Expression and Characterization of a Novel Nitrilase From

Total Page:16

File Type:pdf, Size:1020Kb

Expression and Characterization of a Novel Nitrilase From J. Microbiol. Biotechnol. (2015), 25(10), 1660–1669 http://dx.doi.org/10.4014/jmb.1502.02032 Research Article Review jmb Expression and Characterization of a Novel Nitrilase from Hyperthermophilic Bacterium Thermotoga maritima MSB8 Zhi Chen1, Huayou Chen1,2*, Zhong Ni1, Rui Tian1, Tianxi Zhang1, Jinru Jia1, and Shengli Yang1 1Institute of Life Sciences, Jiangsu University, Zhenjiang 212000, P.R. China 2National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China Received: February 12, 2015 Revised: June 8, 2015 The present study describes the gene cloning, overexpression and characterization of a novel Accepted: June 9, 2015 nitrilase from hyperthermophilic bacterium Thermotoga maritima MSB8. The nitrilase gene consisted of 804 base pairs, encoding a protein of 268 amino acid residues with a molecular mass of 30.07 kDa after SDS-PAGE analysis. The optimal temperature and pH of the purified First published online enzyme were 45°C and 7.5, respectively. The enzyme demonstrated good temperature June 9, 2015 tolerance, with 40% residual activity after 60 min of heat treatment at 75°C. The kinetic *Corresponding author constants Vmax and Km of this nitrilase toward 3-cyanopyridine were 3.12 µmol/min/mg and Phone: +86-13912800258; 7.63 mM, respectively. Furthermore, this novel nitrilase exhibited a broad spectrum toward Fax: +86-51188791702; the hydrolysis of the aliphatic nitriles among the tested substrates, and particularly was E-mail: [email protected] specific to aliphatic dinitriles like succinonitrile, which was distinguished from most nitrilases ever reported. The catalytic efficiency kcat/Km was 0.44 /mM/s toward succinonitrile. This distinct characteristic might enable this nitrilase to be a potential candidate for industrial applications for biosynthesis of carboxylic acid. pISSN 1017-7825, eISSN 1738-8872 Keywords: Nitrilase, hyperthermophilic bacterium, Thermotoga maritima, temperature tolerance, Copyright© 2015 by The Korean Society for Microbiology aliphatic dinitriles and Biotechnology Introduction tremendous recognition of their potential due to the possibility of performing such biotransformation under Biocatalysis, as the core of industrial biotechnology, has mild condition that would not alter other labile reactive been widely investigated to improve the sustainability and groups [2]. efficiency so as to prepare industrial fine chemicals, mainly Nitrilase (E.C. 3.5.5.1), as one kind of valuable biocatalyst, focusing on intermediates for pharmaceuticals, agrochemicals, was utilized for the enzymatic biocatalysis of nitrile materials, and food ingredients [23, 35]. Nitrile compounds, compounds directly to corresponding carboxylic acids, generally speaking, are synthetically more available for the liberating ammonia. It had drawn sustainable attention to production of high-value carboxylic acids and amides, chemical hydrolysis in the organic chemical industry. Over which are important intermediates in producing the fine the past few decades, a considerable amount of nitrilases, chemicals and pharmaceuticals [32]. Nitrilase-mediated mainly derived from bacteria, yeasts, fungi, and plants, biocatalysis reactions of nitrile compounds to their had been acquired and reviewed in details, some of which corresponding carboxylic acids provide an ecofriendly had already been applied into the production of carboxylic alternative allowing clean and mild synthesis combined acids in the chemical industry [8, 11]. Furthermore, in- with high yield and selectivity when compared with depth investigations on nitrilases had been widely dwelt conventional chemical approaches typically requiring harsh upon with respect to their natural sources function basic or acidic reaction conditions and usually producing mechanisms, enzyme structure, screening pathways, undesired byproducts [36]. This has increasingly aroused biocatalytic properties, immobilization, purification, cloning J. Microbiol. Biotechnol. A Novel Nitrilase from Hyperthermophilic Bacterium 1661 and modifications of the nitrilase gene [4, 8, 9, 14-16, 22, commercially available and of analytical grade. 