy executive summary ................................................................ 35 3. Dark Sky Oases Report ........................................................................................41 3.1. What is light pollution? ......................................................................................... 41 3.3. Measuring the brightness of the night sky ........................................................... 42 3.4. What is a Dark Sky Oasis? .................................................................................... 45 3.5. The value of Dark Sky Oases ................................................................................ 49 3.6. Impacts of light pollution on the visibility of stars ............................................... 52 3.7. The International Dark-Sky Association and designation of International Dark Sky Places .................................................................................................... 53 3.8. The Starlight Foundation: the commitment to the Declaration in Defence of the Night Sky and the Right to Starlight (La Palma Declaration). .................. 56 3.9. Lamp technologies and their contribution to light pollution ............................... 59 3.10. Local, Regional and National Regulations .......................................................... 62 3.11. Recommendations to COPUOS .......................................................................... 63 4. Optical Astronomy Report ....................................................................................67 4.1 Introduction .......................................................................................................... 67 4.3 The effect of artificial skyglow on astronomical observations .......................... 70 4.4 Instrumentation and techniques for measuring night-sky brightness at astronomical observatories and trends with time ............................................... 71 4.5 Limiting the growth of urban light domes impacting professional observatories .................................................................................. 74 4.6 Model regulations to protect dark skies in the immediate areas around professional observatories ..................................................................... 82 4.7 Special cases ........................................................................................................ 86 4.8 Incentives for compliance .................................................................................... 86 5. Bio-environment Report .......................................................................................92 5.1 Introduction ............................................................................................................ 92 5.2. Effects of Artificial Light at Night on human health ........................................... 92 5.3. Effects of Artificial Light at Night on flora and fauna ....................................... 102 4 Dark and Quiet Skies for Science and Society 5.4. Geographical and territorial impacts of light pollution ...................................... 109 5.5. Recommendations .............................................................................................. 111 5.6 Disclaimer ............................................................................................................ 117 6. Satellite Constellation Report ............................................................................120 6.1 Simulation ............................................................................................................ 120 6.2. Observations ....................................................................................................... 136 6.3. Mitigations .......................................................................................................... 143 6.4. Recommendations .............................................................................................. 150 7. Radio Astronomy Report ....................................................................................160 7.1 Radio astronomy as a discipline ......................................................................... 160 7.2 Regulation of use of radio spectrum .................................................................. 165 7.3 Spectrum protection for radio astronomy ........................................................... 168 7.4 Risks to radio astronomy ..................................................................................... 174 7.5 The way forward and two recommendations regarding non-GSO satellites ...... 181 8. Appendices .......................................................................................................184 Appendix A. Dark Sky Oases ..................................................................................184 A1. Dark Sky Oasis Classification Scheme ............................................................... 184 A2. Traditional and modern lamp types used in outdoor installations ..................... 186 A3. Astro-tourism ....................................................................................................... 187 Appendix B. History of light pollution impacts on astronomy.............................................................................................................191 B.1. History of the impact on the field of astronomy: nineteenth century urban observatories and their fate in the twentieth century electric light era............. 191 B.2. History of the impact on the field of astronomy: The search for dark observatory sites away from light pollution of cities and on remote mountain tops .................................................................................................... 192 B.3. The effect of artificial skyglow on astronomical observations ......................... 193 B.4. Instrumentation and techniques for measuring night sky brightness and sky background in astronomical observatories and trends with time .............. 194 B.5 Overview of CIE publications and works on lighting recommendations and obtrusive light .............................................................................................. 202 B.6. Challenges of relating safety to nighttime lighting ........................................... 207 Appendix C - Bio-environment ...............................................................................208 C.1. The excessive and improper use of colorful and dynamic lighting ................... 208 C.2. Summary of research methods and the applied artificial light at night regime ................................................................................................................. 209 C.3 Minority Viewpoints ............................................................................................. 212 Appendix D. Satellite Constellations .....................................................................216 D.1 Technical details on the simulations ................................................................. 216 Dark and Quiet Skies for Science and Society 5 D.2. Technical details of Observations ...................................................................... 220 9. References ........................................................................................................248 9.1 Dark Sky Oases References ................................................................................. 248 9.2 Optical Astronomy References ........................................................................... 252 9.3 Bio-environment References..............................................................................
Recommended publications
  • Aquarius Aries Pisces Taurus
    Zodiac Constellation Cards Aquarius Pisces January 21 – February 20 – February 19 March 20 Aries Taurus March 21 – April 21 – April 20 May 21 Zodiac Constellation Cards Gemini Cancer May 22 – June 22 – June 21 July 22 Leo Virgo July 23 – August 23 – August 22 September 23 Zodiac Constellation Cards Libra Scorpio September 24 – October 23 – October 22 November 22 Sagittarius Capricorn November 23 – December 23 – December 22 January 20 Zodiac Constellations There are 12 zodiac constellations that form a belt around the earth. This belt is considered special because it is where the sun, the moon, and the planets all move. The word zodiac means “circle of figures” or “circle of life”. As the earth revolves around the sun, different parts of the sky become visible. Each month, one of the 12 constellations show up above the horizon in the east and disappears below the horizon in the west. If you are born under a particular sign, the constellation it is named for can’t be seen at night. Instead, the sun is passing through it around that time of year making it a daytime constellation that you can’t see! Aquarius Aries Cancer Capricorn Gemini Leo January 21 – March 21 – June 22 – December 23 – May 22 – July 23 – February 19 April 20 July 22 January 20 June 21 August 22 Libra Pisces Sagittarius Scorpio Taurus Virgo September 24 – February 20 – November 23 – October 23 – April 21 – August 23 – October 22 March 20 December 22 November 22 May 21 September 23 1. Why is the belt that the constellations form around the earth special? 2.
    [Show full text]
  • The Twenty−Eight Lunar Mansions of China
    浜松医科大学紀要 一般教育 第5号(1991) THE TWENTY-EIGHT LUNAR MANSIONS OF CHINA (中国の二十八宿) David B. Kelley (英 語〉 Abstract: This’Paper attempts to place the development of the Chinese system ・fTw・nty-Eight Luna・ Man・i・n・(;+八宿)i・・血・lti-cult・・al f・am・w・・k, withi・ which, contributions from cultures outside of China may be recognized. lt・ system- atically compares the Chinese system with similar systems from Babylonia, Arabia,・ and lndia. The results of such a comparison not only suggest an early date for its development, but also a significant level of input from, most likely, a Middle Eastern source. Significantly, the data suggest an awareness, on the part of the ancient Chinese, of completely arbitrary groupings of stars (the twelve constellations of the Middle Eastern Zodiac), as well as their equally arbitrary syMbolic associ- ations. The paper also attempts to elucidate the graphic and organizational relation- ship between the Chinese system of lunar mansions and (1.) Phe twelve Earthly Branches(地支)and(2.)the ten Heavenly S.tems(天干). key words二China, Lunar calender, Lunar mansions, Zodiac. O. INTRODUCTION The time it takes the Moon to circle the Earth is 29 days, 12 hours, and 44 minutes. However, the time it takes the moon to return to the same (fixed一) star position amounts to some 28 days. ln China, it is the latter period that was and is of greater significance. The Erh-Shih-Pα一Hsui(一Kung), the Twenty-Eight-lnns(Mansions),二十八 宿(宮),is the usual term in(Mandarin)Chinese, and includes 28 names for each day of such a month. ln East Asia, what is not
    [Show full text]
  • 2011-Summer.Pdf
    BOWDOIN MAGAZINE ­ VOL. 82 NO. 2 SUMMER 2011 BV O L . 8 2 ­ N Oow . 2 ­ ­ S UMMER ­ 2 0 1 1­ ­ doi­n STANDP ­U WITH ­A­SOCIAL­ FOR ­THE­CLASS­OF­1961,­ BOWDOIN­IS­FOREVER CONSCIENCE JILL­SHAW­RUDDOCK­’77 HARI KONDABOLU ’04 SLICING­THE­PIE­FOR­ THE POWER OF COMEDY AS AN STUDENT­ACTIVITIES INSTRUMENT FOR CHANGE SUMMER 2011­ CONTENTS BowdoinMAGAZINE 24 A­Great­Second­Half PHOTOGRAPHS BY FELICE BOUCHER In an interview that coincided with the opening of an exhibition of the Victoria and Albert’s English alabaster reliefs at the Bowdoin College Museum of Art last semester, Jill Shaw Ruddock ’77 talks about the goal of her new book, The Second Half of Your Life—to make the second half the best half. 30 For­the­Class­of­1961,­Bowdoin­is­Forever BY LISA WESEL • PHOTOGRAHS BY BOB HANDELMAN AND BRIAN WEDGE ’97 After 50 years as Bowdoin alumni, the Class of 1961 is a particularly close-knit group. Lisa Wesel spent time with a group of them talking about friendship, formative experi- ences, and the privilege of traveling a long road together. 36 Stand­Up­With­a­Social­Conscience BY EDGAR ALLEN BEEM • PHOTOGRAPHS BY KARSTEN MORAN ’05 The Seattle Times has called Hari Kondabolu ’04 “a young man reaching for the hand-scalding torch of confrontational comics like Lenny Bruce and Richard Pryor.” Ed Beem talks to Hari about his journey from Queens to Brunswick and the power of comedy as an instrument of social change. 44 Slicing­the­Pie BY EDGAR ALLEN BEEM • PHOTOGRAPHS BY DEAN ABRAMSON The Student Activity Fund Committee distributes funding of nearly $700,000 a year in support of clubs, entertainment, and community service.
    [Show full text]
  • Night Sky Monitoring Program for the Southeast Utah Group, 2003
    NIGHT SKY United States Department of MONITORING Interior National Park Service PROGRAM Southeast Utah Group SOUTHEAST UTAH GROUP Resource Management Division Arches National Park Canyonlands National Park Moab Hovenweep National Monument Utah 84532 Natural Bridges National Monument General Technical Report SEUG-001-2003 2003 January 2004 Charles Schelz / SEUG Biologist Angie Richman / SEUG Physical Science Technician EXECUTIVE SUMMARY NIGHT SKY MONITORING PROGRAM Southeast Utah Group Arches and Canyonlands National Parks Hovenweep and Natural Bridges National Monuments Project Funded by the National Park Service and Canyonlands Natural History Association This report lays the foundation for a Night Sky Monitoring Program in all the park units of the Southeast Utah Group (SEUG). Long-term monitoring of night sky light levels at the units of the SEUG of the National Park Service (NPS) was initiated in 2001 and has evolved steadily through 2003. The Resource Management Division of the Southeast Utah Group (SEUG) performs all night sky monitoring and is based at NPS headquarters in Moab, Utah. All protocols are established in conjunction with the NPS National Night Sky Monitoring Team. This SEUG Night Sky Monitoring Program report contains a detailed description of the methodology and results of night sky monitoring at the four park units of the SEUG. This report also proposes a three pronged resource protection approach to night sky light pollution issues in the SEUG and the surrounding region. Phase 1 is the establishment of methodologies and permanent night sky monitoring locations in each unit of the SEUG. Phase 2 will be a Light Pollution Management Plan for the park units of the SEUG.
