Essential Medicines List (EML) 2017 Application for the Revision Of

Total Page:16

File Type:pdf, Size:1020Kb

Essential Medicines List (EML) 2017 Application for the Revision Of Essential Medicines List (EML) 2017 Application for the revision of second line treatments of type II diabetes: considered agents that can be used in combination with metformin are sulfonylureas, meglitinides, alpha-glucosidase inhibitors, TZDs, DPP-4 inhibitors, SGLT-2 inhibitors, GLP-1 agonists, basal insulins, bolus insulins, and biphasic insulins. General items 1. Summary statement of the proposal for inclusion, change or deletion In type 2 diabetes, when initial therapy with lifestyle interventions and metformin monotherapy are unsuccessful, a second oral or injectable agent is recommended. This is referred to as ‘second-line therapy’. Historically, insulin or sulfonylureas have been preferred second-line agents because of efficacy, side-effect profiles, long-term safety, and relative cost. Both insulin and sulfonylurea are listed as essential medicines, along with metformin. In 2013 the Expert Committee of Essential Medicines Selection and Use evaluated evidence comparing four groups of oral hypoglycemics: (1) dipeptidyl peptidase-4 (DPP-4) inhibitors, (2) thiazolidinediones, (3) alpha-glucosidase inhibitors, such as acarbose, and (4) meglitinides, against metformin (biguanide) and sulfonylureas (WHO Technical Report Series 985). The results from the 2013 review indicated that there were no apparent differences in efficacy across drug classes, and that sulfonylureas were the most cost-effective treatment option. Based on these analyses, the Expert Committee recommended that “there was insufficient evidence to show that any of the medicines in the four groups (DPP-4 inhibitors, alphaglucosidase inhibitors, meglitinides, or thiazolidinediones) offered any efficacy or safety advantages over the existing medicines included in the EML”, (i.e. metformin first line and sulfonylurea second line). Since then, a new drug class has entered the market of several countries for the treatment of patients with T2D — sodium-glucose cotransporter-2 (SGLT-2) inhibitors. In addition, a fourth (Dipeptidyl peptidase-4) DPP-4 inhibitor (alogliptin) as well as a third Glucagon-like peptide-1 (GLP-1) analogue (dulaglutide) have appeared and new data on the impact on cardiovascular outcomes of some of the new drugs (e.g., GLP-1 agonists, DDP-4 inhibitors and SGLT-2 inhibitors) have been published. Given the newer agents recently approved in most countries and additional randomized controlled trial (RCT) evidence published over the last 5 years for the existing and newer agents, there is a need to revisit comparative efficacy, safety and cost. This application concerns the updating of section 18.5 Insulins and other medicines used for diabetes of the WHO Model List of Essential Medicines (WHO EML) for adults and children (WHO Model List of Essential Medicines, April 2015, 19th Edition). This application provides a comprehensive and comparative assessment of all available second-line therapies (to be used in combination with metformin): sulfonylureas, meglitinides, alpha-glucosidase inhibitors, TZDs, DPP-4 inhibitors, SGLT-2 inhibitors (Table 1), GLP-1 agonists, basal insulins, bolus insulins, and biphasic insulins, including analogues (Table 2). The comparative assessment is based on an update of a previous CADTH systematic review and network meta-analyses of second-line therapies for type 2 diabetes (. In addition, this application reviews pharmacologic treatments for patients with type 2 diabetes who are at high risk for cardiovascular events. Third-line therapies were not assessed. Based on Bayesian network meta-analyses, adjunctive second-line therapies were associated with possible reductions in glycemic control when compared to metformin monotherapy, with few differences between any of the active treatments. Sulfonylurea and GLP-1 analogues decreased glycated hemoglobin when compared to DPP-4; GLP-1 analogues and sulfonylurea decreased weight when compared to metformin monotherapy, while insulin and sulfonylurea increased weight when compared with the other classes. GLP- 1 analogues and insulins increased the number of adverse events and withdrawals. Sulfonylurea and insulins increased non-severe hypoglycemia when compared to metformin monotherapy and other classes. However basal insulin was associated with fewer non- severe hypoglycemia