24, 28, 30]. On the basis of the broad substrate spectrum, nitrilases were commonly classified into three major groups, Sequence Analysis which included aliphatic, aromatic, and arylacetonitrilases, Amplified DNA fragments were sequenced by Sangon Biotech making them useful for the hydrolysis of a large number of (Shanghai, China). Nucleotide and protein sequence homology analyses in the NCBI database (http://blast.ncbi.nlm.nih.gov/ nitriles [19]. For example, a new nitrilase from Fusarium Blast.cgi) were conducted using the BLAST algorithm. Multiple proliferatum AUF-2 was characterized to be specific towards sequence alignment was carried out using MEGA 6.06 software. aliphatic, heterocyclic, and aromatic nitriles, which exhibited good catalytical efficiency for detoxification of nitriles [29]. The Gene Cloning and Expression of Thermotoga maritima MSB8 nitrilase from Rhodobacter sphaeroides could enantioselectively Nitrilase hydrolyze aliphatic dinitriles to corresponding cyanocarboxylic The primers that were designed based on the reported amino acids, which demonstrated great potential for commercial acid sequences of nitrilase in NCBI for the amplification of genes production of various cyanocarboxylic acids by readily were as follows: Forward: 5’-CGCGGATCCTTGCGAGTGGCGGC available dinitriles [26]. The nitrilase from Pseudomonas putida AGTACAGAT-3’ (BamHI restriction site is underlined) and CGMCC3830 was indentified as an aromatic nitrilase and Reverse 5'-CCGCTCGAGTCATAACCTCCCCTTCTGAAGC-3’ harbored high conversion efficiency toward cyanopyridine (XholI restriction site is underlined), which incorporated BamHI [37]. In addition, some arylacetonitrilases from Burkholderia and XholI restriction sites, respectively. The amplified 804 bp DNA fragment digested with BamHI and XhoI was ligated into the cenocepacia J2315 and Alcaligenes sp. ECU0401 were expression vector pet-28a(+) digested with the same restriction reported to harbor the merits of high substrate tolerance, enzymes, and then transformed into the E. coli BL21 (DE3) cells by yield, and optical purity while converting mandelonitrile heat shock. The positive clones were identified by colony PCR and to (R)-(−)-mandelic acid [10, 25, 31, 33, 34]. Moreover, a few double digestion. Sequencing of the cloned nitrilase gene was fungal nitrilases from Gibberella intermedia and Aspergillus subsequently performed at Sangon Biotech. niger were reported to be highly specific toward 3- For the expression of the nitrilase, the resulting recombinant cyanopyridine and 2-cyanopridine, respectively [7, 12]. E. coli cells were cultivated in Luria–Bertani liquid medium Although nitrilases to some extent exhibited prominent containing 50 mg/ml kanamycin at 37°C on a rotary shaker at 220 ×g. potential in the chemical industry, some drawbacks A final concentration of 0.1 mM isopropyl-β-D-thiogalactoside including insufficient stability, narrow spectrum, low was added for the induction when the optical density at 600 nm of specific activity, and poor selectivity still exist at present the culture broth reached between 0.6 and 0.8. The cells were then and limit their applications [21]. Seeking for novel nitrilase further incubated at 28°C and 160 ×g for another 20 h. After centrifugation at 8,000 ×g for 20 min, the cells were harvested and resources and their potential applications would be a preserved at -20°C for further experiments. constant demand for researchers for a long period of time. In this paper, the gene encoding the nitrilase from Purification of Thermotoga maritima MSB8 Nitrilase Thermotoga maritima MSB8 was cloned and overexpressed Nickle affinity chromatography (Ni-NTA) was applied to purify in E. coli BL21 (DE3). The recombinant nitrilase was purified the recombinant nitrilase by exploiting the histidine tag. The and biochemically characterized in detail in order to gain a obtained cells were suspended and washed twice with 10 ml of deeper understanding about the properties and application phosphate-buffered saline (50 mM, pH 8.0). Then the cells were potential of this enzyme. resuspended in 20 ml of the same buffer and disrupted by sonication on ice at 200 W for 10 min. The soluble fractions of the Materials and Methods sonicated solution were obtained by centrifugation at 8,000 ×g for 20 min to remove the cell debris. The resulting supernatant was Material passed through a 0.22 µm filter, and then loaded onto a Ni-NTA The genomic DNA of Thermotoga maritima MSB8 was obtained column previously equilibrated with a binding buffer (50 mM NaH PO , 300 mM NaCl, pH 8.0). The column was subsequently from Professor Weilan Shao at Jiangsu University. The E. coli 2 4 washed with 10 ml of wash buffer (50 mM NaH PO , 300 mM strains DH5α and BL21 (DE3) (Gene Copoeia, USA) were used as 2 4 hosts for cloning and expression experiments of the nitrilase, NaCl, 10 mM imidazole, pH 8.0) to wipe out the unbound proteins and eluted with the elution buffer (50 mM NaH PO , respectively. The plasmid pET-28a (+) (Novagen, Shanghai, China), 2 4 carrying an N-terminal and a C-terminal His6-Tag sequence, was 300 mM NaCl, 250 mM imidazole, pH 8.0). The purified enzyme used for the cloning and expression of the nitrilase. The nitrile was further analyzed by 12% sodium dodecyl sulfate polyacrylamide substrates were purchased from Sinopharm Chemical Reagent gel electrophoresis
Recommended publications
  • The Genomes of Polyextremophilic Cyanidiales Contain 1% 2 Horizontally Transferred Genes with Diverse Adaptive Functions 3 4 Alessandro W
    bioRxiv preprint doi: https://doi.org/10.1101/526111; this version posted January 23, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 The genomes of polyextremophilic Cyanidiales contain 1% 2 horizontally transferred genes with diverse adaptive functions 3 4 Alessandro W. Rossoni1#, Dana C. Price2, Mark Seger3, Dagmar Lyska1, Peter Lammers3, 5 Debashish Bhattacharya4 & Andreas P.M. Weber1* 6 7 1Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich 8 Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany 9 2Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA 10 3Arizona Center for Algae Technology and Innovation, Arizona State University, Mesa, AZ 11 85212, USA 12 4Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 13 08901, USA 14 15 *Corresponding author: Prof. Dr. Andreas P.M. Weber, 16 e-mail: [email protected] 17 bioRxiv preprint doi: https://doi.org/10.1101/526111; this version posted January 23, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 18 Abstract 19 The role and extent of horizontal gene transfer (HGT) in eukaryotes are hotly disputed topics 20 that impact our understanding regarding the origin of metabolic processes and the role of 21 organelles in cellular evolution.
    [Show full text]
  • S8 Table. Mrna Levels of Secondary Metabolic Clustered Genes in A
    S8 Table. mRNA levels of secondary metabolic clustered genes in A. flavus. Cluster Gene ID Log2 Fold Description Change 1 AFLA_125780 - ATP-binding cassette transporter, putative 1 AFLA_125770 -1.76 LysR family regulatory protein, putative 1 AFLA_125760 -1.24 squalene-hopene-cyclase, putative 2 AFLA_126710 - polyketide synthase, putative 2 AFLA_126720 - hypothetical protein 2 AFLA_126730 - conserved hypothetical protein 2 AFLA_126740 - lipase precursor, putative 3 AFLA_126970 - arginine permease, putative 3 AFLA_126980 - conserved hypothetical protein 3 AFLA_126990 - conserved hypothetical protein 3 AFLA_127000 - hypothetical protein 3 AFLA_127010 - conserved hypothetical protein 3 AFLA_127020 - monooxygenase, putative 3 AFLA_127030 - conserved hypothetical protein 3 AFLA_127040 - MFS monocarboxylate transporter, putative 3 AFLA_127050 - conserved hypothetical protein 3 AFLA_127060 - conserved hypothetical protein 3 AFLA_127070 - short-chain dehydrogenase, putative 3 AFLA_127080 - conserved hypothetical protein 3 AFLA_127100 - conserved hypothetical protein 3 AFLA_127110 - MFS transporter, putative 3 AFLA_127120 - hypothetical protein 3 AFLA_127130 - conserved hypothetical protein 3 AFLA_127140 - conserved hypothetical protein 3 AFLA_127150 - hypothetical protein 3 AFLA_127160 - NB-ARC and TPR domain protein 3 AFLA_127170 - penicillin-binding protein, putative 3 AFLA_127090 -2.42 polyketide synthase, putative 4 AFLA_128040 - efflux pump antibiotic resistance protein, putative 4 AFLA_128060 - polyketide synthase, putative 4 AFLA_128050
