9 January 2019 Drugs Used in Diabetes (A10) • Insulins And

Total Page:16

File Type:pdf, Size:1020Kb

9 January 2019 Drugs Used in Diabetes (A10) • Insulins And 9 January 2019 Drugs used in Diabetes (A10) Insulins and Analogues (A10A) 1. Insulin (human): a. Biphasic insulin b. Biphasic Isophane Human Insulin c. Human Regular Solution for Injection Insulin (I.M./S.C./I.V.); Solution d. Insulin human + 100 I.U./mL for Injection (S.C./I.V.); Isophane Insulin Solution for Injection Human (S.C.); Suspension for e. Neutral Insulin Human Injection (S.C.) + Isophane Insulin Human f. Recombinant Human Insulin 2. Insulin aspart a. Insulin aspart b. Biphasic Insulin Aspart c. Biphasic Insulin 100 Units/mL Solution for Injection (S.C.) Aspart 30 d. Biphasic Insulin Aspart 50 3. Insulin degludec 100 Units/mL Solution for Injection (S.C.) 4. Insulin degludec and Insulin 100 Units/mL (70% Insulin aspart Degludec/30% Insulin Solution for Injection (S.C.) Aspart) 5. Insulin degludec and 100 Units/3.6 mg per mL Solution for Injection (S.C.) Liraglutide 6. Insulin detemir 100 Units/mL Solution for Injection (S.C.) 7. Insulin glargine 100 Units/mL Solution for Injection (S.C.) 300 Units/mL 8. Insulin glargine and 3.64 mg (equivalent to 100 Lixisenatide Units of Insulin glargine/ 33 mcg per mL Solution) Solution for Injection (S.C.) 3.64 mg (equivalent to 100 Units of Insulin glargine/ 50 mcg per mL Solution) 9. Insulin glulisine 3.49 mg / mL (equivalent Solution for Injection (S.C.) to 100 units / mL) Solution for Injection (Subcutaneous/Continuous S.C. Pump Infusion/Intravenous) 10. Insulin lispro Solution for Injection a. rDNA origin (I.V./S.C./I.M.) b. 50% Insulin Lispro and 50% Insulin- Lispro-Protamine 100 Units/mL (3.5 mg/mL) Sulfate Suspension for Injection c. 25% Insulin Lispro (S.C.) and 75% Insulin- Lispro-Protamine Sulfate Blood Glucose Lowering Drugs, excluding Insulins (A10B) A. Biguanides (A10BA) 1. Metformin Tablet Film-Coated Tablet 500 mg Extended-Release Tablet Sustained-Release Capsule Oral Solution 750 mg Extended-Release Tablet Tablet Film-Coated Tablet 850 mg Extended-Release Tablet Oral Solution Tablet Film-Coated Tablet 1000 mg Extended-Release Tablet Sustained-Release Capsule Oral Solution B. Sulfonylureas (A10BB) 1. Glibenclamide 5 mg Tablet 2. Glipizide Tablet 2.5 mg Extended-Release Tablet Tablet 5 mg Extended-Release Tablet Controlled-Release Tablet Extended-Release Tablet 10 mg Controlled-Release Tablet 3. Gliclazide Modified-Release Tablet 30 mg Prolonged-Release Tablet 60 mg Modified-Release Tablet Tablet 80 mg Modified-Release Tablet 4. Glimepiride 1 mg 2 mg Tablet; Film-Coated Tablet 3 mg 4 mg C. Combinations of oral blood glucose lowering drugs (A10BD) 1. Metformin and Sulfonylureas a. Metformin and 500 mg + 5 mg Tablet Glipizide b. Metformin and 500 mg + 80 mg Film-Coated Tablet Gliclazide 850 mg + 80 mg c. Metformin and 500 mg + 1 mg Tablet Glimepiride Tablet Film-Coated Tablet 500 mg + 2 mg Sustained-Release Capsule Extended-Release Tablet Prolonged-Release Tablet 1 g + 2 mg Tablet d. Metformin and 250 mg + 1.25 mg Glibenclamide 500 mg + 2.5 mg Film-Coated Tablet 500 mg + 5 mg 500 mg + 5mg Tablet 1 g + 5 mg 2. Metformin and Pioglitazone 500 mg + 15 mg Film-Coated Tablet 850 mg +15 mg 3. Glimepiride and Pioglitazone 15 mg/2 mg Tablet 30 mg/2 mg 4. Metformin and Sitagliptin Tablet 50 mg + 500 mg Film-Coated Tablet 50 mg + 850 mg Tablet 50 mg + 1000 mg Tablet 50 mg + 1 g Film-Coated Tablet 100 mg + 1 g Extended-Release Tablet 5. Metformin and Vildagliptin 50 mg + 500 mg 50 mg + 850 mg Film-Coated Tablet 50 mg + 1000 mg 6. Pioglitazone and Alogliptin 12.5 mg/15 mg 12.5 mg/30 mg Film-Coated Tablet 25 mg/15 mg 25 mg/30 mg 7. Metformin and Saxagliptin 2.5 mg/1 g Film-Coated Tablet 5 