events when compared to sulfonylurea. Urinary tract infections were possibly increased with SLGT-2 when compared to metformin monotherapy and DPP-4. In high risk patients, SGLT-2 were possibly associated with a reduction in all-cause mortality when compared to placebo and to DPP-4 analogues, and SGLT-2 were not associated with severe hypoglycemia events. This review offers a set of analyses to assess and interpret multiple second line medicines used to treat T2D and to understand the relative merits of these multiple interventions. Compared with conventional pairwise meta-analysis, network meta-analysis has advantages: the technique borrows strength from indirect evidence to gain certainty about all treatment comparisons, including comparisons of estimated effects that have not been investigated head to head in randomized clinical trials. 2. 2. Name of relevant WHO department and focal point Management of Noncommunicable Diseases of the Department for Management of Noncommunicable Diseases, Disability, Violence and Injury Prevention Essential Medicines and Health Products Department 3. Name of the organization(s) consulted and/or supporting the application Report Authors: 1,2George A. Wells, Shannon Kelly, Amy Johnston, Shuching Hsieh, Jesse Elliott, Zemin Bai, Li Chen, Alomgir Hossain, Becky Skidmore Contributors: 3Bradley Mitchelmore, Sumeet Singh, Mohammed Jabr, Hongbo Yuan, Melissa Severn, Brendan McIntosh, Karen Lee, Brent Fraser Clinical experts: 4Julia Lowe, 5Marshall Dahl 1. Methods and Applications Group for Indirect Treatment Comparisons (MAGIC), Ottawa, Canada. Sponsored by the Canadian Institutes for Health Research, Drug Safety and Effectiveness Program (CIHR-DSEN). 2. Cardiovascular Research Methods Centre, University of Ottawa Heart Institute, Ottawa, Ontario. 3. CADTH, Ottawa, Canada. 4. Sunnybrook Hospital, University of Toronto, Toronto, Ontario. 5. University of British Columbia, Vancouver Hospital, Vancouver, British Columbia. 6. University of Calgary, Julia McFarlane Diabetes Research Centre, Calgary, Alberta. 4. International Non-proprietary Name (INN, generic name) and Anatomical Therapeutic Chemical (ATC) code of the medicine. This evaluation is based on the policy context currently prevailing in Canadian publicly funded drug programs for the reimbursement of drugs for T2D. Table 1: Oral medicines included in the application Drug Class INN Drug Name Anatomical DDD Therapeutic Chemical (ATC) codes DPP-4 Inhibitors Alogliptin A10BH04 25 mg Linagliptin A10BH05 5 mg Saxagliptin A10BH03 5 mg Sitagliptin A10BH01 100 mg SGLT-2 Inhibitors Canagliflozin A10BK02 200 mg Dapagliflozin A10BK01 10 mg Empagliflozina A10BK03 17.5 mg Sulfonylureas Chlorpropamide A10BB02 375 mg Gliclazideb A10BB02 160 mg 60 mg Glimepiride b A10BB12 2 mg Glyburide b A10BB04 10 mg Tolbutamide A10BB03 1,500 mg 30 mg TZDs Pioglitazone A10BG03 Rosiglitazone 6 mg A10BG02 360 mg Meglitinides Nateglinide A10BX03 Repaglinide 4 mg A10BX02 Acarbose 300 mg AGIs A10BF01 DPP-4 Alogliptin/metformin A10BD13 25 mg Inhibitors/Biguanides Linagliptin/metformin A10BD19 5 mg Saxagliptin/metformin A10BD21 5 mg Sitagliptin/metformin A10BD07 100 mg SGLT-2 Dapagliflozin/metformin A10BD15 10 mg Inhibitors/Biguanides Empagliflozin/metformin A10BD20 17.5 mg Canagliflozin/metforminc A10BD16 200 mg a Not included in Therapeutic Choices. b Generic products also available. c Pre-Notice of Compliance CADTH Common Drug Review submission received on February 3, 2016 (https://www.cadth.ca/canagliflozin-and-metformin-hydrochloride). Notes: Table adapted from Table 8 in Endocrine and Metabolic Disorders: Diabetes Mellitus Chapter of Therapeutic Choices. Canadian Pharmacists Association, 2015. All rights reserved. Source: https://www.e- therapeutics.ca/tc.showChapter.action?documentId=c0079#tablc0079n00043. Accessed: July 29, 2015.Other information sources include Product Monograph available from the Health Canada Drug Product Database (http://www.hc-sc.gc.ca/dhp- mps/prodpharma/databasdon/index-eng.php) as well as CADTH 2013 (Updated) Optimal Use Reports on the optimal use of second- and third line therapies for type 2 diabetes mellitus (https://www.cadth.ca/second-third-line-therapies-type-2-diabetes). Table 2: Injectable medicines: GLP-1 Analogues, Insulin and Insulin Analogues GLP-1 Analogue Products Anatomical Therapeutic DDD Chemical (ATC) codes Dulaglutide A10BJ05 0.16 mg Exenatide A10BJ01 15 ug Exenatide extended-release A10BJ01 