Characterization and Propagation of Some Medicinal Plants in the Central-South Region of Chile

Total Page:16

File Type:pdf, Size:1020Kb

Characterization and Propagation of Some Medicinal Plants in the Central-South Region of Chile G Model INDCRO-5529; No. of Pages 9 ARTICLE IN PRESS Industrial Crops and Products xxx (2010) xxx–xxx Contents lists available at ScienceDirect Industrial Crops and Products journal homepage: www.elsevier.com/locate/indcrop Characterization and propagation of some medicinal plants in the central-south region of Chile Susana Fischer a,∗, Marisol Berti a,f, Rosemarie Wilckens a, Marcelo Baeza b, Edgar Pastene c, Luis Inostroza d, Claudia Tramón e, W. Gonzalez a a Dep. Producción Vegetal, Facultad de Agronomía, Universidad de Concepción, Casilla 537, Chillán, Chile b Facultad de Ciencias Biológicas y Oceanográfica, Universidad de Concepción, Chile c Facultad de Farmacia, Universidad de Concepción, Chile d Instituto de Investigaciones Agropecuarias Quilamapu, Chillán, Chile e Facultad de Ingeniería Agrícola, Universidad de Concepción, Chile f Dep. of Plant Sciences, North Dakota State University, Fargo, ND, United States article info abstract Article history: The increase of land use for crop cultivation and forest in South Central Chile, and the increasing wild- Received 10 October 2010 crafting of medicinal plants has resulted in a significant reduction of the plant population density of many Accepted 12 October 2010 native and endemic medicinal plants. Their cultivation and domestication is very limited, and there are Available online xxx no regulations or legislation for wildcrafting in Chile. The objectives of this study were to collect genetic material from five native medicinal plants (Adesmia emarginata, Buddleja globosa, Fabiana imbricata, Linum Keywords: chamissonis, and Sophora macrocarpa), characterize the environmental conditions in which these grow Habitat in the Bio-Bio Region, Chile, and to determine the content of specific bioactive molecules. A maximum Germination of 10 accessions of each species were collected in 2003, 2004, and 2005 in a longitudinal and transversal Seed ◦ ◦ ◦ Flavonoids transect of the Bio-Bio Region (36 00 –38 30 S; 71 W). Data of altitude, light conditions, soil chemical Rutin and physical characteristics and associated flora of the site collection were recorded. Seed germination requirements and the content of specific bioactive molecules (flavonoids or rutin) were also determined. In general, all these species are adapted to grow in poor soils with different pH values, P and K levels, low organic matter and N content. Flavonoids were determined in both A. emarginata (0.6–1%) and B. globosa (9.7–13.9%) leaves, while rutin concentration was determined in F. imbricata leaves and stems (1.3–5.3%). Results showed great variations for the content of active principles with medicinal activity, which indi- cates a corresponding variation in the quality of raw materials for the pharmaceutical industry. Due to the fact that information on the domestication, propagation, cultivation and agronomic practices can ensure good pharmaceutical quality, this study provides a basis for further research on Chilean medicinal plants. © 2010 Elsevier B.V. All rights reserved. 1. Introduction Vogel, 2000; Conama, 2003). In addition, approximately 13% of the vascular flora has a potential use. The use of medicinal plants has increased in the last few years. Adesmia emarginata is used in traditional medicine mainly The current concern on better health has resulted in a higher because of its analgesic and diuretic properties. It is a perennial demand of medicinal plants worldwide and has also encouraged plant that usually stays under snow at least 5 months a year, the interest in the search for new active compounds in the flora depending on weather conditions. of tropical, sub-tropical and temperate flora, such as in Chile. As a Buddleja globosa is a perennial shrub or small tree, reaching 4 m long and narrow country, with different types of soil and climate, high, with a soft thin trunk and a ramified branch structure. The Chile has a highly endemic flora. In fact, 85% of Chilean vascular