    [Show full text]
  • Comparative Genomics of Bradyrhizobium Japonicum CPAC
    Siqueira et al. BMC Genomics 2014, 15:420 http://www.biomedcentral.com/1471-2164/15/420 RESEARCH ARTICLE Open Access Comparative genomics of Bradyrhizobium japonicum CPAC 15 and Bradyrhizobium diazoefficiens CPAC 7: elite model strains for understanding symbiotic performance with soybean Arthur Fernandes Siqueira1,2†, Ernesto Ormeño-Orrillo3†,RangelCelsoSouza4,ElisetePainsRodrigues5, Luiz Gonzaga Paula Almeida4, Fernando Gomes Barcellos5, Jesiane Stefânia Silva Batista6, Andre Shigueyoshi Nakatani2, Esperanza Martínez-Romero3, Ana Tereza Ribeiro Vasconcelos4 and Mariangela Hungria1,2* Abstract Background: The soybean-Bradyrhizobium symbiosis can be highly efficient in fixing nitrogen, but few genomic sequences of elite inoculant strains are available. Here we contribute with information on the genomes of two commercial strains that are broadly applied to soybean crops in the tropics. B. japonicum CPAC 15 (=SEMIA 5079) is outstanding in its saprophytic capacity and competitiveness, whereas B. diazoefficiens CPAC 7 (=SEMIA 5080) is known for its high efficiency in fixing nitrogen. Both are well adapted to tropical soils. The genomes of CPAC 15 and CPAC 7 were compared to each other and also to those of B. japonicum USDA 6T and B. diazoefficiens USDA 110T. Results: Differences in genome size were found between species, with B. japonicum having larger genomes than B. diazoefficiens. Although most of the four genomes were syntenic, genome rearrangements within and between species were observed, including events in the symbiosis island. In addition to the symbiotic region, several genomic islands were identified. Altogether, these features must confer high genomic plasticity that might explain adaptation and differences in symbiotic performance. It was not possible to attribute known functions to half of the predicted genes.
    [Show full text]
  • Purification and Characterization of a Novel Nitrilase of Rhodococcus
    JOURNAL OF BACTERIOLOGY, Sept. 1990, p. 4807-4815 Vol. 172, No. 9 0021-9193/90/094807-09$02.00/0 Copyright X3 1990, American Society for Microbiology Purification and Characterization of a Novel Nitrilase of Rhodococcus rhodochrous K22 That Acts on Aliphatic Nitriles MICHIHIKO KOBAYASHI,* NORIYUKI YANAKA, TORU NAGASAWA, AND HIDEAKI YAMADA Department ofAgricultural Chemistry, Faculty ofAgriculture, Kyoto University, Sakyo-ku, Kyoto 606, Japan Received 18 April 1990/Accepted 8 June 1990 A novel nitrilase that preferentially catalyzes the hydrolysis of aliphatic nitriles to the corresponding carboxylic acids and ammonia was found in the cells of a facultative crotononitrile-utilizing actinomycete isolated from soil. The strain was taxonomically studied and identified as Rhodococcus rhodochrous. The nitrilase was purified, with 9.08% overall recovery, through five steps from a cell extract of the stain. After the last step, the purified enzyme appeared to be homogeneous, as judged by polyacrylamide gel electrophoresis, analytical centrifugation, and double immunodiffusion in agarose. The relative molecular weight values for the native enzyme, estimated from the ultracentrifugal equilibrium and by high-performance liquid chromatog- raphy, were approximately 604,000 + 30,000 and 650,000, respectively, and the enzyme consisted of 15 to 16 subunits identical in molecular weight (41,000). The enzyme acted on aliphatic olefinic nitriles such as crotononitrile and acrylonitrile as the most suitable substrates. The apparent Km values for crotononitrile and acrylonitrile were 18.9 and 1.14 mM, respectively. The nitrilase also catalyzed the direct hydrolysis of saturated aliphatic nitriles, such as valeronitrile, 4-chlorobutyronitrile, and glutaronitrile, to the correspond- ing acids without the formation of amide intermediates.
