Leaching Fraction, Soil Salinity, and Drainage Efficiency

Total Page:16

File Type:pdf, Size:1020Kb

Leaching Fraction, Soil Salinity, and Drainage Efficiency Leaching fraction, soil salinity, and drainage efficiency M. E. Grismer Measuring the efficiency of a sub- apply irrigation water in excess of crop wa- salt balance seldom occurs in the field, but it surface irrigation drainage system ter requirements. Some install subsurface helps us define LF and illustrates some basic drainage systems that collect and remove processesinvolved in rootzoneleaching. For is complicated by a number of fac- part of the excess water once it has leached the salt balance approach to succeed, the tors, including the irrigation the rootzone, preventing already shallow salts applied in irrigation water must be water's salinity, the soil's inherent water tables from rising any nearer to the removed from the rootzone by various salt salinity, and the degree to which soil surface. "sinks" (e.g., chemical precipitation, collec- saline drainwater migrates laterally To maintain favorable rootzone salinity, tion of excess irrigation by a subsurface growers depend on a combination of pro- drainage system, and deep percolation of in a shallow water table. cesses, including rootzone leaching and rootzone drainage). chemical precipitation. Leaching involves The balance of salts is often determined Salinity in the soil rootzone is a major con- applyingenough excess water to translocate on the basis of the salt load of the applied cern for farmers of irrigated crops in arid some of the salts out of the rootzone. The water and that of the subsurfacedrainwater regions. Typically, the irrigation water amount of excess water required depends discharge. But besides saline rootzone wa- available in such regions contains measur- partly on the chemical composition of the ters, subsurfacedrainage systemsin the San able, sometimessubstantial amounts of salts water, insofar as that influences salt pre- Joaquin and Imperial valleys collect saline that must be leached from the soil after cipitation and the water's ability to carry waters from deeper in the soil. The total salt irrigation. The soil profile may also contain salts. load leaving the Broadview and Imperial soluble minerals that contribute both to the Put simply, a grower can maintain the Valley water districts in drainwater is salinity hazard to crops and to the salt load rootzone salt balance by applying enough roughly twice the load applied in irrigation of agricultural drainwater. Irrigation water excess water to carry the same amount of salt water, despite subsurfacedrainage systems salts aren't always carried away in out of the soil as the water itself brings in. that collect only part of the rootzone drainwater, either; some of those salts may Here, the ratio of the rootzone drainage drainwaterafter anirrigation.Thesubsurface be deposited in the soil. All plants require volume totheappliedwatervolumeissimilar drainagesystems tend to collect any available some salt-borne nutrients (i.e., Ca, K, etc.), to the ratio of applied water salinity to groundwater, making the rootzone salt but not at the levels considered here. To drainwater salinity, otherwiseknown as the balancedifficultif not impossibleto calculate control salinity in the soil profile, farmers leaching fruction (LF). Such a simple case of without additionaldata. This report presents three soil-water flow factors that affectsalt balance determinations:LF, soilsalinity,and Applied Scenario water Comments the drainage efficiency (DE) of subsurface volume systems. The soil profile salinity is constant from one growingseason tothe next. Rootzone,drain, Salt leaching and drainage and deep percolation water salinity are all the same. Applied salt mass is the same as Figure 1summarizes thesoil-water processes rootzone drainage salt mass and the sum of involved in rootzone leaching and drainage drainfiow anddeep percolationsalt masses as required by salt balance. Chemical pre- shownschematicallyinfigure2,givingthree cipitation is balanced by dissolution. simplified scenarios that describe the d.p: volume leaching process. Other possible scenarios The soil profile salinity may be augmented combine elements of these three. II by mineral dissolution in excess of chemi- In scenarioI, salt balance is maintained in cal precipitation and salt may accumulate (mineral deeper in the rootzone and shallow the rootzone even though salts may accu- groundwater. Augmentation of the applied mulate in the shallow groundwater, de- salt mass results in larger drain and deep pending on the drains' efficiency and the percolation salt masses. d.p. salt rate of lateral movement for the shallow The soil profile and rootzone salinity, groundwater. In this case, salt accumulation 111 I rootzone drainage and deep percolation may occur intheshallowgroundwaterwhen salt mass, and deep percolationvolume are the salts in the applied water translocate to thesame as in Scenario I. Rootzone salinity may be aggravated by upward flowof saline the groundwater. (The salinity of shallow groundwater. Drainwater volume and salt groundwatermay also increase as a result of Increased mass are augmented due to collection of evaporation at the water table.)For this case, 'A. W. =appliedwater Saline shallow drain the saline shallow groundwater. d.p. =deep percolation groundwater salt mass LF can be based on the ratio of the salinityof the applied water to the salinity of the Fig. 1. Three simplified scenarios of the saltwater processes involved in rootzone leaching and rootzone drainage, or the rootzone drainage drainage. volume to applied water volume. 24 CALIFORNIA AGRICULTURE, VOLUME 44, NUMBER 6 drainage volume. Estimates based on the ratioof drainwatersaltmasstoappliedwater salt mass would overestimate the perfor- mance of the subsurface drainage system. Shallow groundwaterquality in scenarios IandIIcanbedegradedbyasoilorsubsurface drainage system with a poor DE, sigruficant lateralmovementof groundwater,andwater table evaporation.Often, the poor quality of a groundwater is a result of these factors. Scenario 111 is similar to scenario I, but withgreaterdrainflowsand salt loads caused by salinegroundwater. Estimates of LF based on drainwater salinity would be artifiaally low, and DE estimates based on drainflows would be too high. Our field measurements from the Imperial Valley illustrate scenario 111, and the difficulty of determining LF and DE on the basis of salt balance concepts. Field measurements The persistent salinity problems of heavy Imperial Valley soils have long made them Fig. 2. Schematic illustration of the flow of water through soil with respect to salt leaching and rootzone drainage. the objects of study. A 10-yearstudy (1939 to 1948 inclusive) on 18 acres of what would become the Imperial Valley Research and Rootzone drainage volume is then the soil’s dissolved salts and the salts in the Extension Center led researchersto conclude product of LF and the volume of applied applied water. Partial leaching, involving that continuous ponding was necessary to water. The drainage efficiency can be de- less water than the salt balance calculations adequately leach excess salts from the termined from the ratio of the collected would imply, may suffice, dependingon the rootzone. In 5 of that study’s 10 years, the 6- drainwatersalt mass to the applied salt mass, crop’s salt tolerance. As minerals continue foot-deep subsurface drainage system re- or the ratio of collected drainwater volume to dissolve and leach, the degree to which moved more salts than were applied (table to rootzone drainage volume. A DE of less soil salts can be extracted will decrease 1).In 2 years of those 5, the drainage system thanloo%resultsintheadditionofrootzone throughout the soil profile. If rootzone collected nearly three times the salt mass drainage water and salt load to the shallow drainage is insufficientto leach the dissolved applied, even though the same amount of groundwater. Depending on the flow pat- salts that have not precipitated, they will water was applied as in years when the terns of the shallow groundwater, the ad- accumulate deeper in the rootzone. drainage systemcollectedless salt mass than ditionalsalinitymay requireremovalatsome The salinity ratio from scenario I gives was applied. The lack of additional infor- time. too small an LF value for scenario 11, un- mation about the salinity of the soil and of In scenario 11, dissolved minerals add to derestimatingthe rootzone drainagevolume the shallow groundwater prevents any the rootzone’s salinity and to the potential and the volume of excess irrigation needed quantitative evaluation of the benefits to for saltto accumulate deeperin therootzone. to leach the salts, depending on the crop‘s reduction of soil salinity of the 10-year Increased rootzone salinityalso puts greater salt tolerance. Other, more involved calcu- leaching period. salt loads in drainwater and in deep-perco- lations are needed. In scenario 11, we can Data in table 1 clearly show that even lated water. A grower can balance the soil only determine the correct DE by measuring during the 10 years of leaching, the salts by applying enough water to leach the the drainwater volume and the rootzone drainwater‘s net salt load exceeded that of the appliedwater, so steady-statesalt balance conditions do not appear to exist. For com- parative purposes, however, we calculated the leaching fraction for each year of the study under the assumption that a rootzone salt balance did exist. ThemeanLFwas about 9%:the minimum (about 7%) occurred when the drainage system carried an excess salt load, and the maximum (about 11%) when the drainage system
Recommended publications
  • Topic: Soil Classification
    Programme: M.Sc.(Environmental Science) Course: Soil Science Semester: IV Code: MSESC4007E04 Topic: Soil Classification Prof. Umesh Kumar Singh Department of Environmental Science School of Earth, Environmental and Biological Sciences Central University of South Bihar, Gaya Note: These materials are only for classroom teaching purpose at Central University of South Bihar. All the data/figures/materials are taken from several research articles/e-books/text books including Wikipedia and other online resources. 1 • Pedology: The origin of the soil , its classification, and its description are examined in pedology (pedon-soil or earth in greek). Pedology is the study of the soil as a natural body and does not focus primarily on the soil’s immediate practical use. A pedologist studies, examines, and classifies soils as they occur in their natural environment. • Edaphology (concerned with the influence of soils on living things, particularly plants ) is the study of soil from the stand point of higher plants. Edaphologist considers the various properties of soil in relation to plant production. • Soil Profile: specific series of layers of soil called soil horizons from soil surface down to the unaltered parent material. 2 • By area Soil – can be small or few hectares. • Smallest representative unit – k.a. Pedon • Polypedon • Bordered by its side by the vertical section of soil …the soil profile. • Soil profile – characterize the pedon. So it defines the soil. • Horizon tell- soil properties- colour, texture, structure, permeability, drainage, bio-activity etc. • 6 groups of horizons k.a. master horizons. O,A,E,B,C &R. 3 Soil Sampling and Mapping Units 4 Typical soil profile 5 O • OM deposits (decomposed, partially decomposed) • Lie above mineral horizon • Histic epipedon (Histos Gr.
    [Show full text]
  • Basic Soil Science W
    Basic Soil Science W. Lee Daniels See http://pubs.ext.vt.edu/430/430-350/430-350_pdf.pdf for more information on basic soils! [email protected]; 540-231-7175 http://www.cses.vt.edu/revegetation/ Well weathered A Horizon -- Topsoil (red, clayey) soil from the Piedmont of Virginia. This soil has formed from B Horizon - Subsoil long term weathering of granite into soil like materials. C Horizon (deeper) Native Forest Soil Leaf litter and roots (> 5 T/Ac/year are “bio- processed” to form humus, which is the dark black material seen in this topsoil layer. In the process, nutrients and energy are released to plant uptake and the higher food chain. These are the “natural soil cycles” that we attempt to manage today. Soil Profiles Soil profiles are two-dimensional slices or exposures of soils like we can view from a road cut or a soil pit. Soil profiles reveal soil horizons, which are fundamental genetic layers, weathered into underlying parent materials, in response to leaching and organic matter decomposition. Fig. 1.12 -- Soils develop horizons due to the combined process of (1) organic matter deposition and decomposition and (2) illuviation of clays, oxides and other mobile compounds downward with the wetting front. In moist environments (e.g. Virginia) free salts (Cl and SO4 ) are leached completely out of the profile, but they accumulate in desert soils. Master Horizons O A • O horizon E • A horizon • E horizon B • B horizon • C horizon C • R horizon R Master Horizons • O horizon o predominantly organic matter (litter and humus) • A horizon o organic carbon accumulation, some removal of clay • E horizon o zone of maximum removal (loss of OC, Fe, Mn, Al, clay…) • B horizon o forms below O, A, and E horizons o zone of maximum accumulation (clay, Fe, Al, CaC03, salts…) o most developed part of subsoil (structure, texture, color) o < 50% rock structure or thin bedding from water deposition Master Horizons • C horizon o little or no pedogenic alteration o unconsolidated parent material or soft bedrock o < 50% soil structure • R horizon o hard, continuous bedrock A vs.
    [Show full text]
  • National University of Engineering Ge111
    NATIONAL UNIVERSITY OF ENGINEERING COLLEGE OF ENVIRONMENTAL ENGINEERING ENVIRONMENTAL ENGINEERING PROGRAM GE111 – EDAPHOLOGY I. GENERAL INFORMATION CODE : GE111 – Edaphology SEMESTER : 5 CREDITS : 03 HOURS PER WEEK : 04 (Theory – Practices – Laboratory) PREREQUISITES : GE102 – Geography CONDITION : Mandatory II. COURSE DESCRIPTION Concept and importance of edaphological soil and its interest for Engineering. Detailed knowledge of the components, physical and chemical properties, genesis, classification and principles of cartography, of natural soils and anthropogenic urban soils. Principle of soil evaluation, as a starting point in studies of environmental planning, territorial planning and environmental impact assessment. Finally, it is intended that students understand the importance of soil as a non-renewable resource and the degradations to which its inappropriate use leads; It is also intended to train in the corrective and rehabilitating measures of degraded soils. III. COURSE OUTCOMES At the end of the course the student will: Organizes data for proper analysis and interpretation and calculations (soil densities, physical chemical and biological properties). Explains and determines the genesis of the soil, the physical properties of the soil, geo reference, physiographic units. Understand and apply densities, to determine the consistency of the soil, the probability of resistance in an earthquake. Interpret and perform types of soil sampling to take to the laboratory to determine their physical, chemical, and biological characteristics. Build models to determine the degree of contamination, is determined by the parameters, using the LMOs, ECAs, In soils. IV. LEARNING UNITS 1. SOIL GENESIS / 4 HOURS Objective of soil science: Interest in Engineering. Genesis. Pedological and edaphological approach. Factors of soil formation. Climate action. Properties of the soil affected by the climate.
    [Show full text]
  • Dynamics of Carbon 14 in Soils: a Review C
    Radioprotection, Suppl. 1, vol. 40 (2005) S465-S470 © EDP Sciences, 2005 DOI: 10.1051/radiopro:2005s1-068 Dynamics of Carbon 14 in soils: A review C. Tamponnet Institute of Radioprotection and Nuclear Safety, DEI/SECRE, CADARACHE, BP. 1, 13108 Saint-Paul-lez-Durance Cedex, France, e-mail: [email protected] Abstract. In terrestrial ecosystems, soil is the main interface between atmosphere, hydrosphere, lithosphere and biosphere. Its interactions with carbon cycle are primordial. Information about carbon 14 dynamics in soils is quite dispersed and an up-to-date status is therefore presented in this paper. Carbon 14 dynamics in soils are governed by physical processes (soil structure, soil aggregation, soil erosion) chemical processes (sequestration by soil components either mineral or organic), and soil biological processes (soil microbes, soil fauna, soil biochemistry). The relative importance of such processes varied remarkably among the various biomes (tropical forest, temperate forest, boreal forest, tropical savannah, temperate pastures, deserts, tundra, marshlands, agro ecosystems) encountered in the terrestrial ecosphere. Moreover, application for a simplified modelling of carbon 14 dynamics in soils is proposed. 1. INTRODUCTION The importance of carbon 14 of anthropic origin in the environment has been quite early a matter of concern for the authorities [1]. When the behaviour of carbon 14 in the environment is to be modelled, it is an absolute necessity to understand the biogeochemical cycles of carbon. One can distinguish indeed, a global cycle of carbon from different local cycles. As far as the biosphere is concerned, pedosphere is considered as a primordial exchange zone. Pedosphere, which will be named from now on as soils, is mainly located at the interface between atmosphere and lithosphere.
    [Show full text]
  • Demonstration of Physical Separation/Leaching Methods for the Remediation of Heavy Metals Contaminated Soils at Small Arms Ranges
    84 4 0 ,;*v , DEMONSTRATION OF PHYSICAL ftsJS1:3«*s SEPARATION/LEACHING METHODS FOR THE REMEDIATION OF HEAVY waBHi METALS CONTAMINATED SOILS AT SMALL ARMS RANGES m &r<&S?GtXl WBTMBUTION BTATEMEHTT Approved for pntfelie r*l«u«*f Dürtrlbattoa UnHmtaKl M£3 SEPTEMBER 1997 19980M 177 flTIC QUALITY DTS^EOTED S This Document Contains Missing Page/s That Are Unavailable In The Original Document AEC Form <t5, 1 Feb 93 replaces THAMA Form <t5 which is obsolete. Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Weshington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 1. AGENCY USE ONLY (Leave blank) REPORT DATE 3. REPORT TYPE AND DATES COVERED September 1997 Technology Demonstration, Nov 1995-Sep 1997 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Demonstration of Physical Separation/Leaching Methods for the Remediation of Heavy Metals Contaminated Soils at Small Arms Ranges 6. AUTHOR(S) BDM Engineering Services Company 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION BDM Engineering Services Company REPORT NUMBER 1801 Randolph Road, S.E.
    [Show full text]
  • Soil Salinity in Agricultural Systems: the Basics
    Soil Salinity in Agricultural Systems: The Basics Jeffrey L. Ullman Agricultural & Biological Engineering University of Florida Strategies for Minimizing Salinity Problems and Optimizing Crop Production In-Service Training, Hastings, FL March 26, 2013 What is salt? What is Salt? . Salts are more than just sodium chloride (NaCl) . Salts consist of anions and cations . In terms of soil and irrigation water these generally include: Cations Anions Sodium Na+ Chlorides Cl- 2+ 2- Magnesium Mg Sulfates SO4 2+ 2- Calcium Ca Carbonates CO3 - Bicarbonates HCO3 What is Salt? . Other salts in agriculture + Potassium (K ) - Nitrate (NO3 ) Boron (B) • Often as boric acid (H3BO3, often written as B(OH)3) • Can form salts such as sodium borate (borax; Na2B4O7) Photo: Georgia Agriculture What is Salt? H O(l) NaCl(s) 2 Na+(aq) + Cl-(aq) (aq) indicates that Na+ and Cl- are hydrated ions Sodium sulfate Magnesium carbonate Source: Averill and Eldredge (2007) Types of Salts Some common salts NaCl Sodium chloride Table salt (halite) CO 2- 3 KCl Potassium chloride Muriate of potash Na+ 2- NaHCO3 Sodium bicarbonate Baking soda (nahcolite) SO4 - Cl CaSO4 Calcium sulfate Gypsum + K CaCO3 Calcium carbonate Calcite 2+ Ca MgSO Magnesium sulfate Epsom salt (epsomite) Mg2+ 4 K2SO4 Potassium sulfate Sulfate of potash (arcanite) HCO - 3 Glauber’s salt (thenardite Na SO Sodium sulfate 2 4 and mirabilite) Gypsum Calcite Thenardite Sources of Salt . Dissolution of parent rock material . Irrigation water . Saline groundwater . Fertilizers . Manure . Seawater intrusion Photo: J. Ullman Saline Soils . Accumulation of salts known as salination . Can occur in diverse types of soil with different physical, chemical and hydrologic properties Photo: USDA-NRCS Saline Soils .
    [Show full text]
  • Behavior of Pesticides in Soils and Water 1
    Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office. SL 40 Behavior of Pesticides in Soils and Water 1 P.S.C. Rao and A.G. Hornsby2 During the past twenty years, concern has arisen applied, and to show how this information can be as to the presence of pesticides in the environment used, along with other factors, to select the proper and the threat they pose to wildlife and mankind. pesticide. Certainly, pesticides have improved longevity and the quality of life, chiefly in the area of public health. PATHWAYS OF PESTICIDE LOSS The use of pesticides also constitutes an important There are basically two ways properly-applied aspect of modern agriculture. Florida's temperate to pesticides may reach surface and ground waters- subtropical climate favors growth of many harmful through runoff and leaching. Runoff is the physical insects, weeds and diseases, thus making this state transport of pollutants over the ground surface by particularly dependent on pesticides for economical rainwater which does not penetrate the soil. Leaching crop management. is a process whereby pollutants are flushed through Unfortunately, pesticides are poisons and can be the soil by rain or irrigation water as it moves particularly dangerous when misused. Fish-kills, downward. In many areas of Florida, soils are sandy reproductive failure in birds, and acute illnesses in and permeable and leaching is likely to be a more people have all been attributed to exposure to or serious problem than runoff. We now have ingestion of pesticides - usually as a result of technology to help estimate the potential misapplication or careless disposal of unused contamination of water from a given pesticide.
    [Show full text]
  • Nitrate Leaching from Intensive Organic Farms to Groundwater
    Open Access Hydrol. Earth Syst. Sci., 18, 333–341, 2014 Hydrology and www.hydrol-earth-syst-sci.net/18/333/2014/ doi:10.5194/hess-18-333-2014 Earth System © Author(s) 2014. CC Attribution 3.0 License. Sciences Nitrate leaching from intensive organic farms to groundwater O. Dahan1, A. Babad1, N. Lazarovitch2, E. E. Russak3, and D. Kurtzman4 1Department of Environmental Hydrology & Microbiology, Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel 2Wyler Department of Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel 3Geological and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel 4Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel Correspondence to: O. Dahan ([email protected]) Received: 18 June 2013 – Published in Hydrol. Earth Syst. Sci. Discuss.: 29 July 2013 Revised: 8 December 2013 – Accepted: 11 December 2013 – Published: 27 January 2014 Abstract. It is commonly presumed that organic agriculture productive agriculture must inherently include the leaching causes only minimal environmental pollution. In this study, of excess lower quality water below the root zone to the un- we measured the quality of percolating water in the vadose saturated zone and ultimately to the groundwater (Shani et zone, underlying both organic and conventional intensive al., 2007; Dudley et al., 2008). As such, maintaining the del- greenhouses. Our study was conducted in newly established icate balance between productive agriculture and groundwa- farms where the subsurface underlying the greenhouses has ter quality requires a broad perspective over different time been monitored continuously from their establishment.
    [Show full text]
  • Soil Salinity Type Effects on the Relationship Betweenthe Electrical
    sustainability Article Soil Salinity Type Effects on the Relationship between the Electrical Conductivity and Salt Content for 1:5 Soil-to-Water Extract Amin I. Ismayilov 1, Amrakh I. Mamedov 2,* , Haruyuki Fujimaki 2 , Atsushi Tsunekawa 2 and Guy J. Levy 3 1 Institute of Soil Science and Agrichemistry, Azerbaijan National Academy of Sciences (ANAS), Baku AZ1073, Azerbaijan; [email protected] 2 Arid Land Research Center, Tottori University, Tottori 680-0001, Japan; [email protected] (H.F.); [email protected] (A.T.) 3 Institute of Soil, Water and Environmental Sciences, ARO, Rishon LeZion 7505101, Israel; [email protected] * Correspondence: [email protected] Abstract: Soil salinity severely affects soil ecosystem quality and crop production in semi-arid and arid regions. A vast quantity of data on soil salinity has been collected by research organizations of the Commonwealth of Independent States (CIS, formerly USSR) and many other countries over the last 70 years, but using them in the current international network (irrigation and reclamation strategy) is complicated. This is because in the CIS countries salinity was expressed by total soluble salts as a percentage on a dry-weight basis (total soluble salts, TSS, %) and eight salinity types − 2− − + (chemistry) determined by the ratios of the anions and cations (Cl , SO4 , HCO3 , and Na , Ca2+, Mg2+) in diluted soil water extract (soil/water = 1:5) without assessing electrical conductivity (EC). Measuring the EC (1:5) is more convenient, yet EC is not only affected by the concentration Citation: Ismayilov, A.I.; Mamedov, but also characteristics of the ions and the salinity chemistry.
    [Show full text]
  • Status of Soil Salinity in California
    it a major item in his joint presentation percent of construction, operation, and Although progress has been made, the to Congress and meeting with former maintenance costs. Basin states see the need for expanded President Nixon in 1972. In 1975, the Forum recommended wa- salinity control to maintain the numeric ter quality standards for salinity, includ- Proposed solutions criteria. Bills now before Congress would ing numeric criteria of 723 mg/L below authorize five additional salinity control The salinity problem has the potential to Hoover Dam, 747 mg/L below Parker units to be constructed by the Depart- cause lengthy legal and political battles Dam, and 879 mg/L at Imperial Dam. ment of the Interior, give the US. De- between the Upper and Lower Basin Their proposal also called for prompt partment of Agriculture specific author- states. The Lower Basin wants to pre- construction of the salinity control units ity for a program of on-farm Colorado vent salinity increases that would result authorized by P.L. 93-320, construction River salinity control measures in coop- from further upstream development; Up- of additional units upon completion of eration with local landowners, and pro- per Basin states are concerned that the planning reports, implementation of on- vide for 25 percent of the construction salinity issue could prevent future in- farm water management practices to costs to be paid by the Basin states. creases in their water use. control salinity, limitations on industrial In other efforts to control the river’s The states began to work together and municipal discharges, use of saline salinity, the Basin states have adopted a and with the federal government in the water for industrial purposes, and the policy calling for a no-salt return from late 1960s, and in the early 1970s several inclusion of the salinity components of industrial discharges and limiting the steps were taken to deal with the prob- water quality management plans devel- incremental increase permitted from lems.
    [Show full text]
  • Chapter No. 06 Definition, Classification and Characteristics of Salt Affected Soils
    Chapter No. 06 Definition, classification and characteristics of salt affected soils The salt-affected soils occur in the arid and semiarid regions where evapo- transpiration greatly exceeds precipitation. The accumulated ions causing salinity or alkalinity include sodium, potassium, magnesium, calcium, chlorides, carbonates and bicarbonates. The salt-affected soils can be primarily classified as saline soil and sodic soil. S. Characteristics Saline (Alkaline) Saline – Sodic Sodic (Alkali) No. 1. pH < 8.5 > 8.5 > 8.5 2. EC > 4.0 dSm-1 > 4.0 dSm-1 < 4.0 dSm-1 3. Salt Concentration > 0.2 % > 0.2 % < 0.2 % 4. ESP%* < 15.0% > 15.0% > 15.0% 5. SAR** < 13.0 > 15.0 > 15.0 6. Dominant Cation Ca2+, Mg2+, K+ Ca2+, Mg2+, K+, Na+ Na+ - 2- - - 2- - 2- - 7. Dominant Anion Cl , SO4 , NO3 Cl , SO4 , NO3 , CO3 , HCO3 2- - CO3 , HCO3 8. Soil Structure (Soil Flocculated Flocculated De flocculated particles) 9. Infiltration Good God Poor 10. Drainage Good God Poor 11. Nomenclature Solenchalk - Solentz (White alkali) (Black alkali) * Exchangeable Sodium Percentage (ESP) Exchangeable Na+ (in milli equi./100 g Soil) ESP = X 100 Total CEC (in milli equi./100 g Soil) ** Sodium Adsorption Ratio (SAR) [Na+] SAR = [Ca2+] + [Mg2+] / 2 Saline soils :- Saline soils defined as soils having a conductivity of the saturation extract greater than 4 dS m-1 and an exchangeable sodium percentage less than 15 Saline soils defined as soils having a conductivity of the saturation extract greater than 4 dS m-1 and an exchangeable sodium percentage less than 15. The pH is usually less than 8.5.
    [Show full text]
  • Managing Soil Salinity Tony Provin and J.L
    E-60 3-12 Managing Soil Salinity Tony Provin and J.L. Pitt* f your soil has a high salinity content, the plants ing may cause salts to accumulate in both surface growing there will not be as vigorous as they would and underground waters. The surface runoff of these Ibe in normal soils. Seeds will germinate poorly, dissolved salts is what gives the salt content to our if at all, and the plants will grow slowly or become oceans and lakes. Fertilizers and organic amendments stunted. If the salinity concentration is high enough, also add salts to the soil. the plants will wilt and die, no matter how much you water them. Effects of salts on plants Routine soil testing can identify your soil’s salinity As soils become more saline, plants become unable levels and suggest measures you can take to correct to draw as much water from the soil. This is because the specific salinity problem in your soil. the plant roots contain varying concentrations of ions (salts) that create a natural flow of water from the soil Salinity and salt into the plant roots. The terms salt and salinity are often used inter- As the level of salinity in the soil nears that of the changeably, and sometimes incorrectly. A salt is sim- roots, however, water becomes less and less likely to ply an inorganic mineral that can dissolve in water. enter the root. In fact, when the soil salinity levels are Many people associate salt with sodium chloride— high enough, the water in the roots is pulled back into common table salt.
    [Show full text]