15 ug Liraglutide A10BJ02 1.2 mg Albiglutide A10BJ04 5.7 mg Insulin and Insulin Insulin and Insulin DDD Analogue Productsa Analogue Types Insulin aspart Very rapid-acting A10AB05 insulin analogue Insulin glulisine Very rapid-acting A10AB06 insulin analogue Insulin lispro Very rapid-acting A10AB04 insulin analogue Insulin, regular Rapid-acting insulin A10AB01 Insulin, pork Rapid-acting insulin A10AB03 Insulin, NPH Intermediate-acting A10AC01 insulin Insulin, pork Intermediate-acting A10AC03 40 U insulin Insulin detemir Long-acting insulin A10AE05 analogue Insulin glargine Long-acting insulin A10AE04 analogue Insulin regular/insulin, Mixed (regular/NPH) A10AD01 NPH human insulin Insulin lispro/lispro Mixed insulin A10AD04 protamine analogue Insulin aspart/aspart Mixed insulin A10AD05 protamine analogue DDD = World Health
Recommended publications
  • Computationally Guided Design of Dipeptidyl Peptidase-4 Inhibitors Lauren C
    bioRxiv preprint doi: https://doi.org/10.1101/772137; this version posted September 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Computationally Guided Design of Dipeptidyl Peptidase-4 Inhibitors Lauren C. Reynolds1, Morgan P. Connolly2,3, Justin B. Siegel1,2,4* 1. Department of Chemistry, University of California Davis, Davis, California, United States of America 2. Genome Center, University of California Davis, Davis, California, United States of America 3. Microbiology Graduate Group, University of California Davis, Davis, California, United States of America 4. Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, California, United States of America ABSTRACT: The Type 2 Diabetes Mellitus (T2DM) epidemic undoubtedly creates a need for the development of new phar- maceuticals. With the goal of generating new therapeutics for this disease, computational studies were conducted to design novel dipeptidyl peptidase-4 (DPP-4) inhibitors. Two candidates, generated by chemical intuition-driven design and bioiso- steric replacement, were found to have better docking scores than anagliptin, a currently available diabetes medication. INTRODUCTION debate in recent years for other gliptins as well. A recent Type 2 Diabetes Mellitus (T2DM) is dubbed the meta-analysis seems to suggest a possible increased pan- “epidemic of the 21st century”— affecting millions of pa- creatitis risk for sitagliptin
    [Show full text]
  • Does Addition of Vildagliptin to Metformin Monotherapy Improve Glycemic Control in Patients with Type 2 Diabetes Mellitus?
    PRACTICE pOINT www.nature.com/clinicalpractice/endmet Does addition of vildagliptin to metformin monotherapy improve glycemic control in patients with type 2 diabetes mellitus? Original article Bosi E et al. (2007) Effects of vildagliptin on OUTCOME MEASURES glucose control over 24 weeks in patients with type 2 diabetes The primary outcome measure was the change inadequately controlled with metformin. Diabetes Care 30: 890–895 in HbA1c level from baseline to study end. Secondary outcome measures included FPG SYNOPSIS levels, lipid profiles, β-cell function, and the KEYWORDS dipeptidyl peptidase 4 inhibitor, incidence and severity of adverse events. glycemic control, HbA1c, type 2 diabetes mellitus, vildagliptin RESULTS BACKGROUND The 50 mg vildagliptin, 100 mg vildagliptin Metformin is frequently prescribed as the and placebo groups comprised 177, 185, and first-line treatment for type 2 diabetes mellitus 182 patients, respectively. Participants were (T2DM); however, additional antidiabetic agents predominantly white and obese, with a mean might be required when glycemic control is age of 54 years. The mean duration of T2DM poor. was 6.2 years, the mean duration of metformin monotherapy was 17 months, and the mean OBJECTIVE metformin dose was 2,100 mg daily. The study To assess the efficacy and safety of the dipeptidyl was completed by >83% of patients in each peptidase 4 (DPP4) inhibitor vildagliptin as group. The mean baseline HbA1c level was 8.4% an add-on to metformin monotherapy. and the mean baseline FPG level was 9.9 mmol/l. Treatment with vildagliptin improved both of DESIGN AND INTERVENTION these parameters. The between-treatment This was a 24-week, multicenter, double- difference (vildagliptin minus placebo) in HbA1c blind, placebo-controlled, randomized study at study end was –0.7% and –1.1% with 50 mg of patients with T2DM inadequately controlled and 100 mg vildagliptin, respectively (P <0.001 with metformin monotherapy.
