Monoclonal Antibody-Based Therapy As a New Treatment Strategy in Multiple Myeloma

Total Page:16

File Type:pdf, Size:1020Kb

Monoclonal Antibody-Based Therapy As a New Treatment Strategy in Multiple Myeloma Leukemia (2012) 26, 199–213 & 2012 Macmillan Publishers Limited All rights reserved 0887-6924/12 www.nature.com/leu REVIEW Monoclonal antibody-based therapy as a new treatment strategy in multiple myeloma NWCJ van de Donk1, S Kamps1, T Mutis2 and HM Lokhorst1 1Department of Hematology, University Medical Center Utrecht, Utrecht, The Netherlands and 2Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, The Netherlands The introduction of autologous stem cell transplantation the myeloma patients achieved a partial response (PR) or stable combined with the introduction of immunomodulatory drugs disease following rituximab therapy. All these patients expressed (IMiDs) and proteasome inhibitors has significantly improved CD20 on their myeloma cells.2 However, as only B15–20% of survival of multiple myeloma patients. However, ultimately the majority of patients will develop refractory disease, indicating all myeloma patients express CD20 on their bone marrow the need for new treatment modalities. In preclinical and clinical plasma cells, new targets for immunotherapy need to be studies, promising results have been obtained with several identified. The search for other targets has led to the develop- monoclonal antibodies (mAbs) targeting the myeloma tumor ment of mAbs targeting growth factor receptors or adhesion cell or the bone marrow microenvironment. The mechanisms molecules on myeloma cells. Other newly developed mAbs underlying the therapeutic efficacy of these mAbs include are directed against cellular or non-cellular components of the direct induction of tumor cell apoptosis via inhibition or activation of target molecules, complement-dependent cyto- bone marrow microenvironment, resulting in the neutraliza- toxicity and antibody-dependent cell-mediated cytotoxicity tion of growth factors, inhibition of angiogenesis, modulation (ADCC). The capability of IMiDs to enhance ADCC and the of mediators of bone disease and enhancement of the host modulation of various important signaling cascades in myelo- antitumor immune response (Figure 1 and Table 1). ma cells by both bortezomib and IMiDs forms the rationale to Besides direct effects via modulation of the activity of the combine these novel agents with mAbs as new treatment targeted antigen, mAbs can also induce tumor cell death strategies for myeloma patients. In this review, we will give an overview of various mAbs directly targeting myeloma tumor via complement-dependent cytotoxicity (CDC) and antibody- cells or indirectly via effects on the bone marrow micro- dependent cell-mediated cytotoxicity (ADCC) (Figure 2). The environment. Special focus will be on the combination of these process of ADCC is achieved through activation of Fc receptors mAbs with IMiDs or bortezomib. on myeloid and natural killer (NK) effector cells by tumor cell- Leukemia (2012) 26, 199–213; doi:10.1038/leu.2011.214; attached immunoglobins. Subsequent cytotoxicity is mediated published online 19 August 2011 through at least two different mechanisms: one involving the Keywords: multiple myeloma; immunotherapy; monoclonal antibody; immunomodulatory drugs; proteasome inhibitor; bone release of perforin and granzymes from effector cells, and the marrow micro-environment other involving death ligands Fas ligand and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). CDC is depen- dent on the interaction of the antibody Fc domains with the classic complement-activating protein C1q. There is also Introduction evidence that uptake of antibody-opsonized tumor cells and cellular fragments by antigen-presenting cells is associated with The introduction of autologous stem cell transplantation and enhanced antigen presentation, leading to tumor-specific T-cell 3 novel agents such as the proteasome inhibitor bortezomib and responses. the immunomodulatory drugs (IMiDs) thalidomide and lenali- The capability of IMiDs to activate multiple arms of the 4,5 domide has significantly improved survival of myeloma patient’s immune system including enhanced ADCC com- patients.1 However, the majority of myeloma patients ultimately bined with the modulation of various important signaling develop refractory disease, underscoring the need for