Radio Astronomy Institute"-Radioscience Laboratory, Stanford Univefsity - Frank D
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Global Jet Structure of the Archetypical Quasar 3C 273
galaxies Article The Global Jet Structure of the Archetypical Quasar 3C 273 Kazunori Akiyama 1,2,3,*, Keiichi Asada 4, Vincent L. Fish 2 ID , Masanori Nakamura 4, Kazuhiro Hada 3 ID , Hiroshi Nagai 3 and Colin J. Lonsdale 2 1 National Radio Astronomy Observatory, 520 Edgemont Rd, Charlottesville, VA 22903, USA 2 Massachusetts Institute of Technology, Haystack Observatory, 99 Millstone Rd, Westford, MA 01886, USA; vfi[email protected] (V.L.F.); [email protected] (C.J.L.) 3 National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan; [email protected] (K.H.); [email protected] (H.N.) 4 Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan; [email protected] (K.A.); [email protected] (M.N.) * Correspondence: [email protected] Received: 16 September 2017; Accepted: 8 January 2018; Published: 24 January 2018 Abstract: A key question in the formation of the relativistic jets in active galactic nuclei (AGNs) is the collimation process of their energetic plasma flow launched from the central supermassive black hole (SMBH). Recent observations of nearby low-luminosity radio galaxies exhibit a clear picture of parabolic collimation inside the Bondi accretion radius. On the other hand, little is known of the observational properties of jet collimation in more luminous quasars, where the accretion flow may be significantly different due to much higher accretion rates. In this paper, we present preliminary results of multi-frequency observations of the archetypal quasar 3C 273 with the Very Long Baseline Array (VLBA) at 1.4, 15, and 43 GHz, and Multi-Element Radio Linked Interferometer Network (MERLIN) at 1.6 GHz. -
UC Santa Cruz Other Recent Work
UC Santa Cruz Other Recent Work Title Robert B. Stevens: UCSC Chancellorship, 1987-1991 Permalink https://escholarship.org/uc/item/95h8k9w0 Authors Stevens, Robert Jarrell, Randall Regional History Project, UCSC Library Publication Date 1999-05-21 Supplemental Material https://escholarship.org/uc/item/95h8k9w0#supplemental eScholarship.org Powered by the California Digital Library University of California Introduction The Regional History Project conducted six interviews with UCSC Chancellor Robert B. Stevens during June and July, 1991, as part of its University History series. Stevens was appointed the campus’s fifth chancellor by UC President David P. Gardner in July, 1987, and served until July, 1991. He was the second UCSC chancellor (following Chancellor Emeritus Robert L. Sinsheimer) recruited from a private institution. Stevens was born in England in 1933 and first came to the United States when he was 23. He was educated at Oxford University (B.A., M.A., B.C.L., and D.C.L.) and at Yale University (L.L.M.) and became an American citizen in 1971. An English barrister, Stevens has strong research interests in legal history and education in the United States and England. He served as chairman of the Research Advisory Committee of the American Bar Foundation, has written a half dozen books on legal history and social legislation, and numerous papers on American legal scholarship and comparative Anglo-American legal history. Prior to his appointment at UCSC he served for almost a decade as president of Haverford College from 1978 until 1987. From 1959 to 1976 he was a professor of law at Yale University. -
2007 February
ARTICLE .1 Macro-Perspectives beyond the World System Joseph Voros Swinburne University of Technology Australia Abstract This paper continues a discussion begun in an earlier article on nesting macro-social perspectives to also consider and explore macro-perspectives beyond the level of the current world system and what insights they might reveal for the future of humankind. Key words: Macrohistory, Human expansion into space, Extra-terrestrial civilisations Introduction This paper continues a train of thought begun in an earlier paper (Voros 2006) where an approach to macro-social analysis based on the idea of "nesting" social-analytical