Highlights from the Pan Pacific Lymphoma Conference

Total Page:16

File Type:pdf, Size:1020Kb

Highlights from the Pan Pacific Lymphoma Conference October 2011 A SPECIAL MEETING REVIEW EDITION Volume 9, Issue 10, Supplement 24 Highlights From the Pan Pacific Lymphoma Conference August 15–19, 2011 Kauai, Hawaii Special Reporting on: • Aggressive T-Cell Lymphomas • Novel Agents With Activity in CLL/SLL • PTCL—Update on Novel Therapies • Agents Targeting the Stromal Elements of the Lymph Node • Inducing Apoptosis in Lymphoma Cells Through Novel Agents With Expert Commentary by: Bruce D. Cheson, MD Deputy Chief Division of Hematology-Oncology Head of Hematology Lombardi Comprehensive Cancer Center Georgetown University Hospital Washington, DC Eb: E W Th O N www.clinicaladvances.com ENGINEERING T H E N E X T GENERATION OF ANTIBODY-DRUG CONJUGATES 003203_sgncor_adcadvcaho_fa4.indd 2 8/25/11 11:13 AM An innovative approach to improving outcomes in patients with cancer Antibody-drug conjugates (ADCs) use a conditionally stable linker to combine the targeting specificity of monoclonal antibodies with the tumor-killing power of potent cytotoxic agents.1,2 This could allow potent drugs to be delivered directly to tumor cells with minimal systemic toxicity. Optimizing the parameters for clinical success Scientists at Seattle Genetics are focused on parameters critical to the effective performance of ADCs, including target antigen selection,3,4 linker stability5-7 and potent cytotoxic agents.4,7,8 Elements of an antibody-drug conjugate Linker ADCs link precision and Antibody attaches the cytotoxic agent to specific for a tumor-associated the antibody. Newer linker potency for greater activity antigen that has restricted systems are designed to be expression on normal cells4,8 systemically stable and release A preclinical (in vivo) study demonstrated the cytotoxic agent in that the ADC is more active than the targeted cancer cells4,8,9 Cytotoxic agent antibody alone (mAb) or the admixture kills target cells when 10 internalized and released4,8 (mAb + cytotoxic agent unlinked) The future of drug treatment in cancer Seattle Genetics is dedicated to improving the lives of people with cancer by developing innovative therapies for hematologic malignancies and solid tumors. Visit the ADC Technology page at www.seattlegenetics.com for more information and to download the ADC scientific slide deck to learn more about this novel technology. Download ADC scientific slide deck > REFERENCES: 1. Ducry L, Stump B. Antibody-drug conjugates: linking cytotoxic payloads to monoclonal antibodies. Bioconjug Chem. 2010;21(1):5-13. 2. Wu AM, Senter PD. Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol. 2005;23(9):1137-1146. 3. Carter P, Smith L, Ryan M. Identification and validation of cell surface antigens for antibody targeting in oncology. Endocr Relat Cancer. 2004;11(4):659-687. 4. Carter PJ, Leadership in antibody-drug Senter PD. Antibody-drug conjugates for cancer therapy. Cancer J. 2008;14(3):154-169. 5. Alley SC, Benjamin DR, Jeffrey SC, et al. Contribution of linker stability to the activities of anticancer immunoconjugates. Bioconjug Chem. conjugate development 2008;19(3):759-765. 6. Chari RVJ. Targeted cancer therapy: conferring specificity to cytotoxic drugs. Acc Chem Res. 2008;41(1):98-107. 7. Alley SC, Okeley NM, Senter PD. Antibody-drug conjugates: targeted drug delivery www.seattlegenetics.com for cancer. Curr Opin Chem Biol. 2010;14(4):529-537. 8. Senter PD. Potent antibody drug conjugates for cancer therapy. Curr Opin Chem Biol. 2009;13(3):235-244. 9. Polson AG, Calemine-Fenaux J, Chan P, et al. Antibody-drug conjugates for the treatment of non–Hodgkin’s lymphoma: target and linker-drug selection. Cancer Res. 2009;69(6): 2358-2364. 10. Doronina SO, Toki BE, Torgov MY, et al. Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol. 2003;21(7):778-784. Seattle Genetics and are US registered trademarks of Seattle Genetics, Inc. © 2011 Seattle Genetics, Inc., Bothell, WA 98021 All rights reserved. Printed in USA US/ADC/2011/0027 003203_sgncor_adcadvcaho_fa4.indd 3 8/25/11 11:13 AM S pecial m eeting r eview edition Aggressive T-Cell Lymphomas r. Andrej R. Shustov dis- tion to disease subtype, international T-cell lymphoma, who usually have cussed aggressive T-cell prognostic index (IPI) scores factor extremely poor outcomes, showed lymphomas at the 2011 Pan into a prognosis.5 a 5-year OS rate of 44% and 5-year DPacific Lymphoma Conference.1 The Attempts were made to improve PFS rate of 40%. Patients with PTCL World Health Organization (WHO) outcomes in patients with PTCL unspecified (n=62) showed a 5-year recognizes 3 subfamilies of peripheral by applying consolidated high-dose OS of 45%, although 5-year PFS was T-cell lymphoma (PTCL): extranodal, therapy and autologous hematopoietic only 34%. nodal, and leukemic T-cell lympho- stem cell transplantation. However, Despite these encouraging results, mas. Nodal disease is the most com- several phase II studies examining this several studies suggest that alloge- mon, and among these the most com- treatment show very modest overall neic transplant may be preferable to mon is PTCL not otherwise specified survival (OS), suggesting that this treat- autologous transplant for patients (NOS), followed by angioimmuno- ment is not very effective for PTCL. with high-risk disease. In a study by blastic T-cell lymphoma, extranodal A study of 83 patients by Reimer and Le Gouil and colleagues, although NK-/T-cell lymphoma (nasal type), colleagues suggests that patients with treatment-related mortality was 34%, adult T-cell leukemia/lymphoma, and high IPI/prognostic index for PTCL the 5-year OS was close to 60% for anaplastic large cell lymphoma (ALK- (PIT) in particular may not benefit patients with PTCL who underwent positive and ALK-negative).2 These from high-dose therapy/autologous allogeneic stem cell transplantation.8 subtypes account for approximately hematopoietic stem cell transplanta- Very encouraging early results 90% of all PTCL patients. tion, with 3-year progression-free were also obtained by Corradini and Diagnosis can be challenging survival (PFS) of 36%.6 colleagues using non-myeloablative because most types of T-cell lymphoma In the NLG-T-01 trial, 121 allogeneic transplant, with 5-year OS do not have a specific immunopheno- patients (median age, 55 years) received and 5-year PFS of 80% and 64%, type. Therefore, a correct diagnosis cyclophosphamide, doxorubicin, vin- respectively, with survival curves show- requires a combination of molecular cristine, etoposide, and prednisone ing a clear plateau.9 Finally, a study of 17 analysis, clinical presentation, mor- (CHOEP) therapy every 14 days for patients with multiple PTCL histologies, phology, and genetics. The incidence 3 cycles. Patients with a complete and 5 patients with refractory disease at of PTCL varies geographically and response (CR) or partial response the time of transplant, showed a 3-year appears to be increasing.3,4 The clini- (PR) then received another 3 cycles of OS of 59% and 3-year PFS of 53%.10 cal outcomes critically depend on the CHOEP every 14 days. Patients who Thus, for selected patients, allogeneic T-cell lymphoma subtype, but in most still showed a CR or PR then under- transplants might provide long-term subtypes, the outcomes are generally went stem cell collection and beam- control of the disease and possibly cure poor. Fewer than 30% of patients with supported autologous large stem the drug-resistant lymphoma effect. the most common subtypes remain cell transplant.7 The subgroup of 21 The last few years have seen the alive 5 years after diagnosis.2 In addi- patients with enteropathy-associated development of some promising new Disclaimer Every effort has been made to ensure that drug usage and other information are presented accurately; however, the ultimate responsibility rests with the prescribing physician. Millennium Medical Publishing, Inc, and the participants shall not be held responsible for errors or for any consequences