University of Cincinnati
Total Page:16
File Type:pdf, Size:1020Kb
UNIVERSITY OF CINCINNATI DATE: November 25 2003 I, SREERAM APPASAMY , hereby submit this as part of the requirements for the degree of: MASTER OF SCIENCE in: ELECTRICAL ENGINEERING It is entitled: DEVELOPMENT OF HIGH THROUGHPUT PLASTIC MICROLENSES USING A REPLACEABLE INJECTION MOLD DISK Approved by: Dr. Chong H. Ahn Dr. Joseph T. Boyd Dr. Joseph H. Nevin DEVELOPMENT OF HIGH THROUGHPUT PLASTIC MICROLENSES USING A REPLACEABLE INJECTION MOLD DISK A thesis submitted to the Division of Research and Advanced Studies of the University of Cincinnati in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in the department of Electrical and Computer engineering and Computer Science of the College of Engineering 2003 by Sreeram Appasamy B.E, Madras University, India 2000 Committee Chair: Dr.Chong H. Ahn ABSTRACT The objective of this work is to develop plastic microlenses using high throughput injection molding techniques. In this work, plastic microlenses have been designed, fabricated and characterized for future applications in optical communications and biochemical chip detection systems. Microlenses, that have wide ranging applications in image processing, displays, communications and biochemical detection have been researched for the past two decades. Various fabrication techniques have been developed using a wide range of materials. Plastic as a material for fabricating microlenses has been investigated in recent years. Soft lithography and hot embossing are examples of two of the techniques that have been used to fabricate plastic microlenses. The primary reason for using plastics as the material is their potential for high volume replication at a very low cost. However, a suitable technique for high volume fabrication of plastic microlenses has not been optimized yet. This work has successfully implemented a fabrication technique that enables high volume replication of plastic microlenses using injection molding techniques. A replaceable injection mold disk was fabricated using metal electroforming. The initial microlens mold was realized using the photoresist reflow technique. The fabricated mold disk was used as the master mold for the injection molding process. The microlenses were fabricated using two new plastics, COC and Poly IR 2 that have excellent optical transparency in the visible and infrared wavelength regions respectively. The plastic microlenses were characterized in terms of their focal lengths and surface roughness. i The plastic microlenses developed in this work hold lot of promise for numerous applications in optical communications and biochemical detection. ii ACKNOWLEDGEMENTS At the outset, I would like to thank the Almighty for giving me the strength and perseverance to successfully complete my graduate degree. Dr.Chong Ahn, my advisor, is the primary reason why I have been able to successfully finish my master‘s degree. His vision and energy are qualities that have kept me going and I have been extremely lucky to have his immense guidance during my study. He has not only guided me through my master‘s thesis, but also helped mould me into a better person than what I was. He has a great sense of humor to go with his other qualities and there have been several instances where he has broken a tense situation in meetings with his humor. I would consider it an achievement if I imbibe even a small percent of his wonderful attributes. It‘s been a huge learning experience working with him and I am sure it will help me throughout my life. I would also like to convey my deep gratitude to Jeff Simkins who has helped me throughout my work and I don‘t know if I can meet a kinder and more helpful person in the future. Robert Cole has been a great friend and guide and his friendship is something I will always remember. Ram, my former roommate, has been a good friend and has always come out with excellent suggestions to aid my work. The people whom I have to thank most are my labmates who had made working at the BioMEMS lab such a pleasure and I would treasure the memories forever. My sincere thanks to Chuan, Sehwaan, Xiaoshan, Hyoung Jin, Anirudhha, Sukirti, Kai, Red, JungYoup, Yasser, Jaephil, Rong, Chunyan, Alok, and Phalgun. They all have their own iii unique sense of humour, particularly Chuan, Hyoung Jin, Anirudhha and Yasser, and it‘s been a total privilege to work among such friends. I will never forget the picnics; the soccer and great food particularly. I really really wish everyone attains great success and prosperity in their careers and personal lives. I would also like to acknowledge Dr.Choi and Dr.Kim for their guidance and advice. I would like to especially acknowledge W eizhuo Li for working with me in setting up the optical system . I would also