    [Show full text]
  • Galvus Data Sheet
    1 NEW ZEALAND DATA SHEET 1 GALVUS (50 mg tablets) 2 QUALITATIVE AND QUANTITATIVE COMPOSITION Vildagliptin: 1-[(3-Hydroxy-adamant-1-ylamino)-acetyl]-pyrrolidine-2(S)-carbonitrile. One tablet of Galvus® contains 50 mg of vildagliptin. For the full list of excipients, see section 6.1. 3 PHARMACEUTICAL FORM Galvus 50 mg: white to light yellowish, round (8 mm diameter) flat faced with beveled edges, unscored tablet. One side is debossed with "NVR", and the other side with "FB". 4 CLINICAL PARTICULARS 4.1 Therapeutic indications Galvus is indicated as an adjunct to diet and exercise to improve glycaemic control in patients with type 2 diabetes mellitus. • as monotherapy. • in dual combination with metformin, a sulphonylurea (SU), or a thiazolidinedione (TZD) when diet, exercise and a single antidiabetic agent do not result in adequate glycaemic control. • In triple combination with a sulphonylurea and metformin when diet and exercise plus dual therapy with these agents do not provide adequate glycaemic control. • In combination with insulin (with or without metformin) when diet, exercise and a stable dose of insulin do not result in adequate glycaemic control. 4.2 Dosage and method of administration Dose The management of antidiabetic therapy should be individualized. The recommended dose of Galvus is 50 mg once or twice daily. The maximum daily dose of Galvus is 100 mg. For monotherapy, and for combination with metformin, with a TZD or with insulin (with or without metformin), the recommended dose of Galvus is 50 mg or 100 mg daily. When used in dual combination with a sulphonylurea, the recommended dose of vildagliptin is 50 mg once daily.
    [Show full text]
  • 200 Adverse Drug Reactions in a Southern Hospital in Taiwan 201
    200 Adverse Drug Reactions in a southern hospital in Taiwan Yuhong Lin1 1Kaohsiung Veterans General Hospital Tainan Branch, Tainan City, Taiwan Objective: The aim of this study was to evaluate the adverse drug reactions (ADRs) reporting in a southern hospital in Taiwan. Methods: It was a retrospective study of ADRs reporting in 2016. We analysed ADRs which contain gender and age, occurring sources, Anatomical Therapeutic Chemical (ATC) classification of suspected drugs, management of ADRs and so on. Results: The study collected eighty-nine ADRs reported. Most of ADRs reported were occurring in outpatient department (87.6%). The average age of ADRs reported was 67.6 years. Majority of all ADRs reported were females (55.1%). According to ATC classification system, the major classification of suspected drugs were Sensory organs (32.6%). Among the adverse reactions, Dermatologic Effects (37.1%) were the major type of ADRs. Also, the major management of ADRs was to stop using the current suspected drug (46.1%). Conclusion: Certainly, ADRs reporting are still a very important information to healthcare professionals. As a result, we put all information of ADRs reported into medical system in our hospital and it will improve the safety of medication use. In case of prescribe the suspected medicines, it can remind doctor to think of information about patient's ADRs reported. No drugs is administered without risk. Therefore, all healthcare professionals should have a responsibility to their patients, who themselves are becoming more aware of problems
    [Show full text]
  • CDR Clinical Review Report for Soliqua
    CADTH COMMON DRUG REVIEW Clinical Review Report Insulin glargine and lixisenatide injection (Soliqua) (Sanofi-Aventis) Indication: adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus inadequately controlled on basal insulin (less than 60 units daily) alone or in combination with metformin. Service Line: CADTH Common Drug Review Version: Final (with redactions) Publication Date: January 2019 Report Length: 118 Pages Disclaimer: The information in this document is intended to help Canadian health care decision-makers, health care professionals, health systems leaders, and policy-makers make well-informed decisions and thereby improve the quality of health care services. While patients and others may access this document, the document is made available for informational purposes only and no representations or warranties are made with respect to its fitness for any particular purpose. The information in this document should not be used as a substitute for professional medical advice or as a substitute for the application of clinical judgment in respect of the care of a particular patient or other professional judgment in any decision-making process. The Canadian Agency for Drugs and Technologies in Health (CADTH) does not endorse any information, drugs, therapies, treatments, products, processes, or services. While care has been taken to ensure that the information prepared by CADTH in this document is accurate, complete, and up-to-date as at the applicable date the material was first published by CADTH, CADTH does not make any guarantees to that effect. CADTH does not guarantee and is not responsible for the quality, currency, propriety, accuracy, or reasonableness of any statements, information, or conclusions contained in any third-party materials used in preparing this document.
