Vadose Zone Characterization and Monitoring Current Technologies, Applications, and Future Developments

Total Page:16

File Type:pdf, Size:1020Kb

Vadose Zone Characterization and Monitoring Current Technologies, Applications, and Future Developments 3 Vadose Zone Characterization and Monitoring Current Technologies, Applications, and Future Developments Boris Faybishenko Contributors: M. Bandurraga, M. Conrad, P. Cook, C. Eddy-Dilek, L. Everett, FRx Inc. of Cincinnati, T. Hazen, S. Hubbard, A.R. Hutter, P. Jordan, C. Keller, F.J. Leij, N. Loaiciga, E.L. Majer, L. Murdoch, S. Renehan, B. Riha, J. Rossabi, Y. Rubin, A. Simmons, S. Weeks, C.V. Williams INTRODUCTION NEEDS FOR VADOSE ZONE CHARACTERIZATION AND MONITORING Vadose zone characterization and monitoring are essential for: • Development of a complete and accurate assessment of the inven- tory, distribution, and movement of contaminants in unsaturated- saturated soils and rocks. • Development of improved predictive methods for liquid flow and contaminant transport. • Design of remediation systems (barrier systems, stabilization of buried wastes in situ, cover systems for waste isolation, in situ treat- ment barriers of dispersed contaminant plumes, bioreactive treat- ment methods of organic solvents in sediments and groundwater). • Design of chemical treatment technologies to destroy or immobilize highly concentrated contaminant sources (metals, radionuclides, explosive residues, and solvents) accumulated in the subsurface. 133 134 VADOSE ZONE SCIENCE AND TECHNOLOGY SOLUTIONS Development of appropriate conceptual models of water flow and chemical transport in the vadose zone soil-rock formation is critical for developing adequate predictive modeling methods and designing cost- effective remediation techniques. These conceptual models of unsatu- rated heterogeneous soils must take into account the processes of preferential and fast water seepage and contaminant transport toward the underlying aquifer. Such processes are enhanced under episodic natural precipitation, snowmelt, and extreme chemistry of waste leaks from tanks, cribs, and other surface sources. However, until recently, the effects of episodic infiltration and preferential flow on a field scale have not been taken into account when predicting flow and transport and developing remediation procedures. The pronounced temporal and spa- tial structure of water seepage and contaminant transport, which is dif- ficult to detect, poses unique and difficult problems for characterization, monitoring, modeling, engineering of containment, and remediation of contaminants. Lack of understanding in this area has led to severely erroneous predictions of contaminant transport and incorrect remedia- tion actions. For many years, it was assumed that wastes released or stored in the vadose zone would move slowly, if at all, through the vadose zone. Because of the emerging evidence of waste migration from leaking tanks through the vadose zone to the groundwater, scientists and engi- neers have begun to develop a strategy to investigate the vadose zone, including a comprehensive plan to assess vadose zone conditions. OBJECTIVES The overall objective of this chapter is to describe the current status, applications and future developments of vadose zone characterization and monitoring technologies using case-study data from practicing sci- entists and engineers. Using these data, we will recommend a series of site-characterization and monitoring methods, the development of both expedited and long-term vadose zone characterization and monitoring methods, and future developments for the design, performance, and post-closure of contaminated sites. Because our understanding of a site is derived from field observa- tions, this chapter describes the basic principles, advantages, and limita- tions of existing vadose zone characterization and monitoring methods, CHAPTER 3 – VADOSE ZONE CHARACTERIZATION AND MONITORING 135 using case studies from field experiences as well as the American Soci- ety for Testing and Materials (ASTM) and Environmental Protection Agency (EPA) standards related to vadose zone studies. We will present evidence that the central problem of the vadose zone investigation is the preferential fast-flow phenomena and accelerated deep-contaminant transport toward the