mg/500 mg 5 mg/1 g 8. Metformin and Linagliptin 2.5 mg + 500 mg 2.5 mg + 850 mg Film-Coated Tablet 2.5 mg + 1000 mg 9. Metformin and Dapagliflozin 5 mg/500 mg 5 mg/1000 mg Tablet 10 mg/500 mg 10 mg/1000 mg 10. Linagliptin and 10 mg/5 mg Film-Coated Tablet Empagliflozin 25 mg/5 mg 11. Metformin and 5 mg/500 mg Empagliflozin 5 mg/850 mg 5 mg/1 g Film-Coated Tablet 12.5 mg/500 mg 12.5 mg/850 mg 12.5 mg/1 g 12. Pioglitazone, Metformin and 15 mg/500 mg/1 mg Film-Coated Tablet Glimepiride** 15 mg/500 mg/2 mg 13. Saxagliptin and 5 mg/10 mg Film-Coated Tablet Dapagliflozin D. Alpha glucosidase inhibitors (A10BF) Tablet 50 mg 1. Acarbose Film-Coated Tablet 100 mg Tablet Tablet 200 mcg Orally Disintegrating Tablet 2. Voglibose Tablet 300 mcg Dispersible Tablet E. Thiazolidinediones (A10BG) Tablet 15 mg Film-Coated Tablet 1. Pioglitazone 30 mg Tablet 45 mg Tablet F. Dipeptidyl peptidase 4 (DPP-4) inhibitors (A10BH) 1. Sitagliptin 25 mg 50 mg Film-Coated Tablet 100 mg 2. Vildagliptin 50 mg Tablet 2.5 mg 3. Saxagliptin Film-Coated Tablet 5 mg 4. Linagliptin 5 mg Tablet 5. Gemigliptin 50 mg Film-Coated Tablet 6. Sitagliptin and Simvastatin 100 mg + 10 mg Film-Coated Tablet 100 mg + 20 mg 100 mg + 40 mg G. Glucagon-like peptide-1 (GLP-1) analogues (A10BJ) Powder for Suspension for 2 mg Injection (S.C.) 250 mcg/mL (5 mcg/dose) 1. Exenatide Solution for Injection (S.C.) 250 mcg/mL (10 mcg/dose) 2. Liraglutide 6 mg/mL Solution for Injection (S.C.) 10 mcg + 0.2 mL (0.15 mg/3 mL) 3. Lixisenatide Solution for Injection (S.C.) 20 mcg + 0.2 mL H. Sodium-glucose co-transporter 2 (SGLT2) inhibitors (A10BK) 5 mg 1. Dapagliflozin Tablet 10 mg 100 mg 2. Canagliflozin Film-Coated Tablet 300 mg 10 mg 3. Empagliflozin Film-Coated Tablet 25 mg I. Other blood glucose lowering drugs, excluding insulins 500 mcg 1. Repaglinide 1 mg Tablet 2 mg 2. Nateglinide 120 mg Film-Coated Tablet .
Recommended publications
  • CDR Clinical Review Report for Soliqua
    CADTH COMMON DRUG REVIEW Clinical Review Report Insulin glargine and lixisenatide injection (Soliqua) (Sanofi-Aventis) Indication: adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus inadequately controlled on basal insulin (less than 60 units daily) alone or in combination with metformin. Service Line: CADTH Common Drug Review Version: Final (with redactions) Publication Date: January 2019 Report Length: 118 Pages Disclaimer: The information in this document is intended to help Canadian health care decision-makers, health care professionals, health systems leaders, and policy-makers make well-informed decisions and thereby improve the quality of health care services. While patients and others may access this document, the document is made available for informational purposes only and no representations or warranties are made with respect to its fitness for any particular purpose. The information in this document should not be used as a substitute for professional medical advice or as a substitute for the application of clinical judgment in respect of the care of a particular patient or other professional judgment in any decision-making process. The Canadian Agency for Drugs and Technologies in Health (CADTH) does not endorse any information, drugs, therapies, treatments, products, processes, or services. While care has been taken to ensure that the information prepared by CADTH in this document is accurate, complete, and up-to-date as at the applicable date the material was first published by CADTH, CADTH does not make any guarantees to that effect. CADTH does not guarantee and is not responsible for the quality, currency, propriety, accuracy, or reasonableness of any statements, information, or conclusions contained in any third-party materials used in preparing this document.