    [Show full text]
  • Vildagliptin/Metformin Hydrochloride Novartis, INN-Vildagliptin/Metformin
    European Medicines Agency Evaluation of Medicines for Human Use Doc.Ref.: EMEA/CHMP/656453/2008 ASSESSMENT REPORT FOR Vildagliptin/metformin hydrochloride Novartis International Nonproprietary Name: vildagliptin / metformin hydrochloride Procedure No. EMEA/H/C/001050 Assessment Report as adopted by the CHMP with all information of a commercially confidential nature deleted. 7 Westferry Circus, Canary Wharf, London, E14 4HB, UK Tel. (44-20) 74 18 84 00 Fax (44-20) 74 18 84 16 E-mail: [email protected] http://www.emea.europa.eu © European Medicines Agency, 2008. Reproduction is authorised provided the source is acknowledged TABLE OF CONTENTS 1. BACKGROUND INFORMATION ON THE PROCEDURE........................................... 3 1.1 Submission of the dossier ........................................................................................................ 3 1.2 Steps taken for the assessment of the product.......................................................................... 3 2. SCIENTIFIC DISCUSSION................................................................................................. 4 2.1 Introduction.............................................................................................................................. 4 2.2 Quality aspects......................................................................................................................... 4 2.3 Non-clinical aspects................................................................................................................. 4 2.4 Clinical
    [Show full text]
  • Antidiabetic Drugs in NAFLD: the Accomplishment of Two Goals at Once?
    pharmaceuticals Review Antidiabetic Drugs in NAFLD: The Accomplishment of Two Goals at Once? Matteo Tacelli , Ciro Celsa , Bianca Magro, Aurora Giannetti, Grazia Pennisi, Federica Spatola and Salvatore Petta * Sezione di Gastroenterologia e Epatologia, DiBiMIS, University of Palermo, 90127 Palermo, Italy; [email protected] (M.T.); [email protected] (C.C.); [email protected] (B.M.); [email protected] (A.G.); [email protected] (G.P.); [email protected] (F.S.) * Correspondence: [email protected], Tel.: +39-091-655-2170; Fax: +39-091-655-2156 Received: 17 October 2018; Accepted: 3 November 2018; Published: 8 November 2018 Abstract: Non-Alcoholic Fatty Liver Disease (NAFLD) is the most common cause of chronic liver disease in Western countries, accounting for 20–30% of general population and reaching a prevalence of 55% in patients with type 2 diabetes mellitus (T2DM). Insulin resistance plays a key role in pathogenic mechanisms of NAFLD. Many drugs have been tested but no medications have yet been approved. Antidiabetic drugs could have a role in the progression reduction of the disease. The aim of this review is to summarize evidence on efficacy and safety of antidiabetic drugs in patients with NAFLD. Metformin, a biguanide, is the most frequently used drug in the treatment of T2DM. To date 15 randomized controlled trials (RCTs) and four meta-analysis on the use of metformin in NAFLD are available. No significant improvement in histological liver fibrosis was shown, but it can be useful in the treatment of co-factors of NAFLD, like body weight, transaminase or cholesterol levels, and HbA1c levels.