arising from the use of information contained herein. Readers are strongly urged to consult any relevant primary literature. No claims or endorsements are made for any drug or compound at present under clinical investigation. ©2011 Millennium Medical Publishing, Inc. 611 Broadway, Suite 310, New York, NY 10012. Printed in the USA. All rights reserved, including the right of reproduction, in whole or in part, in any form. 4 Clinical Advances in Hematology & Oncology Volume 9, Issue 10, Supplement 24 October 2011 HIGHLIGHTS F r O m THE 2011 P an P acific Ly m pho m A confe r ence therapies based on selective targeting of specific cellular pathways. Pralatrex- What Are the Newer Agents That Have Clinical Activity in MCL? ate is a novel antifolate that inhibits the activity of dihydrofolate reductase Dr. Jonathan W. Friedberg reviewed new agents under investigation in mantle (DHFR), with a mechanism of action cell lymphoma (MCL).1 Although bortezomib is already approved for treating similar to that of methotrexate. Once MCL, newer agents and novel combinations are showing promising activity internalized, the molecule is gluta- that could surpass that of bortezomib. A phase II study enrolled patients with mated, which prevents its escape from relapsed, indolent B-cell lymphoma or MCL. Patients received bendamustine the cell. PROPEL (Pralatrexate in (90 mg/m2, days 1 and 4), rituximab (375 mg/m2, day 1), and bortezomib (1.3 Patients With Relapsed or Refractory mg/m2, days 1, 4, 8, and 11). The 7 MCL patients had an overall response rate Peripheral T-cell Lymphoma) was the (ORR) of 71% (range, 36–92%). In comparison, the pivotal trial of bortezomib first large, prospective, multicenter, monotherapy yielded an ORR of 32%.2 Median progression-free survival with single-arm, open-label, international 3 trial conducted for relapsed/refrac- the combination therapy was approximately 23 months, and the combination tory PTCL.11 This pivotal phase II was reasonably well tolerated, with 63% of patients completing all 6 treatment study had 109 evaluable patients with cycles.
Recommended publications
  • Predictive QSAR Tools to Aid in Early Process Development of Monoclonal Antibodies
    Predictive QSAR tools to aid in early process development of monoclonal antibodies John Micael Andreas Karlberg Published work submitted to Newcastle University for the degree of Doctor of Philosophy in the School of Engineering November 2019 Abstract Monoclonal antibodies (mAbs) have become one of the fastest growing markets for diagnostic and therapeutic treatments over the last 30 years with a global sales revenue around $89 billion reported in 2017. A popular framework widely used in pharmaceutical industries for designing manufacturing processes for mAbs is Quality by Design (QbD) due to providing a structured and systematic approach in investigation and screening process parameters that might influence the product quality. However, due to the large number of product quality attributes (CQAs) and process parameters that exist in an mAb process platform, extensive investigation is needed to characterise their impact on the product quality which makes the process development costly and time consuming. There is thus an urgent need for methods and tools that can be used for early risk-based selection of critical product properties and process factors to reduce the number of potential factors that have to be investigated, thereby aiding in speeding up the process development and reduce costs. In this study, a framework for predictive model development based on Quantitative Structure- Activity Relationship (QSAR) modelling was developed to link structural features and properties of mAbs to Hydrophobic Interaction Chromatography (HIC) retention times and expressed mAb yield from HEK cells. Model development was based on a structured approach for incremental model refinement and evaluation that aided in increasing model performance until becoming acceptable in accordance to the OECD guidelines for QSAR models.