groundwater that has been observed at several sites. The methods discussed in this chapter can be used for the following purposes: • Characterization of natural variations of flow and transport processes in vadose zone systems • Characterization of anthropogenic stresses on vadose zone systems (such as induced point and non-point infiltration, and well injection) • Design and selection of experimental methods for field and labo- ratory experiments • Design of vadose zone remediation systems • Project planning and data collection. The methods and efforts required for conceptualization, characteriza- tion, and quantification of vadose zone systems for each application will vary with site conditions, objectives of the investigation, and investigator experience. We would like to note that this chapter is not intended to sub- stitute for the thousands of excellent papers and a number of books on vadose zone problems (for example, Everett et al. 1984; Jury et al. 1991; Kutilek and Nielsen 1994; Wilson et al. 1995; Stephens 1996; Selker et al. 1999), but rather to present the main directions, advantages, and limita- tions of vadose zone characterization and monitoring methods. CONCEPTUALIZATION OF VADOSE ZONE SYSTEMS Conceptualization of vadose zone systems is needed for the inte- grated qualitative and quantitative characterization of unsaturated flow and transport processes affected by natural behavior and man-induced changes. Conceptualization is provided for any scale of investigation, including site-specific, subregional, and regional applications. Concep- tualization involves a step-wise, iterative process of developing multiple 136 VADOSE ZONE SCIENCE AND TECHNOLOGY SOLUTIONS working hypotheses for flow and transport process characterization. These hypotheses are then used in selecting a proper combination of monitoring methods, interpretation, and analysis for refinement of flow and transport conceptual models. A conceptual model is an interpretation or description of the physical system’s characteristics and dynamics. The development of a conceptual model is an important step for site characterization because an incorrect model can lead to significant errors in the development of mathematical and numerical models, thus adversely affecting predictions and planning of remediation efforts. The development of a conceptual model is based on the analysis and simplification of data collected during field-moni- toring and laboratory experiments, simplification of hydrologic systems, and the representation of hydrogeologic parameters in models (Bould- ing 1995). In general, conceptual models that describe water flow include a description of the hydrologic components of the system and how mass is transferred between these components. Without a conceptual model, we do not know what tests to conduct, what parameters to measure, where to place probes, or what probes to use. Conversely, without such data, we cannot develop a conceptual model. This situation requires an iterative approach, in which we con- duct a series of observations and tests and, concurrently, develop a con- ceptual model of water flow to refine our tests. The development of a conceptual model for water flow in the heterogeneous soil and fractured rock of the vadose zone is particularly difficult for three main reasons: (1) The contrasts in permeability of soils and rocks at different parts of the system may be extreme and localized. (2) The geometry of water flow depends strongly on the intercon- nection or connectivity of a preferential-flow-zone network. In a given vadose zone system, many probes may be located within nonconductive zones, which have no significant role in flow. In fractured rocks, fractures may be nonconductive because aper- tures are closed under the ambient stress state or by mineral pre- cipitation. Additionally, soil and rock hydraulic conductivity may decrease during an infiltration event because of clogging, sealing, or air entrapment. (3) The design of borehole tests and the interpretation of data in het- erogeneous soils and fractured rocks are complicated because the CHAPTER 3 – VADOSE ZONE CHARACTERIZATION AND MONITORING 137 response in a monitoring well may only be from a single zone of preferential flow or a fracture (Long 1996). Therefore, “point” measurements in heterogeneous soils and