    [Show full text]
  • Characterization of the Gaseous Companion Κ Andromedae B⋆
    UvA-DARE (Digital Academic Repository) Characterization of the gaseous companion κ Andromedae b. New Keck and LBTI high-contrast observations Bonnefoy, M.; et al., [Unknown]; Thalmann, C. DOI 10.1051/0004-6361/201322119 Publication date 2014 Document Version Final published version Published in Astronomy & Astrophysics Link to publication Citation for published version (APA): Bonnefoy, M., et al., U., & Thalmann, C. (2014). Characterization of the gaseous companion κ Andromedae b. New Keck and LBTI high-contrast observations. Astronomy & Astrophysics, 562, A111. https://doi.org/10.1051/0004-6361/201322119 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:23 Sep 2021 A&A 562, A111 (2014) Astronomy DOI: 10.1051/0004-6361/201322119 & c ESO 2014 Astrophysics Characterization of the gaseous companion κ Andromedae b? New Keck and LBTI high-contrast observations?? M.
    [Show full text]
  • The Maunder Minimum and the Variable Sun-Earth Connection
    The Maunder Minimum and the Variable Sun-Earth Connection (Front illustration: the Sun without spots, July 27, 1954) By Willie Wei-Hock Soon and Steven H. Yaskell To Soon Gim-Chuan, Chua Chiew-See, Pham Than (Lien+Van’s mother) and Ulla and Anna In Memory of Miriam Fuchs (baba Gil’s mother)---W.H.S. In Memory of Andrew Hoff---S.H.Y. To interrupt His Yellow Plan The Sun does not allow Caprices of the Atmosphere – And even when the Snow Heaves Balls of Specks, like Vicious Boy Directly in His Eye – Does not so much as turn His Head Busy with Majesty – ‘Tis His to stimulate the Earth And magnetize the Sea - And bind Astronomy, in place, Yet Any passing by Would deem Ourselves – the busier As the Minutest Bee That rides – emits a Thunder – A Bomb – to justify Emily Dickinson (poem 224. c. 1862) Since people are by nature poorly equipped to register any but short-term changes, it is not surprising that we fail to notice slower changes in either climate or the sun. John A. Eddy, The New Solar Physics (1977-78) Foreword By E. N. Parker In this time of global warming we are impelled by both the anticipated dire consequences and by scientific curiosity to investigate the factors that drive the climate. Climate has fluctuated strongly and abruptly in the past, with ice ages and interglacial warming as the long term extremes. Historical research in the last decades has shown short term climatic transients to be a frequent occurrence, often imposing disastrous hardship on the afflicted human populations.
    [Show full text]
  • AM205: Syllabus
    AM205: Data fitting for imaging Comet NEOWISE In late July 2020, Comet NEOWISE was visible from Earth. From a dark sky location, the comet was easily visible to the naked eye, and there were many superb photos that were taken showing the intricate structure of its tail. Chris has been fascinated by astronomy since an early age. His homewown of Keswick in the United Kingdom has very little light pollution, and he was able to appreciate won- ders of the night sky. However, from his current home near Central Square in Cambridge, Massachusetts there are high levels of light pollution and the sky usually appears a dim grey with all but the brightest stars washed out. On the Bortle scale that is used to measure light pollution [1], Cambridge ranks at roughly 7–8. Chris has a Fuji XT-4 digital camera, which has excellent image quality, but typical pictures of the night sky have a bright grey background. Figure1 shows a typical raw camera image, and it is difficult to make out any detail beyond the brightest stars. Further problems like aircraft lights and brightly lit clouds are also visible. As students of AM205, we can ask ourselves if it is possible to do better. The light pollution adds a smooth, but spatially varying, background to the image. Can we use our data fitting skills to subtract this out and reveal more detail? Figure 1: An example of the difficulty of night sky imaging from an urban area. This image with a 6.5 s exposure was taken near the MIT sports fields on August 11, 2020.