    [Show full text]
  • Hodgkin Lymphoma Treatment Regimens
    HODGKIN LYMPHOMA TREATMENT REGIMENS (Part 1 of 5) Clinical Trials: The National Comprehensive Cancer Network recommends cancer patient participation in clinical trials as the gold standard for treatment. Cancer therapy selection, dosing, administration, and the management of related adverse events can be a complex process that should be handled by an experienced health care team. Clinicians must choose and verify treatment options based on the individual patient; drug dose modifications and supportive care interventions should be administered accordingly. The cancer treatment regimens below may include both U.S. Food and Drug Administration-approved and unapproved indications/regimens. These regimens are provided only to supplement the latest treatment strategies. These Guidelines are a work in progress that may be refined as often as new significant data become available. The NCCN Guidelines® are a consensus statement of its authors regarding their views of currently accepted approaches to treatment. Any clinician seeking to apply or consult any NCCN Guidelines® is expected to use independent medical judgment in the context of individual clinical circumstances to determine any patient’s care or treatment. The NCCN makes no warranties of any kind whatsoever regarding their content, use, or application and disclaims any responsibility for their application or use in any way. Classical Hodgkin Lymphoma1 Note: All recommendations are Category 2A unless otherwise indicated. Primary Treatment Stage IA, IIA Favorable (No Bulky Disease, <3 Sites of Disease, ESR <50, and No E-lesions) REGIMEN DOSING Doxorubicin + Bleomycin + Days 1 and 15: Doxorubicin 25mg/m2 IV push + bleomycin 10units/m2 IV push + Vinblastine + Dacarbazine vinblastine 6mg/m2 IV over 5–10 minutes + dacarbazine 375mg/m2 IV over (ABVD) (Category 1)2-5 60 minutes.
    [Show full text]
  • Modifications to the Harmonized Tariff Schedule of the United States to Implement Changes to the Pharmaceutical Appendix
    United States International Trade Commission Modifications to the Harmonized Tariff Schedule of the United States to Implement Changes to the Pharmaceutical Appendix USITC Publication 4208 December 2010 U.S. International Trade Commission COMMISSIONERS Deanna Tanner Okun, Chairman Irving A. Williamson, Vice Chairman Charlotte R. Lane Daniel R. Pearson Shara L. Aranoff Dean A. Pinkert Address all communications to Secretary to the Commission United States International Trade Commission Washington, DC 20436 U.S. International Trade Commission Washington, DC 20436 www.usitc.gov Modifications to the Harmonized Tariff Schedule of the United States to Implement Changes to the Pharmaceutical Appendix Publication 4208 December 2010 (This page is intentionally blank) Pursuant to the letter of request from the United States Trade Representative of December 15, 2010, set forth at the end of this publication, and pursuant to section 1207(a) of the Omnibus Trade and Competitiveness Act, the United States International Trade Commission is publishing the following modifications to the Harmonized Tariff Schedule of the United States (HTS) to implement changes to the Pharmaceutical Appendix, effective on January 1, 2011. Table 1 International Nonproprietary Name (INN) products proposed for addition to the Pharmaceutical Appendix to the Harmonized Tariff Schedule INN CAS Number Abagovomab 792921-10-9 Aclidinium Bromide 320345-99-1 Aderbasib 791828-58-5 Adipiplon 840486-93-3 Adoprazine 222551-17-9 Afimoxifene 68392-35-8 Aflibercept 862111-32-8 Agatolimod
    [Show full text]
  • New Biological Therapies: Introduction to the Basis of the Risk of Infection
    New biological therapies: introduction to the basis of the risk of infection Mario FERNÁNDEZ RUIZ, MD, PhD Unit of Infectious Diseases Hospital Universitario “12 de Octubre”, Madrid ESCMIDInstituto de Investigación eLibraryHospital “12 de Octubre” (i+12) © by author Transparency Declaration Over the last 24 months I have received honoraria for talks on behalf of • Astellas Pharma • Gillead Sciences • Roche • Sanofi • Qiagen Infections and biologicals: a real concern? (two-hour symposium): New biological therapies: introduction to the ESCMIDbasis of the risk of infection eLibrary © by author Paul Ehrlich (1854-1915) • “side-chain” theory (1897) • receptor-ligand concept (1900) • “magic bullet” theory • foundation for specific chemotherapy (1906) • Nobel Prize in Physiology and Medicine (1908) (together with Metchnikoff) Infections and biologicals: a real