fractured rocks cannot reveal complex processes that result from the interaction of fea- tures at many different scales. Conceptualization begins with a theoretical understanding of the entire groundwater-vadose zone-atmosphere system, followed by data collection and the refinement of that understanding. Additional data col- lection and analysis, as well as the refinement of the groundwater sys- tem conceptual model, occur during the entire process of conceptualization and characterization, and during groundwater model development and use (Figure 3-1). Numerical modeling (forward and inverse) as a means of developing a flow-and-transport-process conceptual model allows us to obtain a better understanding of the level of detail and features needed to improve site-characterization design and monitoring methods. WATER FLOW AND CHEMICAL TRANSPORT PROCESSES IN DEEP AND SHALLOW VADOSE ZONES SPATIAL AND TEMPORAL SCALES OF VADOSE ZONE INVESTIGATIONS AND SCALING Spatial Scales Heterogeneity of hydraulic processes in soils and sediments occurs in a hierarchy of spatial and temporal scales (Cushman 1986; Faybishenko 1986; Wagenet et al. 1994;
Recommended publications
  • Formación De Neologismos En Ciencia Del Suelo
    Formación de neologismos en Ciencia del Suelo Formation of Soil Science neologisms Formação de neologismos em Ciência do Solo AUTORES Received: 01.06.2012 Revised: 19.06.2012 Accepted: 20.06.2012 @ 1 Porta J. [email protected]. cat RESUMEN 2 Desde el Congreso de Roma de 1924, en el que la comunidad cientí!ca decidió utilizar la expresión Villanueva D. Soil Science en lugar de Pedology o Edaphology, no se ha llegado a establecer criterios para la formación en español de neologismos referentes! "# al estudio del suelo."$%#& En inglés, los nuevos términos se forman dando prioridad a la raíz griega ! " frente a la raíz # . Este criterio, que se ha consolidado !!"#" con el uso, no tiene en cuenta que en griego el término se"$%#& re!ere al suelo sobre el que se anda y @ Corresponding no al suelo en el que crecen las plantas, expresado por el término # . En el presente trabajo, desde Author una perspectiva etimológica, semántica y de pragmática lingüística, se proponen criterios para la 1 Sociedad Española formación de neologismos en español o al establecer equivalencias en español de voces introducidas de la Ciencia del en inglés. El análisis se basa en voces de autoridad; en elementos etimológicos; en aspectos de am- Suelo. Universitat de Lleida. Rovira Roure bigüedad fonética y ortográ!ca; en la revisión de equivalencias entre términos similares en español, 191, 25198 Lleida, inglés y francés; en el ámbito universitario; en la denominación de las sociedades y revistas cientí!cas; España. y en aspectos de buen gusto idiomático en determinados ámbitos geográ!cos del español.
    [Show full text]
  • Measuring Soil Ph
    Measuring soil pH Viti-note Summary: Soil pH refers to the acidity or alkalinity Equipment of the soil. It is a measure of the • Equipment Colorimetric test kit available from concentration of free hydrogen ions nurseries (includes mixing stick, plate, • Timing (H+) that are in the soil. Soil pH can dye, barium sulphate, pH colour chart, be measured in water (pH ) or a weak • Method w instructions), teaspoon, recording sheet calcium chloride solution (pH ). The pH CaCl and pen. • Timing range is from 0-14, with value of 7 being neutral. Soil pH values (as measured in a OR water and soil solution) indicate: Hand held pH meter, clear plastic jar with • Strong acidity if less than 5.0. screw-on lid, distilled water, recording sheet and pen. • Moderate acidity at 5.0 to 6.0. • Neutral between 6.5 and 7.5. Timing • Moderate alkalinity at 7.5 to 8.5. This measurement is best undertaken • Strong alkalinity for values of 8.5 when soil sampling is conducted and and above. would normally be done at the same time The limited data available suggests that as assessments for electrical conductivity. soil pHCaCl should be in the range 5.5-7.5 Soil pH should be measured in the fibrous for best vine performance. root zone (ie. 0-20cm depth) as well as Soil pH outside the neutral range can the deeper root zone (>20cm depth). influence the availability of specific Make sure the soil samples are taken nutrients to plants, as well as the inside the irrigation wetting pattern.