    [Show full text]
  • Antidiabetic Drugs in NAFLD: the Accomplishment of Two Goals at Once?
    pharmaceuticals Review Antidiabetic Drugs in NAFLD: The Accomplishment of Two Goals at Once? Matteo Tacelli , Ciro Celsa , Bianca Magro, Aurora Giannetti, Grazia Pennisi, Federica Spatola and Salvatore Petta * Sezione di Gastroenterologia e Epatologia, DiBiMIS, University of Palermo, 90127 Palermo, Italy; [email protected] (M.T.); [email protected] (C.C.); [email protected] (B.M.); [email protected] (A.G.); [email protected] (G.P.); [email protected] (F.S.) * Correspondence: [email protected], Tel.: +39-091-655-2170; Fax: +39-091-655-2156 Received: 17 October 2018; Accepted: 3 November 2018; Published: 8 November 2018 Abstract: Non-Alcoholic Fatty Liver Disease (NAFLD) is the most common cause of chronic liver disease in Western countries, accounting for 20–30% of general population and reaching a prevalence of 55% in patients with type 2 diabetes mellitus (T2DM). Insulin resistance plays a key role in pathogenic mechanisms of NAFLD. Many drugs have been tested but no medications have yet been approved. Antidiabetic drugs could have a role in the progression reduction of the disease. The aim of this review is to summarize evidence on efficacy and safety of antidiabetic drugs in patients with NAFLD. Metformin, a biguanide, is the most frequently used drug in the treatment of T2DM. To date 15 randomized controlled trials (RCTs) and four meta-analysis on the use of metformin in NAFLD are available. No significant improvement in histological liver fibrosis was shown, but it can be useful in the treatment of co-factors of NAFLD, like body weight, transaminase or cholesterol levels, and HbA1c levels.
    [Show full text]
  • A Prospective Cohort Study on Effects of Gemigliptin On
    www.nature.com/scientificreports OPEN A prospective cohort study on efects of gemigliptin on cardiovascular outcomes in patients with type 2 diabetes (OPTIMUS study) Eun Heui Kim1,9, Sang Soo Kim1,9, Dong Jun Kim2, Young Sik Choi3, Chang Won Lee4, Bon Jeong Ku5, Kwang Soo Cha1, Kee Ho Song6, Dae Kyeong Kim7 & In Joo Kim1,8* This study was performed to evaluate the long-term cardiovascular safety of gemigliptin in patients with type 2 diabetes mellitus (T2DM). After screening, eligible patients with T2DM were enrolled, received gemigliptin, and were followed up for a median of 2.50 years. The primary outcome was a composite of confrmed cardiovascular death, nonfatal myocardial infarction, or nonfatal ischemic stroke (3-point major adverse cardiovascular event [MACE]). The key secondary outcomes were incidence of all-cause mortality and any other cardiovascular events. A total of 5179 patients were included in the study and 5113 were treated with gemigliptin. Overall, the primary outcome occurred in 26 patients within 12 months (estimated incidence by Cox proportional hazard model 0.49%, 95% CI 0.29–0.69%) and in 54 patients within 54 months (estimated incidence from Cox proportional hazard model 1.35%, 95% CI 0.92–1.77%). During the study period, the incidence rates of each component of the primary composite outcome were 0.04% (0.2 events per 1000 person-years) for cardiovascular death, 0.51% (2.2 events per 1000 person-years) for nonfatal myocardial infarction, and 0.61% (2.5 events per 1000 person-years) for nonfatal ischemic stroke. The incidence of all-cause mortality was 0.82% (3.2 events per 1000 person-years) and the incidences of other cardiovascular events were all less than 0.3%.