    [Show full text]
  • Comparison of Clinical Outcomes and Adverse Events Associated with Glucose-Lowering Drugs in Patients with Type 2 Diabetes: a Meta-Analysis
    Online Supplementary Content Palmer SC, Mavridis D, Nicolucci A, et al. Comparison of clinical outcomes and adverse events associated with glucose-lowering drugs in patients with type 2 diabetes: a meta-analysis. JAMA. doi:10.1001/jama.2016.9400. eMethods. Summary of Statistical Analysis eTable 1. Search Strategies eTable 2. Description of Included Clinical Trials Evaluating Drug Classes Given as Monotherapy eTable 3. Description of Included Clinical Trials Evaluating Drug Classes Given as Dual Therapy Added to Metformin eTable 4. Description of Included Clinical Trials Evaluating Drug Classes Given as Triple Therapy When Added to Metformin Plus Sulfonylurea eTable 5. Risks of Bias in Clinical Trials Evaluating Drug Classes Given as Monotherapy eTable 6. Risks of Bias in Clinical Trials Evaluating Drug Classes Given as Dual Therapy Added to Metformin eTable 7. Risks of Bias in Clinical Trials Evaluating Drug Classes Given as Triple Therapy When Added to Metformin plus Sulfonylurea eTable 8. Estimated Global Inconsistency in Networks of Outcomes eTable 9. Estimated Heterogeneity in Networks eTable 10. Definitions of Treatment Failure Outcome eTable 11. Contributions of Direct Evidence to the Networks of Treatments eTable 12. Network Meta-analysis Estimates of Comparative Treatment Associations for Drug Classes Given as Monotherapy eTable 13. Network Meta-analysis Estimates of Comparative Treatment Associations for Drug Classes When Used in Dual Therapy (in Addition to Metformin) eTable 14. Network Meta-analysis Estimates of Comparative Treatment Effects for Drug Classes Given as Triple Therapy eTable 15. Meta-regression Analyses for Drug Classes Given as Monotherapy (Compared With Metformin) eTable 16. Subgroup Analyses of Individual Sulfonylurea Drugs (as Monotherapy) on Hypoglycemia eTable 17.
    [Show full text]
  • Estimation of Anagliptin and Metformin HCI in Bulk
    AEGAEUM JOURNAL ISSN NO: 0776-3808 “ESTIMATION OF ANAGLIPTIN AND METFORMIN HCl IN BULK & PHARMACEUTICAL DOSAGE FORM USING STABILITY INDICATING HIGH PERFORMANCE LIQUID CHROMATOGRAPHY” Ruchi H. Majithia*1 & Dr. Akruti Khodadiya2 *Assistant Professor, SAL Institute of Pharmacy, Ahmedabad, Gujarat- 380060 1Research Scholar, C. U. Shah College of Pharmacy and Research, Gujarat- 363030 1Mail ID: [email protected] 1Mobile No: +91-8155921801 2Associate Professor, C.U. Shah University, Wadhwan city, Gujarat- 363030 2Mail ID: [email protected] *Corresponding author Volume 8, Issue 7, 2020 http://aegaeum.com/ Page No: 46 AEGAEUM JOURNAL ISSN NO: 0776-3808 ABSTRACT: A simple, accurate and precise stability indicating high performance liquid chromatography was developed and validated for estimation of Anagliptin and Metformin HCl in bulk and pharmaceutical dosage form. The mobile phase Potassium Dihydrogen Phosphate Buffer (pH 2.7): Acetonitrile solution in the ratio of (15:85% V/V) at detection wavelength 243 nm for Anagliptin and Metformin and flow rate 2 mL/min and the retention time for Anagliptin and Metformin HCl was found to be 11.23 and 6.02 respectively. The method was linear over the concentration ranges 10-60 μg/mL for Anagliptin and 25-150 μg/mL for Metformin. The LOD was 1.158 μg/mL for Anagliptin and 2.344 μg/mL for Metformin. The LOQ was 3.508 μg/mL for Anagliptin and 7.102 μg/mL for Metformin. During stress conditions, ANA degraded significantly under acidic, alkaline, oxidative and thermal stress conditions; degraded moderately under photolytic stress conditions; and showed negligible degradation under elevated temperature and humidity conditions.