    [Show full text]
  • Basic Soil Science W
    Basic Soil Science W. Lee Daniels See http://pubs.ext.vt.edu/430/430-350/430-350_pdf.pdf for more information on basic soils! [email protected]; 540-231-7175 http://www.cses.vt.edu/revegetation/ Well weathered A Horizon -- Topsoil (red, clayey) soil from the Piedmont of Virginia. This soil has formed from B Horizon - Subsoil long term weathering of granite into soil like materials. C Horizon (deeper) Native Forest Soil Leaf litter and roots (> 5 T/Ac/year are “bio- processed” to form humus, which is the dark black material seen in this topsoil layer. In the process, nutrients and energy are released to plant uptake and the higher food chain. These are the “natural soil cycles” that we attempt to manage today. Soil Profiles Soil profiles are two-dimensional slices or exposures of soils like we can view from a road cut or a soil pit. Soil profiles reveal soil horizons, which are fundamental genetic layers, weathered into underlying parent materials, in response to leaching and organic matter decomposition. Fig. 1.12 -- Soils develop horizons due to the combined process of (1) organic matter deposition and decomposition and (2) illuviation of clays, oxides and other mobile compounds downward with the wetting front. In moist environments (e.g. Virginia) free salts (Cl and SO4 ) are leached completely out of the profile, but they accumulate in desert soils. Master Horizons O A • O horizon E • A horizon • E horizon B • B horizon • C horizon C • R horizon R Master Horizons • O horizon o predominantly organic matter (litter and humus) • A horizon o organic carbon accumulation, some removal of clay • E horizon o zone of maximum removal (loss of OC, Fe, Mn, Al, clay…) • B horizon o forms below O, A, and E horizons o zone of maximum accumulation (clay, Fe, Al, CaC03, salts…) o most developed part of subsoil (structure, texture, color) o < 50% rock structure or thin bedding from water deposition Master Horizons • C horizon o little or no pedogenic alteration o unconsolidated parent material or soft bedrock o < 50% soil structure • R horizon o hard, continuous bedrock A vs.
    [Show full text]
  • Soil Physics and Agricultural Production
    Conference reports Soil physics and agricultural production by K. Reichardt* Agricultural production depends very much on the behaviour of field soils in relation to crop production, physical properties of the soil, and mainly on those and to develop effective management practices that related to the soil's water holding and transmission improve and conserve the quality and quantity of capacities. These properties affect the availability of agricultural lands. Emphasis is being given to field- water to crops and may, therefore, be responsible for measured soil-water properties that characterize the crop yields. The knowledge of the physical properties water economy of a field, as well as to those that bear of soil is essential in defining and/or improving soil on the quality of the soil solution within the profile water management practices to achieve optimal and that water which leaches below the reach of plant productivity for each soil/climatic condition. In many roots and eventually into ground and surface waters. The parts of the world, crop production is also severely fundamental principles and processes that govern limited by the high salt content of soils and water. the reactions of water and its solutes within soil profiles •Such soils, classified either as saline or sodic/saline are generally well understood. On the other hand, depending on their alkalinity, are capable of supporting the technology to monitor the behaviour of field soils very little vegetative growth. remains poorly defined primarily because of the heterogeneous nature of the landscape. Note was According to statistics released by the Food and taken of the concept of representative elementary soil Agriculture Organization (FAO), the world population volume in defining soil properties, in making soil physical is expected to double by the year 2000 at its current measurements, and in using physical theory in soil-water rate of growth.
    [Show full text]
  • User''s Guide for Evaluating Subsurface Vapor Intrusion Into Buildings
    USER'S GUIDE FOR EVALUATING SUBSURFACE VAPOR INTRUSION INTO BUILDINGS Prepared By Environmental Quality Management, Inc. Cedar Terrace Office Park, Suite 250 3325 Durham-Chapel Hill Boulevard Durham, North Carolina 27707-2646 Prepared For Industrial Economics Incorporated 2667 Massachusetts Avenue Cambridge, Massachusetts 02140 EPA Contract Number: 68-W-02-33 Work Assignment No. 004 PN 030224.0002 For Submittal to Janine Dinan, Work Assignment Manager U.S. ENVIRONMENTAL PROTECTION AGENCY OFFICE OF EMERGENCY AND REMEDIAL RESPONSE ARIEL RIOS BUILDING, 5202G 1200 PENNSYLVANIA AVENUE, NW WASHINGTON, D.C. 20460 Revised February 22, 2004 DISCLAIMER This document presents technical and policy recommendations based on current understanding of the phenomenon of subsurface vapor intrusion. This guidance does not impose any requirements or obligations on the U.S. Environmental Protection Agency (EPA) or on the owner/operators of sites that may be contaminated with volatile and toxic compounds. The sources of authority and requirements for addressing subsurface vapor intrusion are the applicable and relevants statutes and regulations.. This guidance addresses the assumptions and limitations that need to be considered in the evaluation of the vapor intrusion pathway. This guidance provides instructions on the use of the vapor transport model that originally was developed by P. Johnson and R. Ettinger in 1991 and subsequently modified by EPA in 1998, 2001, and again in November 2002. On November 29, 2002 EPA published Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (Federal Register: November 29, 2002 Volume 67, Number 230 Page 71169-71172). This document is intended to be a companion for that guidance.