concern? (two-hour symposium): New biological therapies: introduction to the ESCMIDbasis of the risk of infection eLibrary © by author 1981: B-1 antibody (tositumomab) anti-CD20 monoclonal antibody 1997: FDA approval of rituximab for the treatment of relapsed or refractory CD20-positive NHL 2001: FDA approval of imatinib for the treatment of chronic myelogenous leukemia Infections and biologicals: a real concern? (two-hour symposium): New biological therapies: introduction to the ESCMIDbasis of the risk of infection eLibrary © by author Functional classification of targeted (biological) agents • Agents targeting soluble immune effector molecules • Agents targeting cell surface receptors
    [Show full text]
  • Vincristine (Conventional): Drug Information
    Official reprint from UpToDate® www.uptodate.com ©2017 UpToDate® Vincristine (conventional): Drug information Copyright 1978-2017 Lexicomp, Inc. All rights reserved. (For additional information see "Vincristine (conventional): Patient drug information" and see "Vincristine (conventional): Pediatric drug information") For abbreviations and symbols that may be used in Lexicomp (show table) Special Alerts Vincristine Sulfate Safety Alert October 2015 Health Canada is notifying health care providers that certain lots of Hospira’s vincristine sulfate 1 mg/mL injection (DIN 02183013: 2 mL vial, list #7077A001; 5 mL vial, list #7082A001) have incorrect or outdated safety information on the inner/outer labels and package insert, which may increase the risk to patients and may result in significant patient harm requiring medical intervention. These warnings include: - Vincristine should only be administered by the intravenous (IV) route. Administration of vincristine by any other route can be fatal. - Syringes containing this product should be labeled “Warning - for IV use only.” - Extemporaneously prepared syringes containing this product must be packaged in an overwrap which is labeled “Do not remove covering until moment of injection. For IV use only - fatal if given by other routes.” - Contraindication of vincristine in patients with demyelinating Charcot-Marie-Tooth syndrome. - Potential risk of acute shortness of breath when vincristine is coadministered with mitomycin-C and GI toxicities including necrosis with administration of vincristine. Health care providers are requested to consult with the approved Canadian product monograph for vincristine sulfate 1 mg/mL for the most updated information. Consumers with questions should contact their health care provider for more information. ALERT: US Boxed Warning Experienced physician: Vincristine should be administered by individuals experienced in the administration of the drug.
    [Show full text]
  • HODGKIN LYMPHOMA TREATMENT REGIMENS (Part 1 of 2)
    HODGKIN LYMPHOMA TREATMENT REGIMENS (Part 1 of 2) The selection, dosing, and administration of anticancer agents and the management of associated toxicities are complex. Drug dose modifications and schedule and initiation of supportive care interventions are often necessary because of expected toxicities and because of individual patient variability, prior treatment, and comorbidities. Thus, the optimal delivery of anticancer agents requires a healthcare delivery team experienced in the use of such agents and the management of associated toxicities in patients with cancer. The cancer treatment regimens below may include both FDA-approved and unapproved uses/regimens and are provided as references only to the latest treatment strategies. Clinicians must choose and verify treatment options based on the individual patient. NOTE: GREY SHADED BOXES CONTAIN UPDATED REGIMENS. REGIMEN DOSING Classical Hodgkin Lymphoma—First-Line Treatment General treatment note: Routine use of growth factors is not recommended. Leukopenia is not a factor for treatment delay or dose reduction (except for escalated BEACOPP).1 CR=complete response IPS=International Prognostic Score PD=progressive disease PFTs=pulmonary function tests PR=partial response RT=radiation therapy SD=stable disease Stage IA, IIA Favorable ABVD (doxorubicin [Adriamycin] Days 1 and 15: Doxorubicin 25mg/m2 IV + bleomycin 10mg/m2 IV + vinblastine + bleomycin + vinblastine + 6mg/m2 IV + dacarbazine 375mg/m2 IV. dacarbazine [DTIC-Dome]) + Repeat cycle every 4 weeks for 2–4 cycles. involved-field radiotherapy (IFRT)1–4 Follow with IFRT after completion of chemotherapy. Abbreviated Stanford V Weeks 1, 3, 5 and 7: Vinblastine 6mg/m2 IV + doxorubicin 25mg/m2 IV. (doxorubicin + vinblastine + Weeks 1 and 5: Mechlorethamine 6mg/m2.