    [Show full text]
  • Dipeptidyl Peptidase-4 Inhibitor Switching
    abetes & Di M f e t o a Tanaka et al., J Diabetes Metab 2016, 7:9 l b a o n l r i DOI: 10.4172/2155-6156.1000701 s u m o J Journal of Diabetes & Metabolism ISSN: 2155-6156 Research Article Open Access Dipeptidyl Peptidase-4 Inhibitor Switching as an Alternative Add-on Therapy to Current Strategies Recommended by Guidelines: Analysis of a Retrospective Cohort of Type 2 Diabetic Patients Masami Tanaka*, Takeshi Nishimura, Risa Sekioka and Hiroshi Itoh Department of Internal Medicine, School of Medicine, Keio University 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan Abstract Objective: This retrospective cohort study aimed to investigate the significance of dipeptidyl peptidase-4 (DPP- 4) inhibitor switch therapy, which is currently not recommended by major diabetes guidelines. Methods: The subjects were 238 outpatients with type 2 diabetes who had been prescribed sitagliptin 50 mg daily, which was subsequently changed in one of three ways. Patients whose sitagliptin was switched to vildagliptin 50 mg twice daily were defined as the switched group. Patients whose sitagliptin was increased to 100 mg once daily were defined as the increased group. Patients who received an additional alfa-glucosidase inhibitor (α-GI) three times daily prior to meals and sitagliptin 50 mg once daily were defined as the added group. The primary endpoint was the glycated hemoglobin (HbA1c) value at 6 months after the medication change. Patients whose oral hypoglycemic agents were changed within 6 months after switching to vildagliptin, increasing sitagliptin, or adding α-GI were excluded from the full analysis set and the remaining patients were included in the per protocol analysis.
    [Show full text]
  • Eucreas, INN-Vildagliptin / Metformin Hydrochloride
    SCIENTIFIC DISCUSSION 1. Introduction The pathophysiology of Type 2 diabetes mellitus (T2DM) is characterised by deficient insulin activity arising from decreased insulin secretion secondary to beta cell failure, and/or compromised insulin action in peripheral target tissues (insulin resistance). This abnormal metabolic state is exacerbated by excess hepatic glucose production and altered metabolism of proteins and lipids, which along with hyperglycaemia, contribute to microvascular and macrovascular complications. T2DM accounts for approximately 85% to 95% of diabetes cases in developed regions like the European Union. Age and weight are established risk factors for T2DM. The majority of patients with T2DM are overweight or obese. Diet modification and exercise is the first line of treatment for T2DM. Pharmacologic intervention with one oral antidiabetic drug (OAD) is usually the next step in treatment. After 3 to 9 years of OAD monotherapy, patients typically require an additional intervention. The recommended first line treatment is metformin, which restrains hepatic glucose production and decreases peripheral insulin resistance. Sulphonylureas, which are insulin secretagogues, may be used as an alternative to patients intolerant to metformin, or as an addition to metformin. Other second line oral treatment alternatives include alpha-glucosidase inhibitors, meglitinides and thiazolidinediones. Recently the first GLP-1 analogue, exenatide, and the first DPP-4 inhibitors, sitagliptin and vildagliptin, were approved by the CHMP. Vildagliptin belongs to a new class of oral anti-diabetic drugs and is a selective and reversible inhibitor of Dipeptidyl peptidase 4 (DPP-4), the enzyme which inactivates the incretin hormones, glucagon-like peptide-1 (GLP-1), and glucose-dependent insulinotropic polypeptide (GIP), hormones which significantly contribute to the maintenance of glucose homeostasis.
    [Show full text]
  • Combination Use of Insulin and Incretins in Type 2 Diabetes
    Canadian Agency for Agence canadienne Drugs and Technologies des médicaments et des in Health technologies de la santé CADTH Optimal Use Report Volume 3, Issue 1C Combination Use of Insulin and July 2013 Incretins in Type 2 Diabetes Supporting Informed Decisions This report is prepared by the Canadian Agency for Drugs and Technologies in Health (CADTH). The report contains a comprehensive review of the existing public literature, studies, materials, and other information and documentation (collectively the “source documentation”) available to CADTH at the time of report preparation. The information in this report is intended to help Canadian health care decision-makers, health care professionals, health systems leaders, and policy-makers make well-informed decisions and thereby improve the quality of health care services. The information in this report should not be used as a substitute for the application of clinical judgment in respect of the care of a particular patient or other professional judgment in any decision-making process, nor is it intended to replace professional medical advice. While CADTH has taken care in the preparation of this document to ensure that its contents are accurate, complete, and up to date as of the date of publication, CADTH does not make any guarantee to that effect. CADTH is not responsible for the quality, currency, propriety, accuracy, or reasonableness of any statements, information, or conclusions contained in the source documentation. CADTH is not responsible for any errors or omissions or injury, loss, or damage arising from or relating to the use (or misuse) of any information, statements, or conclusions contained in or implied by the information in this document or in any of the source documentation.
    [Show full text]