    [Show full text]
  • National University of Engineering Ge111
    NATIONAL UNIVERSITY OF ENGINEERING COLLEGE OF ENVIRONMENTAL ENGINEERING ENVIRONMENTAL ENGINEERING PROGRAM GE111 – EDAPHOLOGY I. GENERAL INFORMATION CODE : GE111 – Edaphology SEMESTER : 5 CREDITS : 03 HOURS PER WEEK : 04 (Theory – Practices – Laboratory) PREREQUISITES : GE102 – Geography CONDITION : Mandatory II. COURSE DESCRIPTION Concept and importance of edaphological soil and its interest for Engineering. Detailed knowledge of the components, physical and chemical properties, genesis, classification and principles of cartography, of natural soils and anthropogenic urban soils. Principle of soil evaluation, as a starting point in studies of environmental planning, territorial planning and environmental impact assessment. Finally, it is intended that students understand the importance of soil as a non-renewable resource and the degradations to which its inappropriate use leads; It is also intended to train in the corrective and rehabilitating measures of degraded soils. III. COURSE OUTCOMES At the end of the course the student will: Organizes data for proper analysis and interpretation and calculations (soil densities, physical chemical and biological properties). Explains and determines the genesis of the soil, the physical properties of the soil, geo reference, physiographic units. Understand and apply densities, to determine the consistency of the soil, the probability of resistance in an earthquake. Interpret and perform types of soil sampling to take to the laboratory to determine their physical, chemical, and biological characteristics. Build models to determine the degree of contamination, is determined by the parameters, using the LMOs, ECAs, In soils. IV. LEARNING UNITS 1. SOIL GENESIS / 4 HOURS Objective of soil science: Interest in Engineering. Genesis. Pedological and edaphological approach. Factors of soil formation. Climate action. Properties of the soil affected by the climate.
    [Show full text]
  • Soil As a Huge Laboratory for Microorganisms
    Research Article Agri Res & Tech: Open Access J Volume 22 Issue 4 - September 2019 Copyright © All rights are reserved by Mishra BB DOI: 10.19080/ARTOAJ.2019.22.556205 Soil as a Huge Laboratory for Microorganisms Sachidanand B1, Mitra NG1, Vinod Kumar1, Richa Roy2 and Mishra BB3* 1Department of Soil Science and Agricultural Chemistry, Jawaharlal Nehru Krishi Vishwa Vidyalaya, India 2Department of Biotechnology, TNB College, India 3Haramaya University, Ethiopia Submission: June 24, 2019; Published: September 17, 2019 *Corresponding author: Mishra BB, Haramaya University, Ethiopia Abstract Biodiversity consisting of living organisms both plants and animals, constitute an important component of soil. Soil organisms are important elements for preserved ecosystem biodiversity and services thus assess functional and structural biodiversity in arable soils is interest. One of the main threats to soil biodiversity occurred by soil environmental impacts and agricultural management. This review focuses on interactions relating how soil ecology (soil physical, chemical and biological properties) and soil management regime affect the microbial diversity in soil. We propose that the fact that in some situations the soil is the key factor determining soil microbial diversity is related to the complexity of the microbial interactions in soil, including interactions between microorganisms (MOs) and soil. A conceptual framework, based on the relative strengths of the shaping forces exerted by soil versus the ecological behavior of MOs, is proposed. Plant-bacterial interactions in the rhizosphere are the determinants of plant health and soil fertility. Symbiotic nitrogen (N2)-fixing bacteria include the cyanobacteria of the genera Rhizobium, Free-livingBradyrhizobium, soil bacteria Azorhizobium, play a vital Allorhizobium, role in plant Sinorhizobium growth, usually and referred Mesorhizobium.
    [Show full text]
  • Soil Quality: Why and How?