    [Show full text]
  • Direct Link to Fulltext
    ISOLATION, IDENTIFICATION AND SUBSTRATE SPECIFICITY OF A NITRILASE PRODUCING BACTERIA, Acidovorax sp. SK1 Soumya Koippully, Subha Swaraj Pattnaik, Siddhardha Busi* Address(es): Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry-605 014, India. *Corresponding author: [email protected] doi: 10.15414/jmbfs.2018.8.2.788-793 ARTICLE INFO ABSTRACT Received 13. 5. 2018 The process of biocatalysis or biotransformation remains the core of industrial biotechnology owing to its importance in the synthesis of Revised 3. 9. 2018 high-value products in a cost effective manner. Nitrile biotransformation has also achieved considerable attention in last few decades Accepted 5. 9. 2018 due to its widespread biotechnological and industrial applications. In the present study, a versatile, potent nitrile-degrading bacterium, Published 1. 10. 2018 Acidovorax sp. SK1 was isolated from the cracker waste dumping site of Sivakasi, Tamilnadu and characterized for its biocatalytic potential, nitrilase production and enzyme activity. A pH sensitive indicator-based assay was performed to identify the nitrile degrading ability of the isolated samples. Semi quantitative High performance thin layer chromatographic (HPTLC) method was performed for Regular article quantitative measurement of mandelic acid produced from degradation of nitrile compound, mandelonitrile. The optimization of medium and nutritional parameters were studied for the improvement of nitrilase activity, which indicated that maximum nitrilase activity was observed at an optimum pH of 7.0, agitation at 100 rpm, glucose as best carbon source (10 g/L) and yeast extract (0.1 g/L) as principal nitrogen source. Biomass is also a critical parameter in the biocatalysis of mandelonitrile to mandelic acid and at a biomass of 100 mg/L, maximum nitrilase activity of 0.026 I.U was observed.
    [Show full text]
  • Supplementary Material Supplementary Results And
    R. D. Barabote SUPPLEMENTARY MATERIAL SUPPLEMENTARY RESULTS AND DISCUSSION tRNA and codon usage. Forty-five tRNAs representing 43 different anticodons are encoded in the genome (Supplementary Table S1). The tRNAMet is present in three copies in the genome. In contrast to the number of tRNAs, all 61 sense codons are encoded in the genome sequence. The codon usage correlates well with the tRNA complement and is consistent with the high G+C content of the genome as the GC-rich codons predominate in the organism (Supplementary Table S1). Codons ATA (Ile), CGC (Arg), and CGA (Arg) as well as all codons that have a T at the third position, with the exception of CGT (Arg), do not appear to have a cognate tRNA in A. cellulolyticus. As a likely evolutionary adaptation to the available tRNAs for any given amino acid, codons that do not have a cognate tRNA occur with the least frequency in the A. cellulolyticus genome when compared to synonymous codons differing just in the 3rd position. However, the exceptions to these are for glycine (GGT (18.8%) > GGA (14.4%)), leucine (CTT (10.6%) > CTA (1.4%)), arginine (CGC (33.3%) > CGT (11.1%)), and valine (GTT (10.4%) > GTA (3.8%)). The relative preference for CGC codon over CGT codon follows the high G+C content of the genome, while the remaining four biases mentioned above may simply reflect evolutionary conservation of codon usage, as a similar trend is seen in Frankia (Supplementary Table S2). The functional significance of this bias remains elusive. The A. cellulolyticus genome encodes a parsimonious complement of 46 tRNAs.
    [Show full text]
  • The Enthalpy of Formation of Organic Compounds with “Chemical Accuracy”
    chemengineering Article Group Contribution Revisited: The Enthalpy of Formation of Organic Compounds with “Chemical Accuracy” Robert J. Meier Pro-Deo Consultant, 52525 Heinsberg, North-Rhine Westphalia, Germany; [email protected] Abstract: Group contribution (GC) methods to predict thermochemical properties are of eminent importance to process design. Compared to previous works, we present an improved group contri- bution parametrization for the heat of formation of organic molecules exhibiting chemical accuracy, i.e., a maximum 1 kcal/mol (4.2 kJ/mol) difference between the experiment and model, while, at the same time, minimizing the number of parameters. The latter is extremely important as too many parameters lead to overfitting and, therewith, to more or less serious incorrect predictions for molecules that were not within the data set used for parametrization. Moreover, it was found to be important to explicitly account for common chemical knowledge, e.g., geminal effects or ring strain. The group-related parameters were determined step-wise: first, alkanes only, and then only one additional group in the next class of molecules. This ensures unique and optimal parameter values for each chemical group. All data will be made available, enabling other researchers to extend the set to other classes of molecules. Keywords: enthalpy of formation; thermodynamics; molecular modeling; group contribution method; quantum mechanical method; chemical accuracy; process design Citation: Meier, R.J. Group Contribution Revisited: The Enthalpy of Formation of Organic Compounds with “Chemical Accuracy”. 1. Introduction ChemEngineering 2021, 5, 24. To understand chemical reactivity and/or chemical equilibria, knowledge of thermo- o https://doi.org/10.3390/ dynamic properties such as gas-phase standard enthalpy of formation DfH gas is a necessity.