    [Show full text]
  • A Comprehensive Guide Ram Roth Elizabeth A.M. Frost Clifford Gevirtz
    The Role of Anesthesiology in Global Health A Comprehensive Guide Ram Roth Elizabeth A.M. Frost Cli ord Gevirtz Editors Carrie L.H. Atcheson Associate Editor 123 The Role of Anesthesiology in Global Health Ram Roth • Elizabeth A.M. Frost Clifford Gevirtz Editors Carrie L.H. Atcheson Associate Editor The Role of Anesthesiology in Global Health A Comprehensive Guide Editors Ram Roth Elizabeth A.M. Frost Department of Anesthesiology Department of Anesthesiology Icahn School of Medicine at Mount Sinai Icahn School of Medicine at Mount Sinai New York , NY , USA New York , NY , USA Clifford Gevirtz Department of Anesthesiology LSU Health Sciences Center New Orleans , LA , USA Associate Editor Carrie L.H. Atcheson Oregon Anesthesiology Group Department of Anesthesiology Adventist Medical Center Portland , OR , USA ISBN 978-3-319-09422-9 ISBN 978-3-319-09423-6 (eBook) DOI 10.1007/978-3-319-09423-6 Springer Cham Heidelberg New York Dordrecht London Library of Congress Control Number: 2014956567 © Springer International Publishing Switzerland 2015 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifi cally for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.
    [Show full text]
  • Gower AONB - Dark Sky Quality Survey
    Dark Sky Wales Allan Trow 28 December 2017 Gower AONB - Dark Sky Quality Survey Dark Sky Wales Training Services were commissioned in December 2017 by Swansea Council to undertake a baseline study of dark sky quality within the Gower AONB. The study was undertaken during December 2018 on clear and moonless nights. The following report highlights the findings from the study and includes recommendations for progressing Dark Sky activities in the area. !1 Introduction Light pollution through inappropriate or excessive use of artificial light makes it increasingly difficult to observe the night skies; indeed, over 90% of the UK population now lives under highly light-polluted skies. Dark skies contribute significantly to human health and wellbeing with increasing evidence showing that sleep is often disturbed by a lack of proper darkness at night with adverse impacts for health. Light pollution also impacts adversely on around 60% of wildlife, which is most active at night. In addition, sympathetic and energy-efficient lighting in communities can satisfy community needs at lower cost whilst importantly reducing carbon emissions. Dark skies are increasingly important for tourism through landscapes that offer unblemished views of the night sky. To support this aim, the AONB commissioned Dark Sky Wales in December 2017 to: • Work closely with AONB staff to identify 40 locations evenly spread across the area of interest. • Undertake study during moonless nights to ensure accurate readings are achieved without any natural influences. • Monitor weather conditions and attempt to undertake study on clear nights (some cloud cover can be worked around) • Use a minimum of two IDA1 standard SQM2 readers at each location • Take three readings from each machine to derive an average for the site.
    [Show full text]
  • The 3-Dimensional Architecture of the Upsilon Andromedae Planetary System
    Draft version August 14, 2018 Preprint typeset using LATEX style emulateapj v. 04/17/13 THE 3-DIMENSIONAL ARCHITECTURE OF THE υ ANDROMEDAE PLANETARY SYSTEM Russell Deitrick Department of Astronomy, University of Washington, Seattle, WA 98195-1580, USA Rory Barnes Department of Astronomy, University of Washington, Seattle, WA 98195-1580, USA Barbara McArthur Department of Astronomy, University of Texas at Austin, TX 78712, USA Thomas R. Quinn Department of Astronomy, University of Washington, Seattle, WA 98195-1580, USA Rodrigo Luger Department of Astronomy, University of Washington, Seattle, WA 98195-1580, USA Adrienne Antonsen Department of Astronomy, University of Washington, Seattle, WA 98195-1580, USA and G. Fritz Benedict Department of Astronomy, University of Texas at Austin, TX 78712, USA (Dated:) Draft version August 14, 2018 ABSTRACT The Upsilon Andromedae system is the first exoplanetary system to have the relative inclination of two planets' orbital planes directly measured, and therefore offers our first window into the 3- dimensional configurations of planetary systems. We present, for the first time, full 3-dimensional, dynamically stable configurations for the 3 planets of the system consistent with all observational constraints. While the outer 2 planets, c and d, are inclined by ∼ 30◦, the inner planet's orbital plane has not been detected. We use N-body simulations to search for stable 3-planet configurations that are consistent with the combined radial velocity and astrometric solution. We find that only 10 trials out of 1000 are robustly stable on 100 Myr timescales, or ∼ 8 billion orbits of planet b. Planet b's orbit must lie near the invariable plane of planets c and d, but can be either prograde or retrograde.