    Geoderma 114 (2003) 145–156 www.elsevier.com/locate/geoderma Soil quality: why and how? Douglas L. Karlena,*, Craig A. Ditzlerb, Susan S. Andrewsa a USDA-ARS National Soil Tilth Laboratory, 2150 Pammel Drive, Ames, IA 50011-4420, USA b National Soil Survey Center, 100 Centennial Mall North, Lincoln, NE 68508-3866, USA Abstract The soil quality concept evolved throughout the 1990s in response to increased global emphasis on sustainable land use and with a holistic focus emphasizing that sustainable soil management requires more than soil erosion control. The concept includes two areas of emphasis—education and assessment—both based soundly on principles of soil science. Soil quality test kits, farmer-based scorecards, visual assessment procedures, fact sheets, and video presentations were developed as educational materials because many people have no basis to recognize, understand or appreciate the complexity of soil resources. Assessment tools for indexing soil quality at various scales were pursued to show the multiple functions (e.g. nutrient and water cycling, filtering and buffering of contaminants, decomposition of crop residues and other organic matter sources, and recycling of essential plant nutrients) that soils provide as the foundation for sustainable land management. Worldwide research and technology transfer efforts have increased awareness that soil resources have both inherent characteristics determined by their basic soil formation factors and dynamic characteristics influenced by human decisions and management practices. Soil quality assessment and education are intended to provide a better understanding and awareness that soil resources are truly living bodies with biological, chemical, and physical properties and processes performing essential ecosystem services.
    [Show full text]
  • Late Holocene Climate Reconstructions for the Russian Steppe, Based on Mineralogical and Magnetic Properties of Buried Palaeosols ⁎ T
    Palaeogeography, Palaeoclimatology, Palaeoecology 249 (2007) 103–127 www.elsevier.com/locate/palaeo Late Holocene climate reconstructions for the Russian steppe, based on mineralogical and magnetic properties of buried palaeosols ⁎ T. Alekseeva a, A. Alekseev a, , B.A. Maher b, V. Demkin a a Institute of Physicochemical and Biological Problems of Soil Science, Russian Academy of Sciences, Pushchino, Russia b Centre for Environmental Magnetism and Palaeomagnetism, Lancaster Environment Centre, Department of Geography, Lancaster University, Lancaster, LA1 4YB, UK Received 10 April 2005; received in revised form 29 December 2006; accepted 15 January 2007 Abstract Insights into past climate changes, and corresponding evolution of soils and the environment, can be gained by multi- disciplinary studies of palaeosols. Here, we focus on palaeosols buried beneath archaeological monuments, specifically, funerary mounds (kurgans), in the Russian steppe. The kurgans were constructed, and each of the palaeosols buried, over a range of different timesteps from the mid-Holocene to ∼ 600 years before present (yr BP). Integrated magnetic, mineralogical and pedological data were used to obtain estimates of past climate (especially precipitation) changes, through both time and space. A soil magnetism- based climofunction, derived previously from modern steppe soils and modern climate, was applied to each set of palaeosols, to obtain quantitative reconstructions of annual precipitation for the time at which the soils were buried. Independent soil property data (clay mineralogy, salt content, iron mineralogy from Mossbauer analysis, and optical and electron microscopy) were also obtained, in order to test and substantiate the magnetic inferences. The data obtained indicate that the climate of the Lower Volga steppe area has varied from the mid-Holocene onwards.