perspectives was described and demonstrated (the essence of which, for convenience, is briefly summarised here). In that paper, essential use was made of a typology of social-analytical perspectives proposed by Johan Galtung (1997b), who suggested that human systems could be viewed or studied at three main levels of analysis: the level of the individual person; the level of social systems; and the level of world systems. Distinctions can be made between different foci of study. The focus may be on the stages and causes of change through time (termed diachronic), or it could be at some specific point in time (termed synchronic). As well, the focus may be on a specific single case (termed idiographic), in contrast to seeking regularities, patterns, or generalised "laws" (termed nomo- thetic). In this way, there are four main types of perspectives found at any particular level of analy- sis. This conception is shown here in slightly adapted form in Table 1.1 Journal of Futures Studies, February 2007, 11(3): 1 - 28 Journal of Futures Studies Table 1: Three Levels of Social Analysis Source: Adapted from Galtung (1997b). -
Carl Sagan's Groovy Cosmos
CARL SAGAN’S GROOVY COSMOS: PUBLIC SCIENCE AND AMERICAN COUNTERCULTURE IN THE 1970S By SEAN WARREN GILLERAN A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF ARTS IN HISTORY WASHINGTON STATE UNIVERSITY Department of History MAY 2017 © Copyright by SEAN WARREN GILLERAN, 2017 All Rights Reserved © Copyright by SEAN WARREN GILLERAN, 2017 All Rights Reserved To the Faculty of Washington State University: The members of the Committee appointed to examine the thesis of SEAN WARREN GILLERAN find it satisfactory and recommend that it be accepted. _________________________________ Matthew A. Sutton, Ph.D., Chair _________________________________ Jeffrey C. Sanders, Ph.D. _________________________________ Lawrence B. A. Hatter, Ph.D. ii ACKNOWLEDGEMENT This thesis has been years in the making and is the product of input from many, many different people. I am grateful for the support and suggestions of my committee—Matt Sutton, Jeff Sanders, and Lawrence Hatter—all of whom have been far too patient, kind, and helpful. I am also thankful for input I received from Michael Gordin at Princeton and Helen Anne Curry at Cambridge, both of whom read early drafts and proposals and both of whose suggestions I have been careful to incorporate. Catherine Connors and Carol Thomas at the University of Washington provided much early guidance, especially in terms of how and why such a curious topic could have real significance. Of course, none of this would have happened without the support of Bruce Hevly, who has been extraordinarily generous with his time and whose wonderful seminars and lectures have continued to inspire me, nor without Graham Haslam, who is the best teacher and the kindest man I have ever known. -
Ira Sprague Bowen Papers, 1940-1973
http://oac.cdlib.org/findaid/ark:/13030/tf2p300278 No online items Inventory of the Ira Sprague Bowen Papers, 1940-1973 Processed by Ronald S. Brashear; machine-readable finding aid created by Gabriela A. Montoya Manuscripts Department The Huntington Library 1151 Oxford Road San Marino, California 91108 Phone: (626) 405-2203 Fax: (626) 449-5720 Email: [email protected] URL: http://www.huntington.org/huntingtonlibrary.aspx?id=554 © 1998 The Huntington Library. All rights reserved. Observatories of the Carnegie Institution of Washington Collection Inventory of the Ira Sprague 1 Bowen Papers, 1940-1973 Observatories of the Carnegie Institution of Washington Collection Inventory of the Ira Sprague Bowen Paper, 1940-1973 The Huntington Library San Marino, California Contact Information Manuscripts Department The Huntington Library 1151 Oxford Road San Marino, California 91108 Phone: (626) 405-2203 Fax: (626) 449-5720 Email: [email protected] URL: http://www.huntington.org/huntingtonlibrary.aspx?id=554 Processed by: Ronald S. Brashear Encoded by: Gabriela A. Montoya © 1998 The Huntington Library. All rights reserved. Descriptive Summary Title: Ira Sprague Bowen Papers, Date (inclusive): 1940-1973 Creator: Bowen, Ira Sprague Extent: Approximately 29,000 pieces in 88 boxes Repository: The Huntington Library San Marino, California 91108 Language: English. Provenance Placed on permanent deposit in the Huntington Library by the Observatories of the Carnegie Institution of Washington Collection. This was done in 1989 as part of a letter of agreement (dated November 5, 1987) between the Huntington and the Carnegie Observatories. The papers have yet to be officially accessioned. Cataloging of the papers was completed in 1989 prior to their transfer to the Huntington. -
National States and International Science: a Comparative History of International Science Congresses in Hitler's Germany, Stalin's Russia, and Cold War United States
National States and International Science: A Comparative History of International Science Congresses in Hitler's Germany, Stalin's Russia, and Cold War United States Osiris 2005 Doel, Ronald E. Department of History (and Department of Geosciences), Oregon State University Originally published by: The University of Chicago Press on behalf of The History of Science Society and can be found at: http://www.jstor.org/action/showPublication?journalCode=osiris Citation: Doel, R. E. (2005). National states and international science; A comparative history of international science congresses in Hitler's Germany, Stalin's Russia, and Cold War United States. Osiris, 20, 49-76. Available from JSTOR website: http://www.jstor.org/stable/3655251 National States and International Science: A ComparativeHistory of International Science Congresses in Hitler's Germany, Stalin's Russia, and Cold WarUnited States Ronald E. Doel, Dieter Hoffmann, and Nikolai Krementsov* ABSTRACT Priorstudies of modem scientificinternationalism have been writtenprimarily from the point of view of scientists, with little regardto the influenceof the state. This studyexamines the state'srole in internationalscientific relations. States sometimes encouragedscientific internationalism;in the mid-twentiethcentury, they often sought to restrictit. The presentstudy examines state involvementin international scientific congresses, the primaryintersection between the national and interna- tional dimensionsof scientists'activities. Here we examine three comparativein- stancesin which such -
EDGES Memo #054
EDGES MEMO #054 MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS 01886 December 1, 2009 Telephone: 781-981-5407 Fax: 781-981-0590 To: EDGES Group From: Alan E.E. Rogers Subject: Meteor scatter rates Since all the World’s designated radio quiet zones are les than 2000 km from strong radio transmitters they are subject to RFI from meteor scatter. The key parameters of meteor scatter are poorly determined. For example, theory suggests that the radar cross-section (RCS) should decrease by 20 dB per decade from head echoes but measurements typically have an even faster decline with frequency. The frequency range for significant scatter and the range of concern to radio astronomy is about 50 to 300 MHz. Some papers claim that 1012 meteors enter the Earth’s atmosphere each day while others suggest a number more like 109. In practice we observed a rate of about 1 per minute when located in a canyon (see memo #52) with sky coverage limited to elevations greater than about 25 degrees. Based on the geometry of Figure 1 this corresponds to a worldwide rate of about 107/day. Figure 2 shows the estimated burst rate as a function of elevation cut-off angle. This very sharp curve shows the advantage of limiting the low elevation response of the antenna or using the terrain to limit the elevation angle. Potential locations for EDGES are on route 205 in the canyon just before 205 enters the Catlow Valley, Oregon or about 1km West of route 205 on Skull creek road. 1 h R To solve: theta=acos( ( (R+ h)*(R+ h)+ R*R-r*r) / (2*(R+ h)*R)) a 1 b -2*R*cos(elev+90) c = -(R+h)*(R+h)+R*R r = ((- b+sqrt(b*b-4*a*c) / (2*a) ; R earth radius = 6357 km r = region where meteors form ions ,-..J 100 km Figure 1. -
Of Charles D. Ferguson, on Behalf Of
FEDERATION OF AMERICAN SCIENTISTS T: 202/546-3300 1725 DeSales Street, NW 6th Floor Washington, DC 20036 www.fas.org F: 202/675-1010 [email protected] PRM-70-9 DOCKETED Board of Sponsors (75FR80730) USNRC (PartialList) March 4, 2011 March 7, 2011 (10:30 am) •Pacr Agre * SidnheyAman * Philip W. Anderson *Kenneth J. Arrow To: Secretary, U.S. Nuclear Regulatory Commission OFFICE OF SECRETARY * David Baltimore RULEMAKINGS AND * Bamj Be.....ea Washington, DC 20555-0001 SPaulBerg ADJUDICATIONS STAFF * J. Michael Bishop AT-TN: Rulemakings and Adjudications Staff * Guther Blobel * Nicolaas Bloensbergen * Paul Boyce Ann Pitts Carter Subject: Comment on Docket ID NRC-2010-0372, "Petition for Rulemaking, * Stanley Cohen * Leon N. Cooper Francis Slakey on Behalf of the American Physical Society" * E. J. Corey 'James Cronin * Johann Deismehofer ArmDruyan *RenatoDulbeomo As Board Members of the Federation of American Scientists, an independent, Paul L Ehrlich George Field nonpartisan think tank, we strongly support the petition submitted by the Vat L. Fitch * JeromeI. Friedman American Physical Society that requests proliferation risk assessments become a * Riccardo Giacoani * Walter Gilbert required part of the NRC licensing process. * Alfed G. Gilman " Donald Glaser * Sheldon L. Glashow Marvin L. Goidhergr * Joseph L. Goldstein Emerging nuclear fuel technologies such as laser enrichment of uranium can pose Roger C. L. Gaillemin * L[land H. Hartwell significant proliferation risks due to difficulties in detecting facilities using these * Herbert A. Hauptman " Dudley RKHIaechach technologies. If such technologies are developed without a clear, objective, and * Roald Hoff-aan John P. Hoidren detailed assessment, they can dangerously undermine U.S. nuclear * -l Robert Horvitz * David H. -
Patrick Thaddeus Was Spread Upon the Permanent Records of the Faculty
At a meeting of the FACULTY OF ARTS AND SCIENCES on May 7, 2019, the following tribute to the life and service of the late Patrick Thaddeus was spread upon the permanent records of the Faculty. PATRICK THADDEUS BORN: June 6, 1932 DIED: April 28, 2017 Patrick (“Pat”) Thaddeus, who was a founder of the field of astrochemistry and was largely responsible for recognizing that our galaxy contains a vast number of molecular clouds, died peacefully at home in Cambridge, Massachusetts, on April 28, 2017. Pat was born in the utopian village of Arden, Delaware, on June 6, 1932. He was a curious, high-spirited, and mischievous youngster, often suspended from school for truancy. His home life was difficult. His parents divorced when he was seven and his mother took him to Buffalo. Missing his “native land,” he later returned to live with his father in Arden. He fondly recalled befriending German prisoners of war in the mid-1940s as they worked in the nearby fields. Pat graduated from the University of Delaware in 1953 with a degree in physics, then studied theoretical physics as a Fulbright Scholar at Oxford. In 1955 he enrolled in a Ph.D. program at Columbia. For his thesis under the supervision of Charles Townes, Pat measured the transition frequencies of a number of molecules with a maser beam spectrometer that he built. In 1960, he took a research post at Columbia, and he stayed for the next 26 years, rising to adjunct professor while also working as a research physicist at the NASA Goddard Institute for Space Studies. -
Professor Margaret Burbidge Obituary Trailblazing Astronomer Hailed As ‘Lady Stardust’ Who Became the First Woman Director of the Royal Greenwich Observatory
OBITUARY Professor Margaret Burbidge obituary Trailblazing astronomer hailed as ‘Lady Stardust’ who became the first woman director of the Royal Greenwich Observatory Wednesday April 08 2020, 12.01am, The Times Margaret Burbidge showed how heavier elements are produced from lighter ones in stars AMERICAN INSTITUTE OF PHYSICS/SCIENCE PHOTO LIBRARY In August 1944 Margaret Burbidge, then a young astronomer driven by a thirst for knowledge that would later define her, was studying for her PhD thesis. Her subject was a star called Gamma Cassiopeiae and she was not going to allow the Second World War to stand in her way. Each evening she would travel from the family