new cascades in myeloma cells by both bortezomib and IMiDs therapeutic approaches. The search for new strategies has led forms the rationale to combine these novel agents with mAbs as not only to the development of second-generation immuno- new treatment strategies for myeloma patients. In this review, modulatory drugs (IMiDs) and proteasome inhibitors, but also we will give an overview of various classes of mAbs at different to compounds with different mechanisms of action, such stages of clinical development (Table 1). mAbs with similar as histone deacetylase inhibitors, Akt inhibitors and mTOR mechanisms of action are grouped together. Special focus will inhibitors. In addition, the successful application of immuno- be on mAbs that are currently being evaluated in clinical trials therapeutics such as the anti-CD20 monoclonal antibody and on combinations of these mAbs with IMiDs (Table 2) or (mAb) rituximab, the anti-CD52 mAb alemtuzumab and, most bortezomib (Table 3). recently, the anti-CD30–drug conjugate brentuximab vedotin in non-Hodgkin’s lymphoma, Hodgkin’s lymphoma and chronic lymphocytic leukemia has stimulated the development of mAbs targeting proteins involved in myeloma cell adhesion mAbs applicable for myeloma treatment. Interestingly, 32% of Myeloma cells interact with various cellular and non-cellular Correspondence: Dr NWCJ van de Donk, Department of Hematology, components of the bone marrow microenvironment, which University Medical Center Utrecht, Heidelberglaan 100, Utrecht promotes tumor growth, protects against antimyeloma agents, 3584CX, The Netherlands. E-mail: [email protected] leads to bone destruction and increases susceptibility to 6 Received 27 May 2011; accepted 5 July 2011; published online 19 infections by impairing the immune system. Adhesion is August 2011 mediated by cellular receptors and results in the activation of Monoclonal antibody-based therapy in myeloma NWCJ van de Donk et al 200 mAbs targeting mediators of NF-κB bone disease RANKL↑, OPG↓ mAbs targeting α β β Notch-1 growth factors TNF- , TGF- , IL-1 , IL-6, IGF-I, Stromal cell and receptors bFGF, IL-6, VEGF VEGF, WNT Raf NF-κB mAbs inhibting PI-3K JAK Adhesion MEK β-catenin Notch-1 adhesion molecules molecules Akt STAT3 P42/44 MAPK Anti-apoptosis Drug resistance Proliferation Growth factors VEGF, FGF-2, TNF-α, Proliferation Anti-apoptosis α Osteoclast TGF-, MMPs Drug resistance RANKL, MIP-1 Endothelial Myeloma cell cell VEGF, FGF-2, MMPs Fibronectine mAbs targeting VEGF, IL-6, VEGF, IL-6, mAbs targeting growth factors TGF-β, IL-10 TGF-β, IL-10 mediators of and recetors bone disease mAbs PD-1/PD-L1, KIR targeting VEGF, IL-6, growth factors DKK1, Bone resorption ↑ TGF-β, IL-10 mAbs and receptors activating sFRP-2 Bone formation ↓ NK cells Angiogenesis PD-1/PD-L1, CD200/CD200R mAbs B cell activating T cells T cell NK cell Immune deficiency Osteoblast Dendritic cell Figure 1 Targets of mAbs in multiple myeloma. Several mAbs that are currently being evaluated in clinical trials target important growth factor receptors and adhesion molecules present on myeloma cells. This will result in the inhibition of important signaling cascades and impair adhesion of myeloma cells to other cells in the bone marrow microenvironment. Other mAbs are directed against important cellular and non-cellular components of the microenvironment including growth factors, mediators of bone disease, T cells and NK cells. This results in neutralization of growth factors such as IL-6 or IGF-1, blockage of angiogenesis, inhibition of bone resorption, improvement of bone formation and enhancement of the host antitumor immune response. important signaling cascades in both the myeloma cell and against myeloma cells.7,9 Furthermore, the combination of stromal cell, leading to protection against apoptosis and elotuzumab plus bortezomib resulted in improved antitumor increased production of several myeloma growth factors, activity in a mouse model.9 including interleukin-6 (IL-6), insulin growth factor-1 (IGF-1) Preliminary results from ongoing trials show encouraging and vascular endothelial growth factor (VEGF). Over the past results with acceptable toxicity for elotuzumab combination few years, various mAbs targeting adhesion molecules present therapy. No dose-limiting toxicity (DLT) was reported in a phase on myeloma cells showed great promise in both preclinical and 1 study evaluating elotuzumab 5, 10 or 20 mg on days 1, 8, 15 early clinical studies. and 22 of a 28-day cycle in combination with lenalidomide and dexamethasone. In this study of mostly lenalidomide-naı¨ve patients, at least PR was achieved in 82% of patients.10 In a CS1 phase 2 trial in lenalidomide-naı¨ve myeloma patients with a CS1 is a cell surface glycoprotein involved in myeloma cell median of two previous therapies, the combination of elotuzu- adhesion to bone marrow stromal cells.7,8 High expression of mab and lenalidomide plus dexamethasone was feasible with CS1 has been observed in multiple myeloma cell lines and in 85% at least PR.11 Two ongoing phase 3 trials will provide the majority of myeloma cells from patients (CS1 mRNA additional data to define the value of addition of elotuzumab to expressed by more than 97% of myeloma cells), whereas CS1 lenalidomide/dexamethasone in relapsed/refractory
Recommended publications
  • = 'NH., Diseases, Central Nerrous System M)Ury and Different Foims of Mflannnation
    (12) INTERNATIONAL APPLICATION Pl;BLISHED 1. NDER THE PATENT COOPERATION TREATY (PCT) (19) World intellectual Property Organraation llIlllIlllIlIllllllllIlllllIIllIllIlllIlllllllllllIlllIllIlIlllIllIlIllIllIlIIIIIIIIIIIIIIIIIII International Bureau (10) International Publication Number (43) International Publication Date WO 2020/114892 Al 11 June 2020 (11.06.2020) W 4 P Gl I P 0 T (51) International Patent Classification: C07D 401/06 (200G 0 I) AGJK31/454 (200G 0l) C07D dt)J//4 (2006 01) A61P35/ttd (200G 0l) (21) International Application Number: PCT/EP2019/l)8 3014 (22) International Filing Date: 29 Nosember 2019 (29.11.2019) (25) Filing Language: Enghsh (26) Publication Language Enghsh (30) Priority Data: 1820972/i 1 03 December 20)8 (03 12 2018) EP (71) Applicant: MERCK PATENT GMBH IDE/DE]. Frm&(s- furter Strasse 230. 64293 DARMSTADT (DE) (72) Inventors: BUCHSTALLER, Hans-Peter. Ncc)sa&strasse G. G4347 GRIESHELVI (DE). ROHDICH, Feliru Saalbaus- tmssc 23. 64283 DARMSTADT (DE). (81) Designated States /unless i&themmse n&d&ct&md, /or e&ery hind of national protect«&n menial&le/ AF, AG, AL, AVI AO, AT. AU. AZ, BA, BB, BG, BH. B N. BR, BW, BY. BZ. CA. CH, CL, CN. CO, CR. C U, CZ. DE, DJ, DK. DM DO. DZ, EC. EE, EG. ES. FI, GB. GD. GE. GH, GM. GT. HN. HR. HU, ID, IL. IN, IR, IS. JO, JP, KE. KG, KH. KN, KP. KR. KW, KZ, LA. L C, LK. LR, LS, LU. LY. MA. MD, ME. WIG. MK. MN, MW, MX. MY. MZ. NA. NG. NI, NO. NZ. OM, PA. PE, PG. PH, PL. PT. QA, RO, RS.
    [Show full text]
  • Predictive QSAR Tools to Aid in Early Process Development of Monoclonal Antibodies
    Predictive QSAR tools to aid in early process development of monoclonal antibodies John Micael Andreas Karlberg Published work submitted to Newcastle University for the degree of Doctor of Philosophy in the School of Engineering November 2019 Abstract Monoclonal antibodies (mAbs) have become one of the fastest growing markets for diagnostic and therapeutic treatments over the last 30 years with a global sales revenue around $89 billion reported in 2017. A popular framework widely used in pharmaceutical industries for designing manufacturing processes for mAbs is Quality by Design (QbD) due to providing a structured and systematic approach in investigation and screening process parameters that might influence the product quality. However, due to the large number of product quality attributes (CQAs) and process parameters that exist in an mAb process platform, extensive investigation is needed to characterise their impact on the product quality which makes the process development costly and time consuming. There is thus an urgent need for methods and tools that can be used for early risk-based selection of critical product properties and process factors to reduce the number of potential factors that have to be investigated, thereby aiding in speeding up the process development and reduce costs. In this study, a framework for predictive model development based on Quantitative Structure- Activity Relationship (QSAR) modelling was developed to link structural features and properties of mAbs to Hydrophobic Interaction Chromatography (HIC) retention times and expressed mAb yield from HEK cells. Model development was based on a structured approach for incremental model refinement and evaluation that aided in increasing model performance until becoming acceptable in accordance to the OECD guidelines for QSAR models.