    [Show full text]
  • Tanibirumab (CUI C3490677) Add to Cart
    5/17/2018 NCI Metathesaurus Contains Exact Match Begins With Name Code Property Relationship Source ALL Advanced Search NCIm Version: 201706 Version 2.8 (using LexEVS 6.5) Home | NCIt Hierarchy | Sources | Help Suggest changes to this concept Tanibirumab (CUI C3490677) Add to Cart Table of Contents Terms & Properties Synonym Details Relationships By Source Terms & Properties Concept Unique Identifier (CUI): C3490677 NCI Thesaurus Code: C102877 (see NCI Thesaurus info) Semantic Type: Immunologic Factor Semantic Type: Amino Acid, Peptide, or Protein Semantic Type: Pharmacologic Substance NCIt Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor tyrosine kinase expressed by endothelial cells, while VEGF is overexpressed in many tumors and is correlated to tumor progression. PDQ Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor
    [Show full text]
  • B-Cell Targets to Treat Antibody-Mediated Rejection In
    Muro et al. Int J Transplant Res Med 2016, 2:023 Volume 2 | Issue 2 International Journal of Transplantation Research and Medicine Commentary: Open Access B-Cell Targets to Treat Antibody-Mediated Rejection in Transplantation Manuel Muro1*, Santiago Llorente2, Jose A Galian1, Francisco Boix1, Jorge Eguia1, Gema Gonzalez-Martinez1, Maria R Moya-Quiles1 and Alfredo Minguela1 1Immunology Service, University Clinic Hospital Virgen de la Arrixaca, Spain 2Nephrology Service, University Clinic Hospital Virgen de la Arrixaca, Spain *Corresponding author: Manuel Muro, PhD, Immunology Service, University Clinic Hospital “Virgen de la Arrixaca”, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain, Tel: 34-968-369599, E-mail: [email protected] Antibody-mediated rejection (AMR) in allograft transplantation APRIL (a proliferation-inducing ligand). These co-activation signals can be defined with a rapid increase in the levels of specific are required for B-cell differentiation into plasma cell and enhancing serological parameters after organ transplantation, presence of donor their posterior survival and are a key determinant of whether specific antibodies (DSAs) against human leukocyte antigen (HLA) developing B-cells will survive or die during the establishment molecules, blood group (ABO) antigens and/or endothelial cell of immuno-tolerance [5,6]. Important used agents commercially antigens (e.g. MICA, ECA, Vimentin, or ETAR) and also particular available are Tocilizumab (anti-IL6R) and Belimumab (BAFF). histological parameters [1,2]. If the AMR persists or progresses, the The receptors of BAFF and APRIL could also be important as treatment to eliminate the humoral component of acute rejection eventual targets, for example BAFF-R, TACI (transmembrane include three sequential steps: (a) steroid pulses, antibody removal activator and calcium modulator and cyclophyllin ligand interactor) (plasma exchange or immuno-adsorption) and high doses of and BCMA (B-cell maturation antigen).