    [Show full text]
  • Pharmacokinetics and Pharmacodynamics of a Fixed-Dose
    Transl Clin Pharmacol. 2020 Mar;28(1):43-54 https://doi.org/10.12793/tcp.2020.28.e2 pISSN 2289-0882·eISSN 2383-5427 Original Article Pharmacokinetics and pharmacodynamics of a fixed-dose combination of gemigliptin/metformin sustained release 25/500 mg compared to the loose combination in healthy male subjects Xuanyou Jin , Eunwoo Kim , Ki Young Huh , Inyoung Hwang , * Received: Feb 20, 2020 Joo-Youn Cho , Kyung-Sang Yu , and SeungHwan Lee Revised: Mar 18, 2020 Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Accepted: Mar 19, 2020 Hospital, Seoul 03080, Korea *Correspondence to SeungHwan Lee Department of Clinical Pharmacology and ABSTRACT Therapeutics, Seoul National University College of Medicine and Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea. A fixed-dose combination (FDC) of gemigliptin/metformin can improve the medication E-mail: [email protected] adherence in patients with type 2 diabetes mellitus (T2DM). In this study, the pharmacokinetic (PK) and pharmacodynamic (PD) profiles of gemigliptin and metformin were compared Copyright © 2020 Translational and Clinical between FDC and the corresponding loose combination under fasted and fed states. A Pharmacology It is identical to the Creative Commons two-part, randomized, open label, single-dose, two-way crossover study was conducted in Attribution Non-Commercial License (https:// healthy male subjects. Under fasted (part 1) or fed (part 2) state, 2 FDC tablets of gemigliptin/ creativecommons.org/licenses/by-nc/4.0/). metformin sustained release (SR) 25/500 mg or loose combination with one tablet of gemigliptin 50 mg and two tablets of metformin extended release (XR) 500 mg were orally ORCID iDs Xuanyou Jin administered in each period with a 7-day washout.
    [Show full text]
  • Pharmacological Treatment in Diabetes Mellitus Type 1 – Insulin and What Else? Ewa Otto-Buczkowska,1,* and Natalia Jainta2
    Int J Endocrinol Metab. 2018 January; 16(1):e13008. doi: 10.5812/ijem.13008. Published online 2017 November 20. Review Article Pharmacological Treatment in Diabetes Mellitus Type 1 – Insulin and What Else? Ewa Otto-Buczkowska,1,* and Natalia Jainta2 1Medical Specialist Centre in Gliwice, Poland 2Medical University of Silesia in Katowice, Poland *Corresponding author: Ewa Otto-Buczkowska MD PhD, Jasnogorska 16/2144-100 Gliwice, Poland. E-mail: [email protected] Received 2017 May 11; Revised 2017 September 18; Accepted 2017 October 31. Abstract The basis of treatment in autoimmune diabetes is insulin therapy; however, many clinical cases have proven that this method does not solve all problems. Trials of causal treatment including blocking the autoimmune processes and insulin-producing cells trans- plants were carried out. Those methods require more research to be concerned as efficient and safe ways of treatment in type 1 diabetes. The use of non-insulin adjunct treatment is a new trend. It has been successfully used in laboratories as well as clinical tri- als. Metformin is the most widely used drug, together with sodium-glucose co-transporters 2 (SGLT2) inhibitors, amylin analogues, glucagon-like peptide 1 (GLP-1) receptor agonists, and dipeptidyl peptidase-4 (DPP-4) inhibitors. The results of administration of these medicaments give good outcomes in patients with diabetes mellitus type 1. Most likely, in the near future, they will progres- sively be used in both adult and adolescent patients with type 1 diabetes. Further multicenter, randomized studies are required to evaluate the efficacy of treatment and long term safety of these drugs.