infusion of these leaves is mainly used because of it diuretic, anti- flora is native and approximately 44% is endemic (Cubillos, 1994; inflammatory and wound-healing properties. It is used as a remedy for hepatic affections and dysentery, and as a local antiseptic for intestinal ulceration (Montes, s/f; Munoz˜ et al., 2001). An ointment for healing cracks in the nipples of breastfeeding mothers is sold ∗ Corresponding author. Tel.: +56 42 208871; fax: +56 42 275009. in local shops in Chile. It can also be used for dyeing natural fibers E-mail address: sfi[email protected] (F. Susana). (Navas, 1979) and as an ornamental plant (Montenegro, 2000). 0926-6690/$ – see front matter © 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.indcrop.2010.10.012 Please cite this article in press as: Susana, F., et al., Characterization and propagation of some medicinal plants in the central-south region of Chile. Ind. Crops Prod. (2010), doi:10.1016/j.indcrop.2010.10.012 G Model INDCRO-5529; No. of Pages 9 ARTICLE IN PRESS 2 F. Susana et al. / Industrial Crops and Products xxx (2010) xxx–xxx Fabiana imbrincata is a shrub with numerous upright branches, S. macrocarpa seeds were scarified by soaking them into sulfu- attaining a height of 3 m. Leaves are small and sessile, emitting ric acid (98–99%, v/v) for 15 or 30 min. After scarification, seeds when crushed an aromatic and resinous odor. The infusion obtained were washed with running water for 16 h to remove the acid. For from the bark and stems of this shrub has gastroprotector, chola- mechanical scarification, seeds were placed in a cylinder, covered gogue, liver stimulant, sedative, antiseptic, soothing, and diuretic with sand paper and agitated for 10 min. Then, seeds were placed effects (Montes, s/f; Munoz˜ et al., 2001; Navas Bustamante, 2001). in plastic trays of 14 cm × 19 cm on folded filter paper humidified This infusion is also used to treat Fasciola hepatica infections in goats with distilled water. and sheep in Chilean folk medicine (Navas Bustamante, 2001). In L. chamissonis: seeds were washed with Benomil 10% (w/v) to Chile, wild plants are harvested for flower shops. In other coun- avoid pathogens. Seeds were then placed in Petri dishes with humid tries, this shrub is used as an ornamental plant in gardens (Sánchez filter paper. de Lorenzo-Cáceres, s/f) or in flowerpot (Grüneberg, 1993, 1994, Three germination chambers were used. For the experiment 1995). under dark conditions, Petri dishes were covered with aluminum Linum chamissonis whole plant or dry seeds, which contain both paper. Metal Petri dishes were used and the evaluation was car- oil and glucosides, are used in Chilean folk medicine as laxative and ried out in a dark chamber with red light in order to avoid the emollient, for indigestion, painful dyspepsia, cold, intestinal disor- stimulation of light in the germination process. Observations on ders, antispasmodic, and irritable bowel syndrome (Munoz˜ et al., the number of germinated seeds were made on a daily basis and 2001). Whole plant is used to diminish local inflammations (Munoz˜ records were kept. et al., 2001). Sophora macrocarpa is a perennial small tree or shrub that can 2.3. Evaluated parameters reach 3 m in height (Rodríguez et al., 1983). It contains flavonoids that promote pharmacological activities on capillary fragility and Germination percentage was calculated, as follows: anti-inflammatory activity on blood vessels. It also presents anti- = . / . × spasmodic and antipyretic effects (Backhouse and Delporte, 1977). GP (No ofgerminatedseeds) (No ofsownseeds) 100 (1) Because of their hard seed coat, S. macrocarpa seeds are not able to where GP is the germination percentage. germinate (Rodríguez et al., 1995). Vigor index was calculated using the formula described by The increase of land used for crop and forest cultivation in South Anfirud and Schneiter (1984): Central Chile, and the increasing wild crafting of medicinal plants has resulted in the decrease of plant population density of many A1 A2 An IV = + +···+ native and endemic medicinal plants. There are no regulations or X1 X2 Xn legislation for wildcrafting in Chile (Vogel et al., 2005). In order where A = number of seeds that germinated daily in each experi- to prevent the extinction of some endemic plants, actions need to 1 mental unit from the first day, when the first seed germinated, to be taken. On this respect, only a few attempts have been made to the day when the last seed germinated for each experimental unit; domesticate and cultivate them. X = correlative day since the first germinated seed was observed in This preliminary study aimed to characterize the environment, any experimental unit (day 1), until the day in which the last seed rescue, propagate, and characterize plants both in situ and ex situ germinated; N = day of the last germination. and to determine the content of specific bioactive molecules of Germination rate was determined according to the formula used some native medicinal species grown in the Bio-Bio Region, in by Quintero et al. (1999):TG=(N × T + N × T + Nn × Tn)/(No. total South Central Chile, in order to contribute to the maintenance of 1 1 2 2 of germinated seeds) where: N = germinated seed number on day regional genetic heritage. i i = 1,2, ..., nTi = time in days TG50: time (days) required to achieve 2. Materials and methods 50% of germination (Olivares et al., 1999). 2.1. Characterization of soil and environment 2.3.1. Determination of total flavonoids A sample of 400 mg of pulverized dry plant material (180 mesh) Accessions of each of the following species were collected was extracted in a water bath with 15 mL of methanol for 15 min between 2003 and 2005: A. emarginata (six accessions), B. globosa, (Nieva-Moreno et al., 2000). The extracts were further sonicated F. imbricata, L. chamissonis (10 accessions of each one) and S. macro- during 15 min, concentrated by rotary evaporation and brought to carpa (nine accessions).
Recommended publications
  • Appendix 1: Maps and Plans Appendix184 Map 1: Conservation Categories for the Nominated Property
    Appendix 1: Maps and Plans Appendix184 Map 1: Conservation Categories for the Nominated Property. Los Alerces National Park, Argentina 185 Map 2: Andean-North Patagonian Biosphere Reserve: Context for the Nominated Proprty. Los Alerces National Park, Argentina 186 Map 3: Vegetation of the Valdivian Ecoregion 187 Map 4: Vegetation Communities in Los Alerces National Park 188 Map 5: Strict Nature and Wildlife Reserve 189 Map 6: Usage Zoning, Los Alerces National Park 190 Map 7: Human Settlements and Infrastructure 191 Appendix 2: Species Lists Ap9n192 Appendix 2.1 List of Plant Species Recorded at PNLA 193 Appendix 2.2: List of Animal Species: Mammals 212 Appendix 2.3: List of Animal Species: Birds 214 Appendix 2.4: List of Animal Species: Reptiles 219 Appendix 2.5: List of Animal Species: Amphibians 220 Appendix 2.6: List of Animal Species: Fish 221 Appendix 2.7: List of Animal Species and Threat Status 222 Appendix 3: Law No. 19,292 Append228 Appendix 4: PNLA Management Plan Approval and Contents Appendi242 Appendix 5: Participative Process for Writing the Nomination Form Appendi252 Synthesis 252 Management Plan UpdateWorkshop 253 Annex A: Interview Guide 256 Annex B: Meetings and Interviews Held 257 Annex C: Self-Administered Survey 261 Annex D: ExternalWorkshop Participants 262 Annex E: Promotional Leaflet 264 Annex F: Interview Results Summary 267 Annex G: Survey Results Summary 272 Annex H: Esquel Declaration of Interest 274 Annex I: Trevelin Declaration of Interest 276 Annex J: Chubut Tourism Secretariat Declaration of Interest 278
    [Show full text]
  • The Gradual Loss of African Indigenous Vegetables in Tropical America: a Review
    The Gradual Loss of African Indigenous Vegetables in Tropical America: A Review 1 ,2 INA VANDEBROEK AND ROBERT VOEKS* 1The New York Botanical Garden, Institute of Economic Botany, 2900 Southern Boulevard, The Bronx, NY 10458, USA 2Department of Geography & the Environment, California State University—Fullerton, 800 N. State College Blvd., Fullerton, CA 92832, USA *Corresponding author; e-mail: [email protected] Leaf vegetables and other edible greens are a crucial component of traditional diets in sub-Saharan Africa, used popularly in soups, sauces, and stews. In this review, we trace the trajectories of 12 prominent African indigenous vegetables (AIVs) in tropical America, in order to better understand the diffusion of their culinary and ethnobotanical uses by the African diaspora. The 12 AIVs were selected from African reference works and preliminary reports of their presence in the Americas. Given the importance of each of these vegetables in African diets, our working hypothesis was that the culinary traditions associated with these species would be continued in tropical America by Afro-descendant communities. However, a review of the historical and contemporary literature, and consultation with scholars, shows that the culinary uses of most of these vegetables have been gradually lost. Two noteworthy exceptions include okra (Abelmoschus esculentus) and callaloo (Amaranthus viridis), although the latter is not the species used in Africa and callaloo has only risen to prominence in Jamaica since the 1960s. Nine of the 12 AIVs found refuge in the African- derived religions Candomblé and Santería, where they remain ritually important. In speculating why these AIVs did not survive in the diets of the New World African diaspora, one has to contemplate the sociocultural, economic, and environmental forces that have shaped—and continue to shape—these foodways and cuisines since the Atlantic slave trade.
    [Show full text]
  • Thesis (Complete)
    UvA-DARE (Digital Academic Repository) The evolutionary divergence of the genetic networks that control flowering in distinct species Della Pina, S. Publication date 2016 Document Version Final published version Link to publication Citation for published version (APA): Della Pina, S. (2016). The evolutionary divergence of the genetic networks that control flowering in distinct species. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:10 Oct 2021 THE EVOLUTIONARY DIVERGENCE OF THE GENETIC NETWORKS THAT CONTROL FLOWERING IN DISTINCT SPECIES Cover design: Daniela Lazzini, after an idea of Serena Della Pina. THE EVOLUTIONARY DIVERGENCE OF THE GENETIC NETWORKS THAT CONTROL FLOWERING IN DISTINCT SPECIES ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit van Amsterdam op gezag van de Rector Magnificus prof.
    [Show full text]
  • A Molecular Phylogeny of the Solanaceae
    TAXON 57 (4) • November 2008: 1159–1181 Olmstead & al. • Molecular phylogeny of Solanaceae MOLECULAR PHYLOGENETICS A molecular phylogeny of the Solanaceae Richard G. Olmstead1*, Lynn Bohs2, Hala Abdel Migid1,3, Eugenio Santiago-Valentin1,4, Vicente F. Garcia1,5 & Sarah M. Collier1,6 1 Department of Biology, University of Washington, Seattle, Washington 98195, U.S.A. *olmstead@ u.washington.edu (author for correspondence) 2 Department of Biology, University of Utah, Salt Lake City, Utah 84112, U.S.A. 3 Present address: Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt 4 Present address: Jardin Botanico de Puerto Rico, Universidad de Puerto Rico, Apartado Postal 364984, San Juan 00936, Puerto Rico 5 Present address: Department of Integrative Biology, 3060 Valley Life Sciences Building, University of California, Berkeley, California 94720, U.S.A. 6 Present address: Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, U.S.A. A phylogeny of Solanaceae is presented based on the chloroplast DNA regions ndhF and trnLF. With 89 genera and 190 species included, this represents a nearly comprehensive genus-level sampling and provides a framework phylogeny for the entire family that helps integrate many previously-published phylogenetic studies within So- lanaceae. The four genera comprising the family Goetzeaceae and the monotypic families Duckeodendraceae, Nolanaceae, and Sclerophylaceae, often recognized in traditional classifications, are shown to be included in Solanaceae. The current results corroborate previous studies that identify a monophyletic subfamily Solanoideae and the more inclusive “x = 12” clade, which includes Nicotiana and the Australian tribe Anthocercideae. These results also provide greater resolution among lineages within Solanoideae, confirming Jaltomata as sister to Solanum and identifying a clade comprised primarily of tribes Capsiceae (Capsicum and Lycianthes) and Physaleae.
    [Show full text]
  • Herbarium Collection of the Rio De Janeiro Botanical Garden (RB), Brazil
    Biodiversity Data Journal 6: e22757 doi: 10.3897/BDJ.6.e22757 Data Paper Herbarium collection of the Rio de Janeiro Botanical Garden (RB), Brazil João M. Lanna‡, Luís Alexandre E da Silva‡‡, Marli P. Morim , Paula M. Leitman‡, Natália O. Queiroz‡, Fabiana L. R. Filardi‡, Eduardo C. Dalcin‡, Felipe A. Oliveira‡, Rafaela C. Forzza‡ ‡ Rio de Janeiro Botanical Garden, Rio de Janeiro, Brazil Corresponding author: João M. Lanna ([email protected]), Rafaela C. Forzza ([email protected]) Academic editor: Lauren Gardiner Received: 04 Dec 2017 | Accepted: 27 Feb 2018 | Published: 12 Mar 2018 Citation: Lanna J, da Silva L, Morim M, Leitman P, Queiroz N, Filardi F, Dalcin E, Oliveira F, Forzza R (2018) Herbarium collection of the Rio de Janeiro Botanical Garden (RB), Brazil. Biodiversity Data Journal 6: e22757. https://doi.org/10.3897/BDJ.6.e22757 ZooBank: urn:lsid:zoobank.org:pub:01184AD8-4C7A-43E2-AAB3-20F9860F47E2 Abstract Background This paper provides a quantitative and general description of the Rio de Janeiro Botanical Garden herbarium (RB) dataset. Created over a century ago, the RB currently comprises ca. 750,000 mounted specimens, with a strong representation of Brazilian flora, mainly from the Atlantic and Amazon forests. Nearly 100% of these specimens have been entered into the database and imaged and, at present, about 17% have been geo-referenced. This data paper is focused exclusively on RB's exsiccatae collection of land plants and algae, which is currently increasing by about twenty to thirty thousand specimens per year thanks to fieldwork, exchange and donations. Since 2005, many national and international projects have been implemented, improving the quality and accessibility of the collection.
    [Show full text]
  • <I>Hibiscus Fabiana</I> Sp. Nov. (<I>Malvaceae</I
    Blumea 65, 2020: 69 –74 www.ingentaconnect.com/content/nhn/blumea RESEARCH ARTICLE https://doi.org/10.3767/blumea.2020.65.01.08 Hibiscus fabiana sp. nov. (Malvaceae) from the Guinea Highlands (West Africa) M. Cheek1,*, P.K. Haba2,3, S. Cisse4 Key words Abstract Hibiscus fabiana Cheek (sect. Furcaria, Malvaceae) is described from the Guinea Highlands of West Africa, and its taxonomic affinities and ecology are considered. Hibiscus fabiana has previously been confused Bowal with H. rostellatus but has red fleshy calyx ribs (vs not red and non-fleshy), the calyx surface is glabrous apart from conservation 1-armed bristles (vs densely covered in minute white stellate hairs and bristles 2–5-armed), the leaves 3(–5)-lobed, Furcaria bases truncate to rounded (vs 5-lobed, cordate). The conservation status of the new species is assessed using the Guinea Highlands IUCN 2012 standard as Vulnerable. In the context of the recently discovered extinction of the Guinean endemic Hibiscus Inversodicraea pygmaea G.Taylor (Podostemaceae), we discuss the 30 new species to science discovered in Guinea Important Plant Areas since 2005, all but one of which are also range-restricted and threatened, usually by development or habitat loss. We Simandou consider it urgent to avoid their extinction, ideally with in situ conservation using an Important Plant Areas approach. Published on 27 May 2020 INTRODUCTION material described below as H. fabiana falls clearly in sect. Furcaria DC., since it possesses setose fruit valves, and a The flora of Guinea (245 857 km 2) is diverse in a West African fruiting calyx that is leathery to fleshy, with raised, rib-like veins context.
    [Show full text]
  • Evolution and Diversification of FRUITFULL Genes in Solanaceae
    UC Riverside UC Riverside Previously Published Works Title Evolution and Diversification of FRUITFULL Genes in Solanaceae. Permalink https://escholarship.org/uc/item/3n4271zj Authors Maheepala, Dinusha C Emerling, Christopher A Rajewski, Alex et al. Publication Date 2019 DOI 10.3389/fpls.2019.00043 Peer reviewed eScholarship.org Powered by the California Digital Library University of California fpls-10-00043 February 20, 2019 Time: 18:45 # 1 ORIGINAL RESEARCH published: 21 February 2019 doi: 10.3389/fpls.2019.00043 Evolution and Diversification of FRUITFULL Genes in Solanaceae Dinusha C. Maheepala1, Christopher A. Emerling2†, Alex Rajewski1, Jenna Macon1, Maya Strahl3†, Natalia Pabón-Mora4 and Amy Litt1* 1 Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States, 2 Institut des Sciences de l’Évolution de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique, Institut Edited by: de Recherche pour le Développement, École Pratique des Hautes Études, Montpellier, France, 3 The New York Botanical Jill Christine Preston, Garden, Bronx, NY, United States, 4 Instituto de Biología, Universidad de Antioquia, Medellín, Colombia University of Vermont, United States Reviewed by: Renata Reinheimer, Ecologically and economically important fleshy edible fruits have evolved from dry fruit Instituto de Agrobiotecnología del numerous times during angiosperm diversification. However, the molecular mechanisms Litoral (IAL), Argentina Bharti Sharma, that underlie these shifts are unknown. In the Solanaceae there has been a major California State Polytechnic University, shift to fleshy fruits in the subfamily Solanoideae. Evidence suggests that an ortholog Pomona, United States of FRUITFULL (FUL), a transcription factor that regulates cell proliferation and limits *Correspondence: the dehiscence zone in the silique of Arabidopsis, plays a similar role in dry-fruited Amy Litt [email protected] Solanaceae.
    [Show full text]
  • Phylogenetic Relationships of Petunia Patagonica (Solanaceae) Revealed by Molecular and Biogeographical Evidence
    Phytotaxa 222 (1): 017–032 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2015 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.222.1.2 Phylogenetic relationships of Petunia patagonica (Solanaceae) revealed by molecular and biogeographical evidence MAIKEL RECK-KORTMANN1, GUSTAVO A. SILVA-ARIAS1, JOÃO R. STEHMANN2, JULIÁN A. GREPPI3 & LORETA B. FREITAS1,4 1Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, P.O. Box 15053, 91501-970 Porto Alegre, RS, Brazil. 2Laboratory of Plant Systematic, Department of Botany, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, 31270- 901, Belo Horizonte, MG, Brazil. 3Instituto de Floricultura, Instituto Nacional de Tecnología Agropecuaria, Las CabanÞas y De los Reseros s/nº, 1686 Hurlingham, Buenos Aires, Argentina. 4Corresponding author ([email protected]) Abstract Petunia patagonica is restricted to the Patagonian region of Argentina and its identity is controversial. The species was described in the genus Nierembergia, and subsequently transferred to the genus Petunia. However, several morphological characteristics of P. patagonica as well as its geographical distribution differ from other Petunia species, and it has been repeatedly considered an exception in the genus. Using one nuclear and two cpDNA markers for 22 species representing seven genera of the tribe Petunieae, we analyzed phylogenetic and biogeographic evidence to clarify the phylogenetic posi- tion of P. patagonica. Our results suggest that P. patagonica is not a member of the genus Petunia and is closer to Fabiana imbricata. In addition, Calibrachoa appears basal within the Petunia, Calibrachoa, and Fabiana clades, and Fabiana and Petunia are sister genera.