like to thank Dr.Joseph Boyd for allowing me use his laboratory and also being kind enough to help me with his suggestions and ideas. I would also like to extend my thanks to Ron Flenikken and Don Dotson for helping me with various things during the course of study. On the personal front, I would start of by thanking my parents whose contributions I really don‘t need to emphasize and also my brother who is also currently at the University of Cincinnati. I would also express my gratitude to my close friends Ismail Raja, Arun and Kumar for being such great friends. My special thanks to Priya and Mala, who have been my closest friends and will always be for their love and friendship. There have been so many others who have put their own memorable imprints on my life and I thank all those for their love, friendship and support. iv TABLE OF CONTENTS Abstract… … … … … … … … … … … … … … … … … … … … … … … … … .. i Acknowledgements… … … … … … … … … … … … … … … … … … … … … iii List of Figures… … … … … … … … … … … … … … … … … … … … … … .....3 List of Tables… … … … … … … … … … … … … … … … … … … … .… … .… 6 Chapter1: Introduction 1.1: MEMS Technology… … … … … … … … … … … … … … … … … … … ..… … ..7 1.2: Motivation for this work… … … … … … … … … … … … … … … … … … … … 8 Chapter 2: Background 2.1: Introduction… … … … … … … … … … … … … … … … … … … … … … … … … 10 2.2: Evolving fabrication techniques… … … … … … … … … … … … … ..… … … .. .11 2.3: Applications of microlenses… … … … … … … … … … … … … ..… … … … … 16 2.4: Microlenses for µTAS… … … … … … … … … … … … … … … … … … … … … .18 2.5: Conclusions… … … … … … … … … … … … … … … … … … … ...… … … .… … 20 Chapter 3: Fabrication of the Replaceable Injection M old Disk 3.1: Introduction… … … … … … … … … … … … … … … … … … … … … .… … … … 21 3.2 Photolithography and reflow to form microlenses… … … … … … … … … ..… 21 3.2.1 Melting on a hot plate… … … … … … … … … … … … … … … … … … … … 21 3.2.2 Melting using an oven… … … … … … … … … … … … … … … … … … .… ..25 3.3: Electroforming to fabricate the replaceable injection mold disk… … … ..… ..27 3.3.1 Electroforming … … … … … … … … .… … … … … … … … … .… … ..… ..27 3.3.2 Nickel electroforming… … … … … … … … … ..… … … ..… … … … … … 29 3.4 Conclusions… … … … … … … … … … … … … … … … … … .… … … … … … … .34 1 Chapter 4: M icrofabrication of Plastic M icrolenses Using Injection M olding 4.1: Introduction… … … … … … … … … … … … … … ..… … … … … … … .… … … … 35 4.2 Injection molding… … … … … … … … … … … … … … … … .… … … … .… … … 36 4.3 Plastic microlenses fabricated on COC (Cyclo Olefin Copolymer)… … ..… … .38 . 4.4 Plastic microlenses fabricated on Poly IR 2… … … … … … … … … … .… .. … ...43 4.5 Conclusions… … … … … … … … … … … … … … … … … … … … … … ...… .… … 44 Chapter 5: Characterization of Plastic M icrolenses 5.1: Introduction… … … … … … … … … … … … … … … … … … … … … … … … … … 46 5.2 Plano convex lens… … … … … … … … … … … … … … … … … … … … … … … … 46 5.3 Focal length determined by surface profile of microlens… … … … … … .… … 47 5.4 Characterization of microlenses on COC… … … … … … … … … … … ..… .… … .50 5.4.1 Focal length and spot size measurement by observation of focal plane… … … … … … … … … … … … … … … … … … … … … … … .… .50 5.4.2 Focal length measurement by fiber-microlens-fiber power coupling… … … … … … … … … … … … .… … … … … … … … … … … … … … ..52 5.5 Characterization of microlenses on Poly IR2… … … … … … … … … ...… … … ...58 5.6 Conclusions… … … … … … … … … ..… … … … … … … … .… … … … … … … … ...61 Chapter 6: Conclusions 6.1: Summary… … … … … … … … … … … … … … … … … … … … … … … … … … … .61 6.2 Future W ork… … … … … … … … … … … … … … … … … … … … … … … … … … .62 References… … … … … … … … … … … … … … … … … … … … … … … ..… ...64 2 LIST OF FIGURES Figure 2.1: Formation of graded index lens by ion diffusion through a metal mask. Figure 2.2: Microlens made by the photo thermal technique. Figure 2.3: Microlens fabricated on silicon. Figure 2.4: Fabrication of silicon microlens by bulk micromachining. Figure 2.5: Microlenses made on PMMA using proton irradiation. Figure 2.6: Schematic of use of microlens array to improve the efficiency of CCD array. Figure 2.7: Schematic of microlens application in beam steering using an afocal pair of microlenses. Figure 2.8: (a) Schematic of a µTAS chip using micro lens arrays for illumination and detection in parallel micro capillaries of a chemical chip. (b) A large NA microlens fabricated on a microfluidic chip to improve efficiency in a fluorescence detection system. Figure 3.1: SEM pictures of photoresist microlenses: (a) 500 µm diameter microlens array and (b) close up of a 600 µm diameter microlens. Figure 3.2: SEM pictures of photoresist microlenses: (a) 600 µm diameter microlens array and (b) 300 µm diameter microlens array. Figure 3.3: