Phylogenetic Relationships and Diversification Processes in Allium Subgenus Melanocrommyum

Total Page:16

File Type:pdf, Size:1020Kb

Phylogenetic Relationships and Diversification Processes in Allium Subgenus Melanocrommyum Phylogenetic relationships and diversification processes in Allium subgenus Melanocrommyum Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. Nat.) Vorgelegt der Naturwissenschaftlichen Fakultät I – Biowissenschaften – der Martin-Luther-Universität Halle-Wittenberg von Frau M. Sc Maia Gurushidze geb. am 11.09.1976 in Kvareli, Georgien Gutachter: 1. Prof. Dr. Martin Röser, MLU Halle-Wittenberg 2. Prof. Dr. Joachim W. Kadereit, Universität Mainz 3. Dr. Frank R. Blattner, IPK Gatersleben Halle (Saale), 19.05.2009 Nothing in biology makes sense except in the light of evolution T. Dobzhansky Everything makes a lot more sense in the light of phylogeny J. C. Avise Contents 1. Introduction 5 1.1. Why phylogeny matters 6 1.2. Plant species-level systematics 7 1.3 Phylogenetic inference 7 Distance methods 7 Maximum parsimony methods 8 Maximum likelihood and Bayesian methods 8 Bootstrap confidence for phylogenetic trees 9 Networks – genealogical methods 12 1.4 Molecular clock 13 Nonparametric rate smoothing (NPRS) 13 Penalized likelihood (PL) 13 1.5 Study group – Allium subgenus Melanocrommyum 14 Taxonomic history and systematics 14 Geographical distribution and ecology 17 Phylogenetic relationships within the subgenus 18 Karyology and ploidy level 19 2. Phylogenetic analysis of nuclear rDNA ITS sequences of the subgenus Melanocrommyum infers cryptic species and demands a new sectional classification 21 2.1 Introduction 21 2.2 Materials and methods 21 Plant Material 21 Anatomy of septal nectaries 22 Molecular methods 23 Data analyses 24 2.3 Results 25 Characteristics of the ITS region and phylogenetic analyses 25 RAPD analysis 30 Anatomy of septal nectaries 30 2.4 Discussion 31 Variation at the ITS locus 31 Divergent ITS types within species and individuals 32 RAPD analysis 33 ITS phylogeny and incongruence with taxonomic classification 33 Reasons for the molecular-taxonomical discordance 37 Nectary types 38 2.5 Conclusions 38 1 3. Species level phylogeny of the subgenus Melanocrommyum – phylogenetic and genealogical analyses of noncoding chloroplast DNA 39 3.1 Introduction 39 3.2 Materials and Methods 40 Taxon Sampling 40 Molecular Methods 41 Data analyses: phylogenetic inference and maximum parsimony network 41 3.3 Results 42 Sequence variation and inference of chloroplast haplotypes 42 TrnF duplication 45 Phylogenetic analyses 45 Statistical parsimony network 48 Phylogenetic and taxonomic relationships of chloroplast haplotypes 49 3.4 Discussion 50 Network construction and comparison of different analyses methods 50 Overall congruence with the nuclear rDNA ITS phylogeny 51 Phylogenetic implications, lineage sorting and hybridization 53 Reasons for current chloroplast haplotype distribution 54 TrnF duplication 54 4. Dating diversification events in the genus Allium and its subgenus Melanocrommyum is impeded by low rbcL and extremely high nrDNA ITS substitution rates 57 4.1 Introduction 57 4.2 Materials and Methods 60 Sampling 60 PCR and sequencing 60 Data sets and phylogenetic analyses 61 Estimation of divergence times 62 4.3 Results 63 Phylogenetic analyses of Allium rbcL sequences 63 Estimation of divergence times 65 4.4 Discussion 68 RbcL variation in Allium 68 The timing of diversification events in the genus Allium and subgenus Melanocrommyum 69 Biogeographic implications 71 2 5. Genome size variation and evolution in the subgenus Melanocrommyum 73 5.1 Introduction 73 5.2 Materials and Methods 75 Plant material 75 Nuclear Genome size Estimation 75 Chromosome numbers 76 Data analyses 80 5.3 Results 81 Genome size correlation with phylogenetic clades 81 Genome size variation 84 Ancestral genome size estimation and genome size evolution 84 5.4 Discussion 85 Genome size variation within the subgenus Melanocrommyum 85 Taxonomic relevance of genome size variation 85 Genome size changes in relation to phylogeny 86 6. Summary 89 6.1 Phylogeny and diversification of the subgenus Melanocrommyum 89 6.2 Eurasian – North American disjunct distribution of Allium 90 6.3 Hybrids versus cryptic species 90 6.4 Reticulations within the subgenus Melanocrommyum 91 6.5 Advantages of network-based methods over bifurcating phylogenies 91 6.6 Genome size and Phylogeny 92 Abstract 93 Zusammenfassung 95 Literature cited 99 Abbreviations, Figure legends and Table captions 115 Acknowledgments 119 Curriculum Vitae 121 Eigenständigkeitserklärung 125 Appendices 127 3 4 Introduction 1. Introduction 1.1 Why phylogeny matters Phylogenetic analyses of DNA or protein sequences have become an important tool for studying the evolutionary history of organisms from bacteria to humans. Since the rate of sequence evolution varies extensively with gene or DNA sequences one can study the evolutionary relationships at virtually all hierarchical levels (e.g., kingdoms, phyla, families, genera, species, and intraspecific classifications) by using different genes or DNA segments (Nei and Kumar 2000). The important realization that comparisons of species or gene sequences in a phylogenetic context can provide meaningful insights into different fields of plant biology, including ecology, molecular biology, and physiology, has been illustrated in several reviews (Soltis and Soltis 2000, 2003; Hall et al. 2002; Doyle et al. 2003). Studies of the rate of evolutionary change as well as estimation of the age of diversification pattern of lineages depend directly on knowledge of phylogenetic relationships (Magallon and Sanderson 2001). The phylogenetic analyses of angiosperms have resulted in their reclassification (APG 1998, APGII 2003). This ordinal-level reclassification is perhaps the most dramatic and important change in higher-level angiosperm taxonomy in the past 200 years (Soltis and Soltis 2000). The more a classification reflects evolutionary history (phylogeny) the more useful it will be to point to taxa to look for important features. For example, taxol is a compound known only from the yew family (Taxaceae). If one wishes to look for additional sources of taxol and other taxanes, rather than randomly sample the plant kingdom, one can focus on the nearest relatives as understood from a phylogenetic tree of the seed plants. This in turn leads to investigate the Podocarpaceae because the phylogenetic analyses indicated that this is the sister group to the yew family. Subsequently, taxanes have been reported also in the Podocarpaceae (Stahlhut et al. 1999). Indeed, phylogenies guide the search for plants of potential commercial importance. Revealing the closest relatives of crops could direct comparative studies and subsequent applications in plant breeding. For instance, Hordeum bulbosum, the sister species of cultivated barley (H. vulgare) has been widely used in breeding, namely in producing the completely homozygous double-haplotype lines of barley due to the fact that H. bulbosum chromosomes are completely eliminated from the H. vulgare × H. bulbosum hybrid (von Bothmer et. al. 1995). Besides, knowing the clear picture of phylogenetic relationships of the cultivated species can point to taxa that may serve as sources of novel traits for crops. The value of placing “model organisms” in the appropriate phylogenetic context is another aspect where phylogenies could help answering fundamental evolutionary questions. The most obvious example concerns the model plant Arabidopsis thaliana and its relatives, where phylogenetic studies revealed that the closest relatives of A. thaliana are the representatives of former genus Cardaminopsis (Koch et al. 2001; Clauss and Koch 2006). The accumulated knowledge in the function and evolution of genes that control responses to draught, pathogens, insects and other environmental challenges, as well as 5 Phylogeny of the subgenus Melanocrommyum knowledge about the genes involved in the evolution of breeding system can be transferred from the model organism to the closest relatives to study these long-standing evolutionary questions (Mitchell-Olds 2001; Mitchell-Olds et al. 2005). In addition, a phylogenetic framework has revealed the patterns of evolution of many morphological and chemical characters, including complex pathways such as nitrogen- fixing symbioses, chemical defense mechanisms and mustard oil production (for review see Soltis and Soltis 2000; Daly et al. 2001). For example, mustard oil glucosinolates are known to be produced in at least 15 different plant families. Before the advances in molecular phylogenetics, this biochemical pathway was thought to have arisen and been lost on multiple occasions. Molecular phylogenetic information, however, indicates that all mustard oil producing families with the exception of the genus Drypetes (a member of Malpighiales) are part of the same ordinal clade Brassicales, indicating only two evolutionary origins for mustard glucosinolates (Rodman et al. 1993). Moreover, these mustard oils are derived from two different biosynthetic pathways, thus showing that even though the final product may be the same, the ways they were synthesized are not; hence they are not homologous in an evolutionary sense (Daly et al. 2001). 1.2 Plant species-level systematics As noted above, plant systematics at the generic and higher levels has advanced greatly in the last decades (Chase et al. 1993; Savolainen et al. 2000; Soltis et al. 2000), and the phylogenetic tree of major angiosperm groups is perhaps “better known than any other equivalent group of organisms” (Barraclough and Reeves 2005). These phylogenies have been used to investigate patterns and processes causing
Recommended publications
  • Summary of Offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019
    Summary of offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019 3841 Number of items in BX 301 thru BX 463 1815 Number of unique text strings used as taxa 990 Taxa offered as bulbs 1056 Taxa offered as seeds 308 Number of genera This does not include the SXs. Top 20 Most Oft Listed: BULBS Times listed SEEDS Times listed Oxalis obtusa 53 Zephyranthes primulina 20 Oxalis flava 36 Rhodophiala bifida 14 Oxalis hirta 25 Habranthus tubispathus 13 Oxalis bowiei 22 Moraea villosa 13 Ferraria crispa 20 Veltheimia bracteata 13 Oxalis sp. 20 Clivia miniata 12 Oxalis purpurea 18 Zephyranthes drummondii 12 Lachenalia mutabilis 17 Zephyranthes reginae 11 Moraea sp. 17 Amaryllis belladonna 10 Amaryllis belladonna 14 Calochortus venustus 10 Oxalis luteola 14 Zephyranthes fosteri 10 Albuca sp. 13 Calochortus luteus 9 Moraea villosa 13 Crinum bulbispermum 9 Oxalis caprina 13 Habranthus robustus 9 Oxalis imbricata 12 Haemanthus albiflos 9 Oxalis namaquana 12 Nerine bowdenii 9 Oxalis engleriana 11 Cyclamen graecum 8 Oxalis melanosticta 'Ken Aslet'11 Fritillaria affinis 8 Moraea ciliata 10 Habranthus brachyandrus 8 Oxalis commutata 10 Zephyranthes 'Pink Beauty' 8 Summary of offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019 Most taxa specify to species level. 34 taxa were listed as Genus sp. for bulbs 23 taxa were listed as Genus sp. for seeds 141 taxa were listed with quoted 'Variety' Top 20 Most often listed Genera BULBS SEEDS Genus N items BXs Genus N items BXs Oxalis 450 64 Zephyranthes 202 35 Lachenalia 125 47 Calochortus 94 15 Moraea 99 31 Moraea
    [Show full text]
  • UPDATED 18Th February 2013
    7th February 2015 Welcome to my new seed trade list for 2014-15. 12, 13 and 14 in brackets indicates the harvesting year for the seed. Concerning seed quantity: as I don't have many plants of each species, seed quantity is limited in most cases. Therefore, for some species you may only get a few seeds. Many species are harvested in my garden. Others are surplus from trade and purchase. OUT: Means out of stock. Sometimes I sell surplus seed (if time allows), although this is unlikely this season. NB! Cultivars do not always come true. I offer them anyway, but no guarantees to what you will get! Botanical Name (year of harvest) NB! Traditional vegetables are at the end of the list with (mostly) common English names first. Acanthopanax henryi (14) Achillea sibirica (13) Aconitum lamarckii (12) Achyranthes aspera (14, 13) Adenophora khasiana (13) Adenophora triphylla (13) Agastache anisata (14,13)N Agastache anisata alba (13)N Agastache rugosa (Ex-Japan) (13) (two varieties) Agrostemma githago (13)1 Alcea rosea “Nigra” (13) Allium albidum (13) Allium altissimum (Persian Shallot) (14) Allium atroviolaceum (13) Allium beesianum (14,12) Allium brevistylum (14) Allium caeruleum (14)E Allium carinatum ssp. pulchellum (14) Allium carinatum ssp. pulchellum album (14)E Allium carolinianum (13)N Allium cernuum mix (14) E/N Allium cernuum “Dark Scape” (14)E Allium cernuum ‘Dwarf White” (14)E Allium cernuum ‘Pink Giant’ (14)N Allium cernuum x stellatum (14)E (received as cernuum , but it looks like a hybrid with stellatum, from SSE, OR KA A) Allium cernuum x stellatum (14)E (received as cernuum from a local garden centre) Allium clathratum (13) Allium crenulatum (13) Wild coll.
    [Show full text]
  • Seminum 2017 Tisk
    FRONT COVER: Campanula cochleariifolia Lam. SK-0-PLZEN-4260-98-20 (No. 75) Slovakia, Nízké Tatry Mts., Demänovská dolina, near hotel Repiská, calcareous rocks Photo: Jaroslav Vogeltanz INDEX SEMINUM 2017 PLZE Ň 2017 1 ZOOLOGICAL AND BOTANICAL GARDEN OF THE CITY PLZEN Pod Vinicemi 9, 301 00 Plzen Czech Republic Telephone: +420/378038301 Fax: +420/378038302 E-mail: [email protected] Area: 21,5 ha Geographical location: Latitude: 49 o 44’ N Longitude: 13 o23’ E Altitude: 330 m Annual average temperature: 7,4 oC Highest annual temperature: 40 o C Lowest annual temperature: - 27 oC Annual rainfall: 512 mm Director: Ing. Ji ří Trávní ček Curator of Botany: Ing. Tomáš Peš Seed collectors: Mgr. Václava Pešková, Radka Matulová, Petra Vonášková, Lenka Richterová, Hana Janouškovcová 2 Please notice: Complying with article 15 of the Convention on Biological Diversity (CBD, 1992), the Zoological and Botanical Garden of Plzen provides seeds and any other plant material only for botanical gardens and other scientific institutions using this materiál according to the CBD. We are part of the IPEN network (International Plant Exchange Network) and can exchange material with other IPEN-members without further bi-lateral agreements.For a list of gardens currently registered with IPEN and for additional information, please refer to the BGCI website. Non IPEN-members have to return the Agreement on the supply of living plant material for non-commercial purposes leaving the International Plant Exchange Network , which must be signed by authorized staff. The IPEN number given with the seed material consists of four elements: 1. The first two characters are the international iso 3166-1-alpha-2-code of the country of origin ("XX" for unknown origin) 2.
    [Show full text]
  • Index Seminum Et Sporarum Quae Hortus Botanicus Universitatis Biarmiensis Pro Mutua Commutatione Offert
    INDEX SEMINUM ET SPORARUM QUAE HORTUS BOTANICUS UNIVERSITATIS BIARMIENSIS PRO MUTUA COMMUTATIONE OFFERT ИК Е И , я ии ии . .Г. Гя и и ии , ия Biarmiae 2017 Federal State Budgetary Educational Institution of Higher Education «Perm State University», Botanic Garden ______________________________________________________________________________________ , ! 1922 . . .. – .. , .. , .. , . .. , . : , , . 2,7 . 7 500 , , , . . , . , - . . , . . , . , . 1583 . , , , , . , , (--, 1992). ... .. Ш Index Seminum 2017 2 Federal State Budgetary Educational Institution of Higher Education «Perm State University», Botanic Garden ______________________________________________________________________________________ Dear friends of the Botanic Gardens, Dear colleagues! The Botanic Garden of Perm State National Research University was founded in 1922 on the initiative of Professor A.H. Henckel and under his supervision. Many famous botanists: P.A. Sabinin, V.I. Baranov, P.A. Henckel, E.A. Pavskiy made a great contribution to the development of the biological science in the Urals. The Botanic Garden named after Prof. A.H. Henckel is a member of the Regional Council of Botanic Gardens in the Urals and has got a status of the scientific institution with protected territory. Some
    [Show full text]
  • Rubus Arcticus Ssp. Acaulis Is Also Appreciated
    Rubus arcticus L. ssp. acaulis (Michaux) Focke (dwarf raspberry): A Technical Conservation Assessment Prepared for the USDA Forest Service, Rocky Mountain Region, Species Conservation Project October 18, 2006 Juanita A. R. Ladyman, Ph.D. JnJ Associates LLC 6760 S. Kit Carson Cir E. Centennial, CO 80122 Peer Review Administered by Society for Conservation Biology Ladyman, J.A.R. (2006, October 18). Rubus arcticus L. ssp. acaulis (Michaux) Focke (dwarf raspberry): a technical conservation assessment. [Online]. USDA Forest Service, Rocky Mountain Region. Available: http:// www.fs.fed.us/r2/projects/scp/assessments/rubusarcticussspacaulis.pdf [date of access]. ACKNOWLEDGMENTS The time spent and help given by all the people and institutions mentioned in the reference section are gratefully acknowledged. I would also like to thank the Wyoming Natural Diversity Database, in particular Bonnie Heidel, and the Colorado Natural Heritage Program, in particular David Anderson, for their generosity in making their records available. The data provided by Lynn Black of the DAO Herbarium and National Vascular Plant Identification Service in Ontario, Marta Donovan and Jenifer Penny of the British Columbia Conservation Data Center, Jane Bowles of University of Western Ontario Herbarium, Dr. Kadri Karp of the Aianduse Instituut in Tartu, Greg Karow of the Bighorn National Forest, Cathy Seibert of the University of Montana Herbarium, Dr. Anita Cholewa of the University of Minnesota Herbarium, Dr. Debra Trock of the Michigan State University Herbarium, John Rintoul of the Alberta Natural Heritage Information Centre, and Prof. Ron Hartman and Joy Handley of the Rocky Mountain Herbarium at Laramie, were all very valuable in producing this assessment.
    [Show full text]
  • Biological Value and Morphological Traits of Pollen of Selected Garlic Species Allium L
    ACTA AGROBOTANICA Vol. 60 (1): 67 71 2007 BIOLOGICAL VALUE AND MORPHOLOGICAL TRAITS OF POLLEN OF SELECTED GARLIC SPECIES ALLIUM L. Beata Żuraw Department of Botany, Agricultural University, 20 950 Lublin, Akademicka str. 15 e mail: [email protected] Received: 20.04.2007 Summary (A. cernuum), violet (A. aflatunense) to purple (A. atro- This study was conducted in the years 1997 1999. From purpureum). Some species form blue (A. caeruleum) or the collection of the UMCS Botanical Garden, nine species of yellow flowers (A. moly, A. flavum). Most species are garlic were selected (A. aflatunense, A. atropurpureum, A. caeru- grown for cut flowers or as ornamentals on flower beds leum, A. cernuum, A. ledebourianum, A. lineare, A. sphaeroce- due to winter hardiness and low nutritional requirements phalon, A. victorialis, A. ursinum) and one subspecies (A. scoro- (K r z y m i ń s k a , 2003). Flower easily set seeds. Seeds doprasum subsp. jajlae). Pollen grain viability was evaluated on should be sown to the seed-bed in the autumn or directly microscopic slides stained with acetocarmine, germination abi to the soil in the spring (K amenetsky and Gutter- lity on the agar medium and measurements of grains were made m a n , 2000). The easiest way of propagation is the di- on glycerin jelly slides. The studied species were characterized vision of adventitious bulbs that should be set from the by high pollen viability (87 99%) what indicates the great value middle of September up to middle of November. of garlic flowers as a source of protein rich feed for honey bee Flowers of species from the genus L.
    [Show full text]
  • OCR Document
    Abelmoschus-Allium 1 Abelmoschus manihot white-yellow to 2m 110 69 Agastache pallidiflora ssp neomexicana lavender-pink 2 Abies koreana yellow dwarf 50 x 20cm 161 45-75cm 258 3 Acaena myriophylla greenish 15-25cm 106 70 rugosa rose/violet to 120cm 253 4 sericea purple fls/silver lvs 6-25cm 62 242 71 rugosa 'Golden Jubilee' blue-purple/chartreuse lvs 100cm 236 5 Acantholimon araxanum pink 15-20cm 243 72 rugosa 'Honey Bee Blue' blue 60-90cm 130 6 armenum pink/white 10-20cm 233 73 rugosa 'Liquorice Blue' deep blue 60-75cm 130 7 capitatum pink 4-18cm 242 74 rupestris pink-orange 60cm 205 8 halophilum light pink 5-10cm 233 75 rupestris 'Apache Sunset' dp orange/rose purple 45-60cm 149 9 hohenackeri pink 5-10cm 243 76 Ageratum houstonianum white 30-80cm 227 10 kotschyi pink 5-10cm 67 77 Agoseris glauca yellow 5-60cm 67 11 litvinovii pale pink 5-15cm 242 78 grandiflora yellow 25-60cm 227 12 saxifragiforme deep pink 5-10cm 6 79 Agrimonia pilosa v pilosa yellow 30-120cm 256 13 sp white 5cm 6 80 Akebia quinata 'Variegata' cream marbled lvs to 12m 259 14 sp ex Ala Dag pink 5cm 6 81 Albuca humilis white/green 15cm 140 15 venustum pink 10-15cm 233 82 shawii yellow 30-45cm > 16 Acanthus hungaricus pink/mauve to 1.5m 56 83 sp ex JCA 15856 white/green 15cm 105 17 Acer griseum to 12m 229 84 Alcea rosea mix 2-3m 34 18 palmatum 'Sango-kaku' 6-7.5m 198 85 rosea pink 2-3m 238 19 palmatum v dissectum 'Crimson Queen' to 3m 149 86 rosea 'Nigra' dark maroon 1.5-2m 34 20 Achillea clavennae white to 25cm 51 87 rosea spp ficifolia yellow/orange to 2.25m 34 21 millefolium
    [Show full text]
  • High Altitude Survival
    High altitude survival Conflicts between pastoralism andwildlif e in the Trans-Himalaya Charudutt Mishra CENTRALE LANDBOUWCATALOGUS 0000 0873 6775 Promotor Prof.Dr .H .H .T .Prin s Hoogleraar inhe tNatuurbehee r ind eTrope n enEcologi eva n Vertebraten Co-promotor : Dr.S .E .Va nWiere n Universitair Docent, Leerstoelgroep Natuurbeheer in de Tropen enEcologi eva nVertebrate n Promotie Prof.Dr .Ir .A .J .Va n DerZijp p commissie Wageningen Universiteit Prof.Dr .J .H . Koeman Wageningen Universiteit Prof.Dr . J.P .Bakke r Rijksuniversiteit Groningen Prof.Dr .A .K .Skidmor e International Institute forAerospac e Survey and Earth Sciences, Enschede High altitude survival: conflicts between pastoralism and wildlife inth e Trans-Himalaya Charudutt Mishra Proefschrift ter verkrijging van degraa d van doctor opgeza g van derecto r magnificus van Wageningen Universiteit prof. dr. ir. L. Speelman, inhe t openbaar te verdedigen opvrijda g 14decembe r200 1 des namiddags te 13:30uu r in deAul a -\ •> Mishra, C. High altitude survival:conflict s between pastoralism andwildlif e inth e Trans-Himalaya Wageningen University, The Netherlands. Doctoral Thesis (2001); ISBN 90-5808-542-2 A^ofZC , "SMO Propositions 1. Classical nature conservation measures will not suffice, because the new and additional measures that have to be taken must be especially designed for those areas where people live and use resources (Herbert Prins, The Malawi principles: clarification of thoughts that underlaythe ecosystem approach). 2. The ability tomak e informed decisions on conservation policy remains handicapped due to poor understanding of the way people use natural resources, and the impacts of such resource use onwildlif e (This thesis).
    [Show full text]
  • Selected Wildflowers of the Modoc National Forest Selected Wildflowers of the Modoc National Forest
    United States Department of Agriculture Selected Wildflowers Forest Service of the Modoc National Forest An introduction to the flora of the Modoc Plateau U.S. Forest Service, Pacific Southwest Region i Cover image: Spotted Mission-Bells (Fritillaria atropurpurea) ii Selected Wildflowers of the Modoc National Forest Selected Wildflowers of the Modoc National Forest Modoc National Forest, Pacific Southwest Region U.S. Forest Service, Pacific Southwest Region iii Introduction Dear Visitor, e in the Modoc National Forest Botany program thank you for your interest in Wour local flora. This booklet was prepared with funds from the Forest Service Celebrating Wildflowers program, whose goals are to serve our nation by introducing the American public to the aesthetic, recreational, biological, ecological, medicinal, and economic values of our native botanical resources. By becoming more thoroughly acquainted with local plants and their multiple values, we hope to consequently in- crease awareness and understanding of the Forest Service’s management undertakings regarding plants, including our rare plant conservation programs, invasive plant man- agement programs, native plant materials programs, and botanical research initiatives. This booklet is a trial booklet whose purpose, as part of the Celebrating Wildflowers program (as above explained), is to increase awareness of local plants. The Modoc NF Botany program earnestly welcomes your feedback; whether you found the book help- ful or not, if there were too many plants represented or too few, if the information was useful to you or if there is more useful information that could be added, or any other comments or concerns. Thank you. Forest J. R. Gauna Asst.
    [Show full text]
  • Annotated Checklist of Vascular Flora, Bryce
    National Park Service U.S. Department of the Interior Natural Resource Program Center Annotated Checklist of Vascular Flora Bryce Canyon National Park Natural Resource Technical Report NPS/NCPN/NRTR–2009/153 ON THE COVER Matted prickly-phlox (Leptodactylon caespitosum), Bryce Canyon National Park, Utah. Photograph by Walter Fertig. Annotated Checklist of Vascular Flora Bryce Canyon National Park Natural Resource Technical Report NPS/NCPN/NRTR–2009/153 Author Walter Fertig Moenave Botanical Consulting 1117 W. Grand Canyon Dr. Kanab, UT 84741 Sarah Topp Northern Colorado Plateau Network P.O. Box 848 Moab, UT 84532 Editing and Design Alice Wondrak Biel Northern Colorado Plateau Network P.O. Box 848 Moab, UT 84532 January 2009 U.S. Department of the Interior National Park Service Natural Resource Program Center Fort Collins, Colorado The Natural Resource Publication series addresses natural resource topics that are of interest and applicability to a broad readership in the National Park Service and to others in the management of natural resources, including the scientifi c community, the public, and the NPS conservation and environmental constituencies. Manuscripts are peer-reviewed to ensure that the information is scientifi cally credible, technically accurate, appropriately written for the intended audience, and is designed and published in a professional manner. The Natural Resource Technical Report series is used to disseminate the peer-reviewed results of scientifi c studies in the physical, biological, and social sciences for both the advancement of science and the achievement of the National Park Service’s mission. The reports provide contributors with a forum for displaying comprehensive data that are often deleted from journals because of page limitations.
    [Show full text]
  • Survey of Wild Food Plants for Human Consumption in Geçitli (Hakkari, Turkey)
    Indian Journal of Traditional Knowledge Vol. 14(2), April 2015, pp. 183-190 Survey of wild food plants for human consumption in Geçitli (Hakkari, Turkey) İdris Kaval1, Lütfi Behçet2 & Uğur Çakilcioğlu3* 1Yuzuncu Yıl University, Department of Biology, Van 65000, Turkey; 2Bingöl University, Department of Biology, Bingöl 12000, Turkey; 3Tunceli University, Pertek Sakine Genç Vocational School, Pertek, Tunceli 62500, Turkey E-mails: [email protected]; [email protected]; [email protected] Received 15 July 2014, revised 22 January 2015 This study aims to record accumulation of knowledge on plants which are used as food by native people of Geçitli (Hakkari, Turkey) that has a rich culture and a very natural environment. In addition, the medical uses of these plants were compiled from the literature. Study area was located on the East of Anatolian diagonal, in the Eastern Anatolia region. Field study was carried out over a period of approximately two years (2008-2010). During this period, 84 vascular plant taxa were collected. The plants were pressed in the field and prepared for identification. A total of 84 food plants belonging to 30 families were identified in the region. In the study being conducted, use of wild plants as food points out interest of people in Geçitli in wild plants. The fact that a large proportion of edible plants are also being used for medicinal purposes indicates that the use of wild plants has a high potential in the region. The present study shows that further ethnobotanical investigations are worthy to be carried out in Turkey, where most of knowledge on popular food plants are still to discover.
    [Show full text]
  • The Use of Medicinal Plants in the Trans-Himalayan Arid Zone of Mustang District, Nepal Shandesh Bhattarai, Nepal Academy of Science and Technology Ram P
    The use of medicinal plants in the trans-himalayan arid zone of Mustang district, Nepal Shandesh Bhattarai, Nepal Academy of Science and Technology Ram P. Chaudhary, Tribhuvan Univiversity Cassandra Quave, Emory University Robin S.L. Taylor, Queens University Journal Title: Journal of Ethnobiology and Ethnomedicine Volume: Volume 6 Publisher: BioMed Central | 2010-04-06, Pages 14-14 Type of Work: Article | Final Publisher PDF Publisher DOI: 10.1186/1746-4269-6-14 Permanent URL: https://pid.emory.edu/ark:/25593/rngzc Final published version: http://dx.doi.org/10.1186/1746-4269-6-14 Copyright information: © 2010 Bhattarai et al; licensee BioMed Central Ltd. This is an Open Access work distributed under the terms of the Creative Commons Attribution 2.0 Generic License (http://creativecommons.org/licenses/by/2.0/). Accessed October 4, 2021 12:21 PM EDT Bhattarai et al. Journal of Ethnobiology and Ethnomedicine 2010, 6:14 http://www.ethnobiomed.com/content/6/1/14 JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE RESEARCH Open Access The use of medicinal plants in the trans- himalayan arid zone of Mustang district, Nepal Shandesh Bhattarai1,2*, Ram P Chaudhary2, Cassandra L Quave3, Robin SL Taylor4 Abstract Background: This study documents the use of medicinal plants from the Mustang district of the north-central part of Nepal. Traditional botanical medicine is the primary mode of healthcare for most of the population of this district and traditional Tibetan doctors (Amchi) serve as the local medical experts. Methods: Field research was conducted in 27 communities of the Mustang district in Nepal from 2005-2007. We sampled 202 interviewees, using random and snowball sampling techniques.
    [Show full text]