home close to Hampstead Heath to the University of London Observatory at Mill Hill Park and open up the telescope named after its donor, JG Wilson. She would then spend hours sitting in the cramped and cold space below it, alone with her view of the stars. At that time the Luftwaffe was sending doodlebug flying bombs across the Channel to terrorise the capital but Burbidge ignored the danger. On the night of August 3, her log notes that shortly before 10pm, just after she had opened up the telescope, a flying bomb exploded so close to the observatory that the reverberations from the impact shifted the star out of the telescope’s field of vision. Undeterred she started her observations again a few minutes later only for another doodlebug to explode, this time farther away. Although the star was temporarily lost again she quickly recovered it and completed her observations. “Those nights, standing or sitting on the ladder in the dome of the Wilson reflector . -
CERN Courier Is Distributed to Member-State Governments, Institutes and Laboratories Affiliated with CERN, and to Their Personnel
I n t e r n at I o n a l J o u r n a l o f H I g H - e n e r g y P H y s I c s CERN COURIERV o l u m e 4 6 n u m b e r 9 n o V e m b e r 2 0 0 6 OPERA makes its grand debut ACCELERATORS COMPUTING NEWS INTERVIEW Laser-wakefield device Business signs up to Stephen Hawking pays reaches 1 GeV p5 work with EGEE p12 a visit to CERN p28 CCENovCover1.indd 1 18/10/06 08:53:59 CERN & ProCurve Networking 15 petabytes of data And a network that can handle it “CERN uses ProCurve Switches because we generate a colossal amount of data, making dependability a top priority.” —David Foster, Communication Systems Group Leader, CERN CERN has joined with ProCurve to build their network based on high-performance security, reliability and flexibility, along with a lifetime warranty.* From the world’s largest applications, to a company-wide email, just think what ProCurve could do for your network. Get a closer look at CERN and the world’s biggest physics experiment. Visit www.hp.com/eur/procurvecern1 *For as long as you own the product, with next-business-day advance replacement (available in most countries). For details, refer to the ProCurve Software License, Warranty and Support booklet at www.hp.com/rnd/support/warranty/index.htm The ProCurve Routing Switch 9300m series, ProCurve Routing Switch 9408sl, ProCurve Switch 8100fl series, and the ProCurve Access Control Server 745wl have a one-year- warranty with extensions available. -
Particle Detectors Lecture Notes
Lecture Notes Heidelberg, Summer Term 2011 The Physics of Particle Detectors Hans-Christian Schultz-Coulon Kirchhoff-Institut für Physik Introduction Historical Developments Historical Development γ-rays First 1896 Detection of α-, β- and γ-rays 1896 β-rays Image of Becquerel's photographic plate which has been An x-ray picture taken by Wilhelm Röntgen of Albert von fogged by exposure to radiation from a uranium salt. Kölliker's hand at a public lecture on 23 January 1896. Historical Development Rutherford's scattering experiment Microscope + Scintillating ZnS screen Schematic view of Rutherford experiment 1911 Rutherford's original experimental setup Historical Development Detection of cosmic rays [Hess 1912; Nobel prize 1936] ! "# Electrometer Cylinder from Wulf [2 cm diameter] Mirror Strings Microscope Natrium ! !""#$%&'()*+,-)./0)1&$23456/)78096$/'9::9098)1912 $%&!'()*+,-.%!/0&1.)%21331&10!,0%))0!%42%!56784210462!1(,!9624,10462,:177%&!(2;! '()*+,-.%2!<=%4*1;%2%)%:0&67%0%&!;1&>!Victor F. Hess before his 1912 balloon flight in Austria during which he discovered cosmic rays. ?40! @4)*%! ;%&! /0%)),-.&1(8%! A! )1,,%2! ,4-.!;4%!BC;%2!;%,!D)%:0&67%0%&,!(7!;4%! EC2F,1-.,%!;%,!/0&1.)%21331&10,!;&%.%2G!(7!%42%!*H&!;4%!A8)%,(2F!FH2,04F%!I6,40462! %42,0%))%2! J(! :K22%2>! L10&4(7! =4&;! M%&=%2;%0G! (7! ;4%! E(*0! 47! 922%&%2! ;%,! 9624,10462,M6)(7%2!M62!B%(-.04F:%40!*&%4!J(!.1)0%2>! $%&!422%&%G!:)%42%&%!<N)42;%&!;4%20!;%&!O8%&3&H*(2F!;%&!9,6)10462!;%,!P%&C0%,>!'4&;!%&! H8%&! ;4%! BC;%2! F%,%2:0G! ,6! M%&&42F%&0! ,4-.!;1,!1:04M%!9624,10462,M6)(7%2!1(*!;%2!