    [Show full text]
  • An Analysis of Toxicity and Response Outcomes from Dose
    Brock et al. BMC Cancer (2021) 21:777 https://doi.org/10.1186/s12885-021-08440-0 RESEARCH ARTICLE Open Access Is more better? An analysis of toxicity and response outcomes from dose-finding clinical trials in cancer Kristian Brock1* ,VictoriaHomer1, Gurjinder Soul2, Claire Potter1,CodyChiuzan3 and Shing Lee3 Abstract Background: The overwhelming majority of dose-escalation clinical trials use methods that seek a maximum tolerable dose, including rule-based methods like the 3+3, and model-based methods like CRM and EWOC. These methods assume that the incidences of efficacy and toxicity always increase as dose is increased. This assumption is widely accepted with cytotoxic therapies. In recent decades, however, the search for novel cancer treatments has broadened, increasingly focusing on inhibitors and antibodies. The rationale that higher doses are always associated with superior efficacy is less clear for these types of therapies. Methods: We extracted dose-level efficacy and toxicity outcomes from 115 manuscripts reporting dose-finding clinical trials in cancer between 2008 and 2014. We analysed the outcomes from each manuscript using flexible non-linear regression models to investigate the evidence supporting the monotonic efficacy and toxicity assumptions. Results: We found that the monotonic toxicity assumption was well-supported across most treatment classes and disease areas. In contrast, we found very little evidence supporting the monotonic efficacy assumption. Conclusions: Our conclusion is that dose-escalation trials routinely use methods whose assumptions are violated by the outcomes observed. As a consequence, dose-finding trials risk recommending unjustifiably high doses that may be harmful to patients. We recommend that trialists consider experimental designs that allow toxicity and efficacy outcomes to jointly determine the doses given to patients and recommended for further study.
    [Show full text]
  • The Two Tontti Tudiul Lui Hi Ha Unit
    THETWO TONTTI USTUDIUL 20170267753A1 LUI HI HA UNIT ( 19) United States (12 ) Patent Application Publication (10 ) Pub. No. : US 2017 /0267753 A1 Ehrenpreis (43 ) Pub . Date : Sep . 21 , 2017 ( 54 ) COMBINATION THERAPY FOR (52 ) U .S . CI. CO - ADMINISTRATION OF MONOCLONAL CPC .. .. CO7K 16 / 241 ( 2013 .01 ) ; A61K 39 / 3955 ANTIBODIES ( 2013 .01 ) ; A61K 31 /4706 ( 2013 .01 ) ; A61K 31 / 165 ( 2013 .01 ) ; CO7K 2317 /21 (2013 . 01 ) ; (71 ) Applicant: Eli D Ehrenpreis , Skokie , IL (US ) CO7K 2317/ 24 ( 2013. 01 ) ; A61K 2039/ 505 ( 2013 .01 ) (72 ) Inventor : Eli D Ehrenpreis, Skokie , IL (US ) (57 ) ABSTRACT Disclosed are methods for enhancing the efficacy of mono (21 ) Appl. No. : 15 /605 ,212 clonal antibody therapy , which entails co - administering a therapeutic monoclonal antibody , or a functional fragment (22 ) Filed : May 25 , 2017 thereof, and an effective amount of colchicine or hydroxy chloroquine , or a combination thereof, to a patient in need Related U . S . Application Data thereof . Also disclosed are methods of prolonging or increasing the time a monoclonal antibody remains in the (63 ) Continuation - in - part of application No . 14 / 947 , 193 , circulation of a patient, which entails co - administering a filed on Nov. 20 , 2015 . therapeutic monoclonal antibody , or a functional fragment ( 60 ) Provisional application No . 62/ 082, 682 , filed on Nov . of the monoclonal antibody , and an effective amount of 21 , 2014 . colchicine or hydroxychloroquine , or a combination thereof, to a patient in need thereof, wherein the time themonoclonal antibody remains in the circulation ( e . g . , blood serum ) of the Publication Classification patient is increased relative to the same regimen of admin (51 ) Int .