    [Show full text]
  • Activating Death Receptor DR5 As a Therapeutic Strategy for Rhabdomyosarcoma
    International Scholarly Research Network ISRN Oncology Volume 2012, Article ID 395952, 10 pages doi:10.5402/2012/395952 Review Article Activating Death Receptor DR5 as a Therapeutic Strategy for Rhabdomyosarcoma Zhigang Kang,1, 2 Shi-Yong Sun,3 and Liang Cao1 1 Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA 2 Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, Inc., NCI Frederick, Frederick, MD 21702, USA 3 Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA Correspondence should be addressed to Liang Cao, [email protected] Received 4 January 2012; Accepted 24 January 2012 Academic Editors: E. Boven and S. Mandruzzato Copyright © 2012 Zhigang Kang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children. It is believed to arise from skeletal muscle progenitors, preserving the expression of genes critical for embryonic myogenic development such as MYOD1 and myogenin. RMS is classified as embryonal, which is more common in younger children, or alveolar, which is more prevalent in elder children and adults. Despite aggressive management including surgery, radiation, and chemotherapy, the outcome for children with metastatic RMS is dismal, and the prognosis has remained unchanged for decades. Apoptosis is a highly regulated process critical for embryonic development and tissue and organ homeostasis. Like other types of cancers, RMS develops by evading intrinsic apoptosis via mutations in the p53 tumor suppressor gene.
    [Show full text]
  • Modifications to the Harmonized Tariff Schedule of the United States to Implement Changes to the Pharmaceutical Appendix
    United States International Trade Commission Modifications to the Harmonized Tariff Schedule of the United States to Implement Changes to the Pharmaceutical Appendix USITC Publication 4208 December 2010 U.S. International Trade Commission COMMISSIONERS Deanna Tanner Okun, Chairman Irving A. Williamson, Vice Chairman Charlotte R. Lane Daniel R. Pearson Shara L. Aranoff Dean A. Pinkert Address all communications to Secretary to the Commission United States International Trade Commission Washington, DC 20436 U.S. International Trade Commission Washington, DC 20436 www.usitc.gov Modifications to the Harmonized Tariff Schedule of the United States to Implement Changes to the Pharmaceutical Appendix Publication 4208 December 2010 (This page is intentionally blank) Pursuant to the letter of request from the United States Trade Representative of December 15, 2010, set forth at the end of this publication, and pursuant to section 1207(a) of the Omnibus Trade and Competitiveness Act, the United States International Trade Commission is publishing the following modifications to the Harmonized Tariff Schedule of the United States (HTS) to implement changes to the Pharmaceutical Appendix, effective on January 1, 2011. Table 1 International Nonproprietary Name (INN) products proposed for addition to the Pharmaceutical Appendix to the Harmonized Tariff Schedule INN CAS Number Abagovomab 792921-10-9 Aclidinium Bromide 320345-99-1 Aderbasib 791828-58-5 Adipiplon 840486-93-3 Adoprazine 222551-17-9 Afimoxifene 68392-35-8 Aflibercept 862111-32-8 Agatolimod
    [Show full text]
  • New Biological Therapies: Introduction to the Basis of the Risk of Infection
    New biological therapies: introduction to the basis of the risk of infection Mario FERNÁNDEZ RUIZ, MD, PhD Unit of Infectious Diseases Hospital Universitario “12 de Octubre”, Madrid ESCMIDInstituto de Investigación eLibraryHospital “12 de Octubre” (i+12) © by author Transparency Declaration Over the last 24 months I have received honoraria for talks on behalf of • Astellas Pharma • Gillead Sciences • Roche • Sanofi • Qiagen Infections and biologicals: a real concern? (two-hour symposium): New biological therapies: introduction to the ESCMIDbasis of the risk of infection eLibrary © by author Paul Ehrlich (1854-1915) • “side-chain” theory (1897) • receptor-ligand concept (1900) • “magic bullet” theory • foundation for specific chemotherapy (1906) • Nobel Prize in Physiology and Medicine (1908) (together with Metchnikoff) Infections and biologicals: a real concern? (two-hour symposium): New biological therapies: introduction to the ESCMIDbasis of the risk of infection eLibrary © by author 1981: B-1 antibody (tositumomab) anti-CD20 monoclonal antibody 1997: FDA approval of rituximab for the treatment of relapsed or refractory CD20-positive NHL 2001: FDA approval of imatinib for the treatment of chronic myelogenous leukemia Infections and biologicals: a real concern? (two-hour symposium): New biological therapies: introduction to the ESCMIDbasis of the risk of infection eLibrary © by author Functional classification of targeted (biological) agents • Agents targeting soluble immune effector molecules • Agents targeting cell surface receptors
    [Show full text]
  • Fcrl5 and T-Bet Define Influenza-Specific Memory B Cells That Predict Long-Lived Antibody 2 Responses 3 4 Anoma Nellore1, Christopher D
    bioRxiv preprint doi: https://doi.org/10.1101/643973; this version posted May 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Fcrl5 and T-bet define influenza-specific memory B cells that predict long-lived antibody 2 responses 3 4 Anoma Nellore1, Christopher D. Scharer2, Rodney G. King3, Christopher M. Tipton4, Esther 5 Zumaquero3, Christopher Fucile3,5, Betty Mousseau3, John E. Bradley6, Kevin Macon3, Tian Mi2, 6 Paul A. Goepfert1,3, John F. Kearney,3 Jeremy M. Boss,2 Troy D. Randall6, Ignacio Sanz4, 7 Alexander Rosenberg3,5, Frances E. Lund3 8 9 10 11 1Dept. of Medicine, Division of Infectious Disease, 3Dept. of Microbiology, 5Informatics Institute, 12 6Dept of Medicine, Division of Clinical Immunology and Rheumatology, at The University of 13 Alabama at Birmingham, Birmingham, AL 35294 USA 14 15 2Dept. of Microbiology and Immunology and 4Department of Medicine, Division of 16 Rheumatology, at Emory University, Atlanta, GA 30322, USA 17 18 19 20 21 22 23 24 25 26 27 28 Lead Contact and to whom correspondence should be addressed: [email protected] 29 30 Mailing address: Frances E. Lund, PhD 31 Charles H. McCauley Professor and Chair 32 Dept of Microbiology 33 University of Alabama at Birmingham (UAB) 34 Dept of Microbiology 35 University of Alabama at Birmingham (UAB) 36 276 BBRB Box 11 37 1720 2nd Avenue South 38 Birmingham AL 35294-2170 39 40 SHORT RUNNING TITLE: Effector memory B cell development after influenza vaccination 41 bioRxiv preprint doi: https://doi.org/10.1101/643973; this version posted May 20, 2019.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Management of Multiple Myeloma: the Changing Paradigm
    Management of Multiple Myeloma: The Changing Paradigm Relapsed/Refractory Disease Jeffrey A. Zonder, MD Karmanos Cancer Institute Objectives • Discuss use of standard myeloma therapies when used as therapy after relapse • Consider patient and disease factors which might impact therapy decisions. • Describe off-label options for patients who are not protocol candidates. Line ≠ Line ≠ Line ≠ … POLICE LINE – DO NOT CROSS POLICE LINE – DO NOT CROSS POLICE LINE – DO NOT CROSS POLICE LINE – DO NOT CROSS POLI LINE – DO NOT Define “Line” • A pre-defined course of therapy utilizing agents either simultaneously or sequentially – Len/Dex – Len/Dex ASCT – Vel/Dex ASCT Len/Dex – VDT-PACE ASCT TD ASCT VPT-PACE LD • Pts who have had the same # of “lines” of Rx may have had vastly different amounts of Rx What Is Relapsed/Refractory Disease? • Relapsed: recurrence after a response to therapy • Refractory: progression despite ongoing therapy What Do We Know About the Pt’s Myeloma? • What prior therapy has been used? • How well did it work? • Did the myeloma progress on active therapy? • High-risk cytogenetics/FISH/GEP? What Do We Know About the Patient? • Age • Other medical problems – Diabetes – Blood Clots • Lasting side effects from past therapies – Peripheral Neuropathy • Personal preferences and values Choosing Therapy for Relapsed/Refractory Myeloma Proteasome IMiDs Anthracyclines Alkylators Steroids HDACs Antibodies Inhibitors Thalidomide Bortezomib Doxil Melphalan Dex Panobinostat Elotuzumab Lenalidomide Carfilzomib Cytoxan Pred Vorinostat
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • Tanibirumab (CUI C3490677) Add to Cart