    [Show full text]
  • Essential Medicines List (EML) 2017 Application for the Revision Of
    Essential Medicines List (EML) 2017 Application for the revision of second line treatments of type II diabetes: considered agents that can be used in combination with metformin are sulfonylureas, meglitinides, alpha-glucosidase inhibitors, TZDs, DPP-4 inhibitors, SGLT-2 inhibitors, GLP-1 agonists, basal insulins, bolus insulins, and biphasic insulins. General items 1. Summary statement of the proposal for inclusion, change or deletion In type 2 diabetes, when initial therapy with lifestyle interventions and metformin monotherapy are unsuccessful, a second oral or injectable agent is recommended. This is referred to as ‘second-line therapy’. Historically, insulin or sulfonylureas have been preferred second-line agents because of efficacy, side-effect profiles, long-term safety, and relative cost. Both insulin and sulfonylurea are listed as essential medicines, along with metformin. In 2013 the Expert Committee of Essential Medicines Selection and Use evaluated evidence comparing four groups of oral hypoglycemics: (1) dipeptidyl peptidase-4 (DPP-4) inhibitors, (2) thiazolidinediones, (3) alpha-glucosidase inhibitors, such as acarbose, and (4) meglitinides, against metformin (biguanide) and sulfonylureas (WHO Technical Report Series 985). The results from the 2013 review indicated that there were no apparent differences in efficacy across drug classes, and that sulfonylureas were the most cost-effective treatment option. Based on these analyses, the Expert Committee recommended that “there was insufficient evidence to show that any of the medicines in the four groups (DPP-4 inhibitors, alphaglucosidase inhibitors, meglitinides, or thiazolidinediones) offered any efficacy or safety advantages over the existing medicines included in the EML”, (i.e. metformin first line and sulfonylurea second line). Since then, a new drug class has entered the market of several countries for the treatment of patients with T2D — sodium-glucose cotransporter-2 (SGLT-2) inhibitors.
    [Show full text]
  • Gemigliptin: an Update of Its Clinical Use in the Management of Type 2 Diabetes Mellitus
    Review Clinical Care/Education Diabetes Metab J 2016;40:339-353 http://dx.doi.org/10.4093/dmj.2016.40.5.339 pISSN 2233-6079 · eISSN 2233-6087 DIABETES & METABOLISM JOURNAL Gemigliptin: An Update of Its Clinical Use in the Management of Type 2 Diabetes Mellitus Sung-Ho Kim1, Jung-Hwa Yoo1, Woo Je Lee2, Cheol-Young Park3 1LG Life Sciences Ltd., R&D Park, Daejeon, 2Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 3 Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea Dipeptidyl peptidase-4 (DPP-4) inhibitors are a new class of oral antidiabetic agent for the treatment of type 2 diabetes mellitus. They increase endogenous levels of incretin hormones, which stimulate glucose-dependent insulin secretion, decrease glucagon secretion, and contribute to reducing postprandial hyperglycemia. Although DPP-4 inhibitors have similar benefits, they can be differentiated in terms of their chemical structure, pharmacology, efficacy and safety profiles, and clinical considerations. -Gemi gliptin (brand name: Zemiglo), developed by LG Life Sciences, is a potent, selective, competitive, and long acting DPP-4 inhibitor. Various studies have shown that gemigliptin is an optimized DPP-4 inhibitor in terms of efficacy, safety, and patient compliance for treatment of type 2 diabetes mellitus. In this review, we summarize the characteristics of gemigliptin and discuss its potential benefits in clinical practice. Keywords: Diabetes mellitus, type 2; Dipeptidyl-peptidase IV inhibitors; LC15-0444 INTRODUCTION entiated in terms of pharmacology, efficacy and safety profiles, and clinical considerations along with their different chemical Type 2 diabetes mellitus (T2DM) is a complex and progressive structure [4].
    [Show full text]
  • Beneficial Effect of Anti-Diabetic Drugs for Nonalcoholic Fatty Liver Disease
    pISSN 2287-2728 eISSN 2287-285X https://doi.org/10.3350/cmh.2020.0137 Review Clinical and Molecular Hepatology 2020;26:430-443 Beneficial effect of anti-diabetic drugs for nonalcoholic fatty liver disease Kyung-Soo Kim1 and Byung-Wan Lee2 1Division of Endocrinology and Metabolism, Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam; 2Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea Nonalcoholic fatty liver disease (NAFLD) is the most common liver disorder and is associated with various metabolic diseases, including type 2 diabetes mellitus. There are no approved drugs for NAFLD, and the only approved treatment option is weight reduction. As insulin resistance plays an important role in the development of NAFLD, many anti- diabetic drugs have been evaluated for the treatment of NAFLD. Improvement of liver enzymes has been demonstrated by many anti-diabetic drugs, but histological assessment still remains insufficient. Pioglitazone could become the first- line therapy for T2DM patients with NAFLD, based on evidence of histological improvement in patients with biopsy- proven nonalcoholic steatohepatitis (NASH). Liraglutide, another promising alternative, is not yet recommended in patients with NAFLD/NASH due to limited evidence. Therefore, well-designed randomized controlled trials should be performed in the near future to demonstrate if and how anti-diabetic drugs can play a role in the treatment of NAFLD. (Clin Mol Hepatol 2020;26:430-443) Keywords: Anti-diabetic drug; Diabetes mellitus; Metabolic diseases; Non-alcoholic fatty liver disease; Treatment INTRODUCTION hepatitis (NASH), advanced fibrosis, and hepatocellular carcinoma (HCC).