    [Show full text]
  • Advanced Crop and Soil Science. a Blacksburg. Agricultural
    DOCUMENT RESUME ED 098 289 CB 002 33$ AUTHOR Miller, Larry E. TITLE What Is Soil? Advanced Crop and Soil Science. A Course of Study. INSTITUTION Virginia Polytechnic Inst. and State Univ., Blacksburg. Agricultural Education Program.; Virginia State Dept. of Education, Richmond. Agricultural Education Service. PUB DATE 74 NOTE 42p.; For related courses of study, see CE 002 333-337 and CE 003 222 EDRS PRICE MF-$0.75 HC-$1.85 PLUS POSTAGE DESCRIPTORS *Agricultural Education; *Agronomy; Behavioral Objectives; Conservation (Environment); Course Content; Course Descriptions; *Curriculum Guides; Ecological Factors; Environmental Education; *Instructional Materials; Lesson Plans; Natural Resources; Post Sc-tondary Education; Secondary Education; *Soil Science IDENTIFIERS Virginia ABSTRACT The course of study represents the first of six modules in advanced crop and soil science and introduces the griculture student to the topic of soil management. Upon completing the two day lesson, the student vill be able to define "soil", list the soil forming agencies, define and use soil terminology, and discuss soil formation and what makes up the soil complex. Information and directions necessary to make soil profiles are included for the instructor's use. The course outline suggests teaching procedures, behavioral objectives, teaching aids and references, problems, a summary, and evaluation. Following the lesson plans, pages are coded for use as handouts and overhead transparencies. A materials source list for the complete soil module is included. (MW) Agdex 506 BEST COPY AVAILABLE LJ US DEPARTMENT OFmrAITM E nufAT ION t WE 1. F ARE MAT IONAI. ItiST ifuf I OF EDuCATiCiN :),t; tnArh, t 1.t PI-1, t+ h 4t t wt 44t F.,.."11 4.
    [Show full text]
  • World Reference Base for Soil Resources 2014 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps
    ISSN 0532-0488 WORLD SOIL RESOURCES REPORTS 106 World reference base for soil resources 2014 International soil classification system for naming soils and creating legends for soil maps Update 2015 Cover photographs (left to right): Ekranic Technosol – Austria (©Erika Michéli) Reductaquic Cryosol – Russia (©Maria Gerasimova) Ferralic Nitisol – Australia (©Ben Harms) Pellic Vertisol – Bulgaria (©Erika Michéli) Albic Podzol – Czech Republic (©Erika Michéli) Hypercalcic Kastanozem – Mexico (©Carlos Cruz Gaistardo) Stagnic Luvisol – South Africa (©Márta Fuchs) Copies of FAO publications can be requested from: SALES AND MARKETING GROUP Information Division Food and Agriculture Organization of the United Nations Viale delle Terme di Caracalla 00100 Rome, Italy E-mail: [email protected] Fax: (+39) 06 57053360 Web site: http://www.fao.org WORLD SOIL World reference base RESOURCES REPORTS for soil resources 2014 106 International soil classification system for naming soils and creating legends for soil maps Update 2015 FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2015 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO.
    [Show full text]
  • The Nature and Dynamics of Soil Organic Matter: Plant Inputs, Microbial Transformations, and Organic Matter Stabilization
    Soil Biology & Biochemistry 98 (2016) 109e126 Contents lists available at ScienceDirect Soil Biology & Biochemistry journal homepage: www.elsevier.com/locate/soilbio Review paper The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization Eldor A. Paul Natural Resource Ecology Laboratory and Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523-1499, USA article info abstract Article history: This review covers historical perspectives, the role of plant inputs, and the nature and dynamics of soil Received 19 November 2015 organic matter (SOM), often known as humus. Information on turnover of organic matter components, Received in revised form the role of microbial products, and modeling of SOM, and tracer research should help us to anticipate 31 March 2016 what future research may answer today's challenges. Our globe's most important natural resource is best Accepted 1 April 2016 studied relative to its chemistry, dynamics, matrix interactions, and microbial transformations. Humus has similar, worldwide characteristics, but varies with abiotic controls, soil type, vegetation inputs and composition, and the soil biota. It contains carbohydrates, proteins, lipids, phenol-aromatics, protein- Keywords: Soil organic matter derived and cyclic nitrogenous compounds, and some still unknown compounds. Protection of trans- 13C formed plant residues and microbial products occurs through spatial inaccessibility-resource availability, 14C aggregation of mineral and organic constituents, and interactions with sesquioxides, cations, silts, and Plant residue decomposition clays. Tracers that became available in the mid-20th century made the study of SOM dynamics possible. Soil carbon dynamics Carbon dating identified resistant, often mineral-associated, materials to be thousands of years old, 13 Humus especially at depth in the profile.
    [Show full text]