    5/17/2018 NCI Metathesaurus Contains Exact Match Begins With Name Code Property Relationship Source ALL Advanced Search NCIm Version: 201706 Version 2.8 (using LexEVS 6.5) Home | NCIt Hierarchy | Sources | Help Suggest changes to this concept Tanibirumab (CUI C3490677) Add to Cart Table of Contents Terms & Properties Synonym Details Relationships By Source Terms & Properties Concept Unique Identifier (CUI): C3490677 NCI Thesaurus Code: C102877 (see NCI Thesaurus info) Semantic Type: Immunologic Factor Semantic Type: Amino Acid, Peptide, or Protein Semantic Type: Pharmacologic Substance NCIt Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor tyrosine kinase expressed by endothelial cells, while VEGF is overexpressed in many tumors and is correlated to tumor progression. PDQ Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor
    [Show full text]
  • B-Cell Targets to Treat Antibody-Mediated Rejection In
    Muro et al. Int J Transplant Res Med 2016, 2:023 Volume 2 | Issue 2 International Journal of Transplantation Research and Medicine Commentary: Open Access B-Cell Targets to Treat Antibody-Mediated Rejection in Transplantation Manuel Muro1*, Santiago Llorente2, Jose A Galian1, Francisco Boix1, Jorge Eguia1, Gema Gonzalez-Martinez1, Maria R Moya-Quiles1 and Alfredo Minguela1 1Immunology Service, University Clinic Hospital Virgen de la Arrixaca, Spain 2Nephrology Service, University Clinic Hospital Virgen de la Arrixaca, Spain *Corresponding author: Manuel Muro, PhD, Immunology Service, University Clinic Hospital “Virgen de la Arrixaca”, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain, Tel: 34-968-369599, E-mail: [email protected] Antibody-mediated rejection (AMR) in allograft transplantation APRIL (a proliferation-inducing ligand). These co-activation signals can be defined with a rapid increase in the levels of specific are required for B-cell differentiation into plasma cell and enhancing serological parameters after organ transplantation, presence of donor their posterior survival and are a key determinant of whether specific antibodies (DSAs) against human leukocyte antigen (HLA) developing B-cells will survive or die during the establishment molecules, blood group (ABO) antigens and/or endothelial cell of immuno-tolerance [5,6]. Important used agents commercially antigens (e.g. MICA, ECA, Vimentin, or ETAR) and also particular available are Tocilizumab (anti-IL6R) and Belimumab (BAFF). histological parameters [1,2]. If the AMR persists or progresses, the The receptors of BAFF and APRIL could also be important as treatment to eliminate the humoral component of acute rejection eventual targets, for example BAFF-R, TACI (transmembrane include three sequential steps: (a) steroid pulses, antibody removal activator and calcium modulator and cyclophyllin ligand interactor) (plasma exchange or immuno-adsorption) and high doses of and BCMA (B-cell maturation antigen).
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,161,992 B2 Jefferies Et Al
    US009 161992B2 (12) United States Patent (10) Patent No.: US 9,161,992 B2 Jefferies et al. (45) Date of Patent: Oct. 20, 2015 (54) P97 FRAGMENTS WITH TRANSFER 4,683.202 A 7, 1987 Mullis ACTIVITY 4,704,362 A 11/1987 Itakura et al. 4,766,075 A 8, 1988 Goeddeletal. (71) Applicant: biosis Technologies, Inc., Richmond 4,800,1594,784.950 A 11/19881/1989 MullisHagen et al. (CA) 4,801,542 A 1/1989 Murray et al. 4.866,042 A 9, 1989 Neuwelt (72) Inventors: Wilfred Jefferies, South Surrey (CA); 4,935,349 A 6/1990 McKnight et al. Mei Mei Tian, Coquitlam (CA): 4.946,778 A 8, 1990 Ladner et al. Timothy Vitalis, Vancouver (CA) 5,091,513 A 2f1992 Huston et al. 5,132,405 A 7, 1992 Huston et al. (73) Assignee: biOasis Technologies, Inc., British 5, 186,941 A 2f1993 Callahan et al. Columbia (CA) 5,672,683 A 9, 1997 Friden et al. 5,677,171 A 10, 1997 Hudziak et al. c - r 5,720,937 A 2f1998 Hudziak et al. (*) Notice: Subject to any disclaimer, the term of this 5,720,954. A 2f1998 Hudziak et al. patent is extended or adjusted under 35 5,725,856 A 3, 1998 Hudziak et al. U.S.C. 154(b) by 0 days. 5,770,195 A 6/1998 Hudziak et al. 5,772,997 A 6/1998 Hudziak et al. (21) Appl. No.: 14/226,506 5,844,093 A 12/1998 Kettleborough et al. 5,962,012 A 10, 1999 Lin et al.
    [Show full text]