    [Show full text]
  • Clinical Therapeutics/New Technology—Glucose Monitoring and Sensing
    CLINICAL THERAPEUTICS/NEW TECHNOLOGY—GLUCOSECATEGORY MONITORING AND SENSING in the assessment and treatment of T1DM. Whether hope is valuable for risk study. Traditional methods to recruit lower income AA women into diabetes prediction models of future HbA1c remains to be determined. self-care interventions may be challenging due to the transient nature of the Supported by: KU Diabetes Institute population and women’s competing life and medical priorities. Finding ways to help women manage these priorities as part of the recruitment process as 2320-PO well as employing non-traditional recruitment methods, such as face-to-face Patterns of Complementary Therapy Use Among Rural Older Adults recruitment in community settings, may yield better recruitment results. With Diabetes RONNY BELL, SARA QUANDT, JOSEPH GRZYWACZ, REBECCA NEIBERG, WEI 2322-PO LANG, THOMAS ARCURY, Winston-Salem, NC The Effect of Diabetes and its Control on Susceptibility to Learned Previous studies on complementary therapy (CT) use among adults with Helplessness in Streptozotocin-Induced Diabetes Rats diabetes have been limited by crude measures of current use across broad YOSHIE GO, HARUKO KITAOKA, TATSUYA FUJIKAWA, Sakai, Japan CT categories, and by a lack of specifi city of CT use for treating diabetes. AIMS: In order to examine the mechanism linking diabetes to depression, Data for the current analysis are drawn from a study of CT use among rural hyper and hypoglycemia are different at risk of affective disorder. METH- African American and white older (age >65) adults in southeastern North ODS: Using the streptzotocin rats, totally 37 rats, were divided into 4 types Carolina. Among the 200 study participants, 71 (35.6%) reported having of glycemic control groups, Group A (good), B (hypo-hyper) ,C (untreated), D been told by a doctor that they have diabetes.
    [Show full text]
  • 2020 Diabetes Guideline Data Supplement
    Data Supplement Appendix A: Search strategies Table S1. Search strategies for systematic review topics Search dates – RCTs October 2018, Systematic reviews October 2018, Observational studies February 2019; Updated February 2020 Guideline chapter Comprehensive care in diabetes and CKD Systematic review topic RAS inhibitors in patients with diabetes and CKD Search strategy - 1. MeSH descriptor: [Angiotensin-Converting Enzyme Inhibitors] explode all trees CENTRAL 2. MeSH descriptor: [Angiotensin Receptor Antagonists] explode all trees 3. losartan:ti,ab,kw (Word variations have been searched) 4. irbesartan:ti,ab,kw (Word variations have been searched) 5. candesartan:ti,ab,kw (Word variations have been searched) 6. eprosartan:ti,ab,kw (Word variations have been searched) 7. valsartan:ti,ab,kw (Word variations have been searched) 8. olmesartan:ti,ab,kw (Word variations have been searched) 9. telmisartan:ti,ab,kw (Word variations have been searched) 10. captopril:ti,ab,kw (Word variations have been searched) 11. enalapril:ti,ab,kw (Word variations have been searched) 12. fosinopril:ti,ab,kw (Word variations have been searched) 13. lisinopril:ti,ab,kw (Word variations have been searched) 14. perindopril:ti,ab,kw (Word variations have been searched) 15. MeSH descriptor: [Diabetic Nephropathies] this term only 16. diabetic nephropath*:ti,ab,kw (Word variations have been searched) 17. diabetic kidney* or diabetic renal*:ti,ab,kw (Word variations have been searched) 18. MeSH descriptor: [Albuminuria] this term only 19. MeSH descriptor: [Proteinuria] this term only 20. proteinuria or albuminuria or microalbuminuria or macroalbuminuria:ti,ab,kw (Word variations have been searched) Search strategy - 1. exp Angiotensin-Converting Enzyme Inhibitors/ MEDLINE 2.