    [Show full text]
  • Generated by SRI International Pathway Tools Version 25.0, Authors S
    Authors: Pallavi Subhraveti Ron Caspi Quang Ong Peter D Karp An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Ingrid Keseler Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Gcf_000725805Cyc: Streptomyces xanthophaeus Cellular Overview Connections between pathways are omitted for legibility.
    [Show full text]
  • Supporting Information
    Photocatalytic Atom Transfer Radical Addition to Olefins utilizing Novel Photocatalysts Errika Voutyritsa, Ierasia Triandafillidi, Nikolaos V. Tzouras, Nikolaos F. Nikitas, Eleftherios K. Pefkianakis, Georgios C. Vougioukalakis* and Christoforos G. Kokotos* Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece SUPPORTING INFORMATION Page General Remarks S2 Optimization of the Reaction Conditions for the Photocatalytic Reaction S3 between 1-decene and BrCH2CN Synthesis of Photocatalysts S5 Synthesis of the Starting Materials S12 General Procedure for the Photocatalytic Reaction between Olefins and S18 BrCH2CN General Procedure for the Photocatalytic Reaction between Olefins and S29 BrCCl3 Determination of the Quantum Yield S33 Phosphorescence Quenching Studies S36 References S41 NMR Spectra S43 E. Voutyritsa, I. Triandafillidi, N. V. Tzouras, N. F. Nikitas, E. K. Pefkianakis, G. C. Vougioukalakis & C. G. Kokotos S1 General Remarks Chromatographic purification of products was accomplished using forced-flow ® chromatography on Merck Kieselgel 60 F254 230-400 mesh. Thin-layer chromatography (TLC) was performed on aluminum backed silica plates (0.2 mm, 60 F254). Visualization of the developed chromatogram was performed by fluorescence quenching, using phosphomolybdic acid, anisaldehyde or potassium permanganate stains. Mass spectra (ESI) were recorded on a Finningan® Surveyor MSQ LC-MS spectrometer. HRMS spectra were recorded on Bruker® Maxis Impact QTOF spectrometer. 1H and 13C NMR spectra were recorded on Varian® Mercury (200 MHz and 50 MHz respectively), or a Bruker® Avance (500 MHz and 125 MHz), and are internally referenced to residual solvent signals. Data for 1H NMR are reported as follows: chemical shift (δ ppm), integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br s = broad singlet), coupling constant and assignment.
    [Show full text]
  • List of Extremely Hazardous Substances
    Emergency Planning and Community Right-to-Know Facility Reporting Compliance Manual List of Extremely Hazardous Substances Threshold Threshold Quantity (TQ) Reportable Planning (pounds) Quantity Quantity (Industry Use (pounds) (pounds) CAS # Chemical Name Only) (Spill/Release) (LEPC Use Only) 75-86-5 Acetone Cyanohydrin 500 10 1,000 1752-30-3 Acetone Thiosemicarbazide 500/500 1,000 1,000/10,000 107-02-8 Acrolein 500 1 500 79-06-1 Acrylamide 500/500 5,000 1,000/10,000 107-13-1 Acrylonitrile 500 100 10,000 814-68-6 Acrylyl Chloride 100 100 100 111-69-3 Adiponitrile 500 1,000 1,000 116-06-3 Aldicarb 100/500 1 100/10,000 309-00-2 Aldrin 500/500 1 500/10,000 107-18-6 Allyl Alcohol 500 100 1,000 107-11-9 Allylamine 500 500 500 20859-73-8 Aluminum Phosphide 500 100 500 54-62-6 Aminopterin 500/500 500 500/10,000 78-53-5 Amiton 500 500 500 3734-97-2 Amiton Oxalate 100/500 100 100/10,000 7664-41-7 Ammonia 500 100 500 300-62-9 Amphetamine 500 1,000 1,000 62-53-3 Aniline 500 5,000 1,000 88-05-1 Aniline, 2,4,6-trimethyl- 500 500 500 7783-70-2 Antimony pentafluoride 500 500 500 1397-94-0 Antimycin A 500/500 1,000 1,000/10,000 86-88-4 ANTU 500/500 100 500/10,000 1303-28-2 Arsenic pentoxide 100/500 1 100/10,000 1327-53-3 Arsenous oxide 100/500 1 100/10,000 7784-34-1 Arsenous trichloride 500 1 500 7784-42-1 Arsine 100 100 100 2642-71-9 Azinphos-Ethyl 100/500 100 100/10,000 86-50-0 Azinphos-Methyl 10/500 1 10/10,000 98-87-3 Benzal Chloride 500 5,000 500 98-16-8 Benzenamine, 3-(trifluoromethyl)- 500 500 500 100-14-1 Benzene, 1-(chloromethyl)-4-nitro- 500/500