    [Show full text]
  • Monoclonal Antibody-Based Therapy As a New Treatment Strategy in Multiple Myeloma
    Leukemia (2012) 26, 199–213 & 2012 Macmillan Publishers Limited All rights reserved 0887-6924/12 www.nature.com/leu REVIEW Monoclonal antibody-based therapy as a new treatment strategy in multiple myeloma NWCJ van de Donk1, S Kamps1, T Mutis2 and HM Lokhorst1 1Department of Hematology, University Medical Center Utrecht, Utrecht, The Netherlands and 2Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, The Netherlands The introduction of autologous stem cell transplantation the myeloma patients achieved a partial response (PR) or stable combined with the introduction of immunomodulatory drugs disease following rituximab therapy. All these patients expressed (IMiDs) and proteasome inhibitors has significantly improved CD20 on their myeloma cells.2 However, as only B15–20% of survival of multiple myeloma patients. However, ultimately the majority of patients will develop refractory disease, indicating all myeloma patients express CD20 on their bone marrow the need for new treatment modalities. In preclinical and clinical plasma cells, new targets for immunotherapy need to be studies, promising results have been obtained with several identified. The search for other targets has led to the develop- monoclonal antibodies (mAbs) targeting the myeloma tumor ment of mAbs targeting growth factor receptors or adhesion cell or the bone marrow microenvironment. The mechanisms molecules on myeloma cells. Other newly developed mAbs underlying the therapeutic efficacy of these mAbs include are directed against cellular or non-cellular components of the direct induction of tumor cell apoptosis via inhibition or activation of target molecules, complement-dependent cyto- bone marrow microenvironment, resulting in the neutraliza- toxicity and antibody-dependent cell-mediated cytotoxicity tion of growth factors, inhibition of angiogenesis, modulation (ADCC).
    [Show full text]
  • Frontline Paid New York, Ny a Lymphoma Rounds Publication Permit #370
    Lymphoma Rounds Leadership Chicago - Loyola University Chicago New England - Baystate Medical MD, PhD; Francesca Montanari, Anna Niewiarowska, MD - Scott Smith, MD, PhD, FACP; Center - Armen Asik, MD; Beth MD; Hackensack University Medical Patrick Stiff, MD; Northwestern Israel Deaconess Medical Center Center - Andre Goy, MD, MS; Icahn Seattle - Kaiser Permanente University - Leo Gordon, MD, - Jon Arnason, MD; Robin Joyce, School of Medicine at Mount Sinai - Washington - Eric Chen, MD, PhD; FACP; Reem Karmali, MD, MS MD; Boston University School of Joshua Brody, MD; Memorial Sloan The Polyclinic - Sherry Hu, MD, (chair); Jane Winter, MD; Rush Medicine - J. Mark Sloan, MD; Kettering Cancer Center - Anthony PhD; Swedish Medical Center - University Medical Center - Jerome Brown University School of Medicine Mato, MD, MSCE; David Straus, Hank Kaplan, MD; John Pagel, Loew, MD; Sunita Nathan, MD; - Adam Olszewski, MD; Dana- MD (chair); NYU Langone Medical MD, PhD, DSc (chair); University of Parameswaran Venugopal, MD; Farber Cancer Institute - Jorge Center - Catherine Diefenbach, Washington - Paul S. Martin, MD; The University of Chicago - Sonali Castillo, MD; Ann LaCasce, MD, MD; Rutgers Cancer Institute of The University of Washington/Fred Smith, MD; Girish Venkataraman, MSc; Dartmouth-Hitchcock Medical New Jersey - Joseph Bertino, MD; Hutchinson Cancer Research Center MD; University of Illinois at Chicago Center - Elizabeth Bengtson, Andrew Evens, DO, MSc, FACP; - Stephen Smith, MD; Virginia - Frederick Behm, MD; David MD; Erick Lansigan, MD; Lahey Weill Cornell Medicine - Koen van Mason Medical Center - David Peace, MD Hospital and Medical Center - Tarun Besien, MD, PhD; Ethel Cesarman, Aboulafia, MD Kewalramani, MD; Massachusetts MD, PhD; Amy Chadburn, MD; Los Angeles - Cedars-Sinai Medical General Hospital Cancer Center- Morton Coleman, MD Washington, D.C.
    [Show full text]