    [Show full text]
  • Diabetes Mellitus (1 of 42)
    Diabetes Mellitus (1 of 42) 1 Patient presents w/ symptoms of diabetes mellitus (DM) or asymptomatic patient is screened for DM 2 PREDIABETES A DIAGNOSIS/ Patient education SCREENING No* B Lifestyle modifi cation Is DM C Pharmacological therapy confi rmed? • Metformin Yes 3 E INITIAL EVALUATION Screening & management • Detect presence of of DM complications/ diabetic complications & comorbidities comorbid conditions 4 DM CLASSIFICATION TYPE 1 DM TYPE 2 DM OTHER SPECIFIC GESTATIONAL • β-cell destruction • Progressive loss TYPES DM GDM leading to complete of β-cell insulin • Uncommon causes; insulin defi ciency secretion underlying cause or concomitant w/ disease is identifi ed insulin resistance & relative insulin defi ciency Please see Gestational Diabetes Mellitus TREATMENT TREATMENT disease management See page 2 See pages 3-6 chart for further © MIMSinformation *For individuals w/ normal test results, lifestyle management, including counselling regarding diet, physical activity, weight loss & smoking cessation, is advised. Screening should be done annually for patients w/ pre-diabetes & every 3 years for patients negative for diabetes after screening. Not all products are available or approved for above use in all countries. Specifi c prescribing information may be found in the latest MIMS. 2 © MIMS 2021 Diabetes Mellitus (2 of 42) TYPE 1 DM REFER TO DIABETES SPECIALIST/ ENDOCRINOLOGIST A Patient education B Lifestyle modifi cation • Medical nutrition therapy (MNT) - Match prandial insulin to carbohydrate intake, premeal blood glucose, & anticipated activity • Physical activity & exercise C Pharmacological therapy • Insulin (multiple daily injections or pumps) D CONTINUE ASSESSMENT OF MANAGEMENT GLYCEMIC CONTROL Yes PLAN Is patient able to achieve • Provide regular glycemic control? follow-up No FURTHER EVALUATION BY DIABETES SPECIALIST/ MIMSENDOCRINOLOGIST © Not all products are available or approved for above use in all countries.
    [Show full text]
  • Pharmaceutical Composition for Preventing Or Treating Diabetes, Containing Zinc Salt, Cyclo-Hispro and Antidiabetic Drug As Active Ingredients
    (19) *EP003698801A2* (11) EP 3 698 801 A2 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC (43) Date of publication: (51) Int Cl.: 26.08.2020 Bulletin 2020/35 A61K 33/30 (2006.01) A61K 38/43 (2006.01) A61K 31/427 (2006.01) A61K 31/155 (2006.01) (2006.01) (21) Application number: 18867498.0 A61K 31/702 (22) Date of filing: 19.10.2018 (86) International application number: PCT/KR2018/012392 (87) International publication number: WO 2019/078663 (25.04.2019 Gazette 2019/17) (84) Designated Contracting States: • JEON, Jong Su AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Pohang-si GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Gyeongsangbuk-do 37664 (KR) PL PT RO RS SE SI SK SM TR • KIM, Bo Bae Designated Extension States: Seoul 01368 (KR) BA ME • LEE, Heon Jong Designated Validation States: Incheon 21048 (KR) KH MA MD TN • SONG, Moon Ki Northridge (30) Priority: 20.10.2017 KR 20170136242 California 91326 (US) • LEE, Do Hyun (71) Applicant: Novmetapharma Co., Ltd. Pohang-si Seoul 06050 (KR) Gyeongsangbuk-do 37669 (KR) (72) Inventors: (74) Representative: Dehns • JUNG, Hoe Yune St. Bride’s House Pohang-si 10 Salisbury Square Gyeongsangbuk-do 37668 (KR) London EC4Y 8JD (GB) (54) PHARMACEUTICAL COMPOSITION FOR PREVENTING OR TREATING DIABETES, CONTAINING ZINC SALT, CYCLO-HISPRO AND ANTIDIABETIC DRUG AS ACTIVE INGREDIENTS (57) The present invention relates to a pharmaceu- tical composition for preventing or treating diabetes, com- prising, as active ingredients: (a) a zinc salt, comprising a zinc cation and anion, and cyclo-hispro, or a pharma- ceutically acceptable salt thereof; and (b) an antidiabetic drug (particularly, an insulin sensitizer, an insulin sensi- tizer, a sodium-glucose co-transporter (a sodium-glu- cose co-transporter 2 (SGLT2) inhibitor), or a DPP-4 in- hibitor).
    [Show full text]