    [Show full text]
  • Sodium and Potassium Signatures Of
    Sodium and Potassium Signatures of Volcanic Satellites Orbiting Close-in Gas Giant Exoplanets Apurva Oza, Robert Johnson, Emmanuel Lellouch, Carl Schmidt, Nick Schneider, Chenliang Huang, Diana Gamborino, Andrea Gebek, Aurelien Wyttenbach, Brice-Olivier Demory, et al. To cite this version: Apurva Oza, Robert Johnson, Emmanuel Lellouch, Carl Schmidt, Nick Schneider, et al.. Sodium and Potassium Signatures of Volcanic Satellites Orbiting Close-in Gas Giant Exoplanets. The Astro- physical Journal, American Astronomical Society, 2019, 885 (2), pp.168. 10.3847/1538-4357/ab40cc. hal-02417964 HAL Id: hal-02417964 https://hal.sorbonne-universite.fr/hal-02417964 Submitted on 18 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Astrophysical Journal, 885:168 (19pp), 2019 November 10 https://doi.org/10.3847/1538-4357/ab40cc © 2019. The American Astronomical Society. Sodium and Potassium Signatures of Volcanic Satellites Orbiting Close-in Gas Giant Exoplanets Apurva V. Oza1 , Robert E. Johnson2,3 , Emmanuel Lellouch4 , Carl Schmidt5 , Nick Schneider6 , Chenliang Huang7 , Diana Gamborino1 , Andrea Gebek1,8 , Aurelien Wyttenbach9 , Brice-Olivier Demory10 , Christoph Mordasini1 , Prabal Saxena11, David Dubois12 , Arielle Moullet12, and Nicolas Thomas1 1 Physikalisches Institut, Universität Bern, Bern, Switzerland; [email protected] 2 Engineering Physics, University of Virginia, Charlottesville, VA 22903, USA 3 Physics, New York University, 4 Washington Place, New York, NY 10003, USA 4 LESIA–Observatoire de Paris, CNRS, UPMC Univ.
    [Show full text]
  • Downloads/ Astero2007.Pdf) and by Aerts Et Al (2010)
    This work is protected by copyright and other intellectual property rights and duplication or sale of all or part is not permitted, except that material may be duplicated by you for research, private study, criticism/review or educational purposes. Electronic or print copies are for your own personal, non- commercial use and shall not be passed to any other individual. No quotation may be published without proper acknowledgement. For any other use, or to quote extensively from the work, permission must be obtained from the copyright holder/s. i Fundamental Properties of Solar-Type Eclipsing Binary Stars, and Kinematic Biases of Exoplanet Host Stars Richard J. Hutcheon Submitted in accordance with the requirements for the degree of Doctor of Philosophy. Research Institute: School of Environmental and Physical Sciences and Applied Mathematics. University of Keele June 2015 ii iii Abstract This thesis is in three parts: 1) a kinematical study of exoplanet host stars, 2) a study of the detached eclipsing binary V1094 Tau and 3) and observations of other eclipsing binaries. Part I investigates kinematical biases between two methods of detecting exoplanets; the ground based transit and radial velocity methods. Distances of the host stars from each method lie in almost non-overlapping groups. Samples of host stars from each group are selected. They are compared by means of matching comparison samples of stars not known to have exoplanets. The detection methods are found to introduce a negligible bias into the metallicities of the host stars but the ground based transit method introduces a median age bias of about -2 Gyr.
    [Show full text]