    [Show full text]
  • SISTEMAS DE INMERSIÓN TEMPORAL, ELICITACIÓN Y TRANSFORMACIÓN GENÉTICA EN Digitalis Purpurea L
    INSTITUTO DE BIOTECNOLOGÍA DE LAS PLANTAS SISTEMAS DE INMERSIÓN TEMPORAL, ELICITACIÓN Y TRANSFORMACIÓN GENÉTICA EN Digitalis purpurea L. Tesis presentada en opción al grado científico de Doctor en Ciencias Agrícolas Naivy Lisbet Pérez Alonso Santa Clara 2013 UNIVERSIDAD CENTRAL “MARTA ABREU” DE LAS VILLAS INSTITUTO DE BIOTECNOLOGÍA DE LAS PLANTAS SISTEMAS DE INMERSIÓN TEMPORAL, ELICITACIÓN Y TRANSFORMACIÓN GENÉTICA EN Digitalis purpurea L. Tesis presentada en opción al grado científico de Doctor en Ciencias Agrícolas Autor: Ing. Naivy Lisbet Pérez Alonso, MSc Tutor: Inv. Tit., Ing. Elio Antonio Jiménez González, Dr. C Santa Clara 2013 CITACION CORRECTA Sistema apellido‐año Pérez Alonso, Naivy Lisbet. 2013. Sistemas de inmersión temporal, elicitación y transformación genética en Digitalis purpurea L. [Tesis presentada en opción al Grado Científico de Doctor en Ciencias Agrícolas] Santa Clara, Universidad Central “Marta Abreu” de Las Villas, Instituto de Biotecnología de las plantas. 97 p. Sistema numérico 1. Pérez Alonso, Naivy Lisbet. Sistemas de inmersión temporal, elicitación y transformación genética en Digitalis purpurea L. [Tesis presentada en opción al Grado Científico de Doctor en Ciencias Agrícolas] Santa Clara, Universidad Central “Marta Abreu” de Las Villas, Instituto de Biotecnología de las plantas, 2013. 97 p. Agradecimientos Soy de pocas palabras pero para aquellos que lo merecen va todo mi esfuerzo -A ti, amigo entrañable y tutor que hace más de 18 años, me diste la oportunidad de conocerte, aprender y amar la biotecnología. De ti recibí grandes consejos en lo profesional y en lo personal y sobre todo, recibí siempre tu apoyo. No olvides que sigo pensando que cuando sea grande quiero ser como tú - Gracias a ti, Rul, por ser también mi maestro y amigo, te quiero con la vida y te agradezco, incluso, los malos momentos que nos hacen ser mejores -Al Dr André Gerth por permitirme realizar las investigaciones en BioPlanta y a la vez agradecerle a todos los que hicieron mi estancia allí más agradable.
    [Show full text]
  • WUCOLS List S Abelia Chinensis Chinese Abelia M ? ? M / / Copyright © UC Regents, Davis Campus
    Ba Bu G Gc P Pm S Su T V N Botanical Name Common Name 1 2 3 4 5 6 Symbol Vegetation Used in Type WUCOLS List S Abelia chinensis Chinese abelia M ? ? M / / Copyright © UC Regents, Davis campus. All rights reserved. bamboo Ba S Abelia floribunda Mexican abelia M ? M M / / S Abelia mosanensis 'Fragrant Abelia' fragrant abelia ? ? ? ? ? ? bulb Bu S Abelia parvifolia (A. longituba) Schuman abelia ? ? ? M ? ? grass G groundcover GC Gc S Abelia x grandiflora and cvs. glossy abelia M M M M M / perennial* P S Abeliophyllum distichum forsythia M M ? ? ? ? palm and cycad Pm S Abelmoschus manihot (Hibiscus manihot) sunset muskmallow ? ? ? L ? ? T Abies pinsapo Spanish fir L L L / / / shrub S succulent Su T N Abies spp. (CA native and non-native) fir M M M M / / P N Abronia latifolia yellow sand verbena VL VL VL / ? ? tree T P N Abronia maritima sand verbena VL VL VL / ? ? vine V California N native S N Abutilon palmeri Indian mallow L L L L M M S Abutilon pictum thompsonii variegated Chinese lantern M H M M ? ? Sunset WUCOLS CIMIS ET Representative Number climate 0 Region zones** Cities zones* S Abutilon vitifolium flowering maple M M M / ? ? Healdsburg, Napa, North- San Jose, Salinas, Central 14, 15, 16, 17 1, 2, 3, 4, 6, 8 San Francisco, Coastal San Luis Obispo S Abutilon x hybridum & cvs. flowering maple M H M M / / 1 Auburn, Central Bakersfield, Chico, 8, 9, 14 12, 14, 15, 16 Valley Fresno, Modesto, Sacramento S T Acacia abyssinica Abyssinian acacia / ? / ? / L 2 Irvine, Los South Angeles, Santa 22, 23, 24 1, 2, 4, 6 Coastal Barbara, Ventura,