    [Show full text]
  • Genetic Characterisaton of Rhodococcus Rhodochrous ATCC
    The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town Genetic characterization of Rhodococcus rhodochrous ATCC BAA-870 with emphasis on nitrile hydrolysing enzymes n ow Joni Frederick A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in the Departmentty of of MolecularCape and T Cell Biology, Universitysi of Cape Town er UnivSupervisor: Professor B. T. Sewell Co-supervisor: Professor D. Brady February 2013 Keywords Nitrile hydrolysis Biocatalysis Rhodococcus rhodochrous ATCC BAA-870 Genome sequencing Nitrilase Nitrile hydratase n ow ty of Cape T si er Univ ii Keywords Abstract Rhodococcus rhodochrous ATCC BAA-870 (BAA-870) had previously been isolated on selective media for enrichment of nitrile hydrolysing bacteria. The organism was found to have a wide substrate range, with activity against aliphatics, aromatics, and aryl aliphatics, and enantioselectivity towards beta substituted nitriles and beta amino nitriles, compounds that have potential applications in the pharmaceutical industry. This makes R. rhodochrous ATCC BAA-870 potentially a versatile biocatalyst for the synthesis of a broad range of compounds with amide and carboxylic acid groups that can be derived from structurally related nitrile precursors. The selectivity of biocatalysts allows for high product yields and better atom economyn than non- selective chemical methods of performing this reaction, suchow as acid or base hydrolysis.
    [Show full text]
  • Predicting Virulence Factors in Filamentous Fungi
    TECHNISCHE UNIVERSITAT¨ MUNCHEN¨ Lehrstuhl f¨urGenomorientierte Bioinformatik Predicting virulence factors in filamentous fungi: Regulation and evolution of secondary metabolism gene clusters Christian Martin Konrad Sieber Vollst¨andigerAbdruck der von der Fakult¨atWissenschaftszentrum Weihenstephan f¨urErn¨ahrung,Landnutzung und Umwelt der Technischen Universit¨atM¨unchen zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. W. Liebl Pr¨uferder Dissertation: 1. Univ.-Prof. Dr. H.-W. Mewes 2. Univ.-Prof. Dr. K. Jung, (Ludwig-Maximilians-Universit¨atM¨unchen) Die Dissertation wurde am 13.11.2014 bei der Technischen Universit¨atM¨unchen eingereicht und durch die Fakult¨at Wissenschaftszentrum Weihenstephan f¨ur Ern¨ahrung,Landnutzung und Umwelt am 20.01.2015 angenommen. i Abstract Pathogenic filamentous fungi constitute a health risk to humans and animals all over the world. Most of these fungi provide a diverse repertoire of bioactive small molecules like antibiotics and mycotoxins which play a key role in diseases but are also utilized as drugs and growth factors of plants. Especially Fusarium species are known to be involved in many plant diseases that lead to large agricultural and economic damage. Genes that encode enzymes of a secondary metabolism pathway usually are locally clustered on the chromosome. The rapidly increasing number of available fungal genomes enables comparative genomics studies for the identification of host specific virulence factors. Furthermore, large-scale genomic mining for gene clus- ters of novel bioactive compounds has become feasible. In this work the genome sequence of the rice pathogen Fusarium fujikuroi alongside with an extensive comparative analysis to Fusarium species with di- verse host specificities is presented.
    [Show full text]