    [Show full text]
  • Medicinal Plant Conservation
    MEDICINAL Medicinal Plant PLANT SPECIALIST Conservation GROUP Volume 15 Newsletter of the Medicinal Plant Specialist Group of the IUCN Species Survival Commission Chaired by Danna J. Leaman Chair’s note .......................................................................................................................................... 2 Taxon file Conservation of the Palo Santo tree, Bulnesia sarmientoi Lorentz ex Griseb, in the South America Chaco Region - Tomás Waller, Mariano Barros, Juan Draque & Patricio Micucci ............................. 4 Manejo Integral de poblaciones silvestres y cultivo agroecológico de Hombre grande (Quassia amara) en el Caribe de Costa Rica, América Central - Rafael Ángel Ocampo Sánchez ....................... 9 Regional file Chilean medicinal plants - Gloria Montenegro & Sharon Rodríguez ................................................. 15 Focus on Medicinal Plants in Madagascar - Julie Le Bigot ................................................................. 25 Medicinal Plants utilisation and conservation in the Small Island States of the SW Indian Ocean with particular emphasis on Mauritius - Ameenah Gurib-Fakim ............................................................... 29 Conservation assessment and management planning of medicinal plants in Tanzania - R.L. Mahunnah, S. Augustino, J.N. Otieno & J. Elia...................................................................................................... 35 Community based conservation of ethno-medicinal plants by tribal people of Orissa state,
    [Show full text]
  • Master Plant List.Fp5
    Mail Order Catalog Fall 2009 Cistus Nursery 22711 NW Gillihan Road Sauvie Island, oR 97231 503.621.2233 phone 503.621.9657 Fax order by phone 9-5 pst Fax, Mail, or Email: [email protected] 24-7-365 www.cistus.com Fall 2009 Mail Order Catalog (* = new to mail order list) 2 * Abelia aff. floribunda This more than lovely plant, collected in the late 1980s by Dennis Breedlove in the southern Mexican highlands, can behave as loose groundcover and even as a vine with soft-textured, apple-green leaves that go deciduous only with extreme drought. Flowers of over 2" are light pink flowers and rather open with an intoxicating perfume. Enjoys frequent summer moisture and dappled shade in all but coastal areas. A very good container plant. Has frozen to the ground and recovered twice in our Portland garden at temperatures around 20F, so we say, frost hardy in USDA zone 9a and above. $15.00 Caprifoliaceae Abelia x grandiflora 'Little Richard' Small and fast-growing Abelia, from a hybrid cross between A. chinensis and A. uniflora, reaching only 3 ft x 3 ft with dense, evergreen foliage that shows bronze highlights in winter. Useful in the landscape and suitable for a hedge. Flowers, small and white, begin in May and continue sporadically throughout the season. Sun to part shade with average summer water. Easily frost hardy in USDA zone 6, resprouting in upper zone 5. $12.00 Caprifoliaceae Abutilon 'Armando' flowering maple Flowering maple with the deepest of orange flowers blooming bloom from spring to late fall.
    [Show full text]