Predictive QSAR Tools to Aid in Early Process Development of Monoclonal Antibodies

Total Page:16

File Type:pdf, Size:1020Kb

Predictive QSAR Tools to Aid in Early Process Development of Monoclonal Antibodies Predictive QSAR tools to aid in early process development of monoclonal antibodies John Micael Andreas Karlberg Published work submitted to Newcastle University for the degree of Doctor of Philosophy in the School of Engineering November 2019 Abstract Monoclonal antibodies (mAbs) have become one of the fastest growing markets for diagnostic and therapeutic treatments over the last 30 years with a global sales revenue around $89 billion reported in 2017. A popular framework widely used in pharmaceutical industries for designing manufacturing processes for mAbs is Quality by Design (QbD) due to providing a structured and systematic approach in investigation and screening process parameters that might influence the product quality. However, due to the large number of product quality attributes (CQAs) and process parameters that exist in an mAb process platform, extensive investigation is needed to characterise their impact on the product quality which makes the process development costly and time consuming. There is thus an urgent need for methods and tools that can be used for early risk-based selection of critical product properties and process factors to reduce the number of potential factors that have to be investigated, thereby aiding in speeding up the process development and reduce costs. In this study, a framework for predictive model development based on Quantitative Structure- Activity Relationship (QSAR) modelling was developed to link structural features and properties of mAbs to Hydrophobic Interaction Chromatography (HIC) retention times and expressed mAb yield from HEK cells. Model development was based on a structured approach for incremental model refinement and evaluation that aided in increasing model performance until becoming acceptable in accordance to the OECD guidelines for QSAR models. The resulting models showed that it was possible to predict HIC retention times of mAbs based on their inherent structure. Further improvements of the models are suggested due to performance being adequate but not sufficient for implementation as a risk assessment tool in QbD. However, the described methodology and workflow has been proven to work for retention time prediction in a HIC column and is therefore likely to be applicable to other purification columns. i ii List of publications resulting from this research Karlberg, M., von Stosch, M. and Glassey, J., 2018. “Exploiting mAb structure characteristics for a directed QbD implementation in early process development.” Critical reviews in biotechnology, 38(6), pp.957-970 Kizhedath, A., Karlberg, M. and Glassey, J., 2019. “Cross interaction chromatography based QSAR model for early stage screening to facilitate enhanced developability of monoclonal antibody therapeutics”. Biotechnology journal, Accepted Karlberg, M., Kizhedath, A., Glassey, J., 2019. “QSAR model for Hydrophobic Interaction Chromatography behaviour from primary sequence of monoclonal antibodies”. Biotechnology Journal, Submitted Karlberg, M., de Souza, J., Kizhedath, A., Bronowska, A, Glassey, J., 2019. “QSAR model for Hydrophobic Interaction Chromatography behaviour from 3D structure of monoclonal antibodies”. Biotechnology Journal, Submitted List of conference contributions Karlberg, M, von Stosch, M, McCreath, G, Glassey, J. “Early Bioprocess development using PAT approaches”, ESBES, Sep 2016, Dublin, Ireland Karlberg, M, “Exploiting mAb structure characteristics for a directed QbD implementation in process development”, XIII BioProcess UK”, Nov 2016, Newcastle, UK Karlberg, M, Kizhedath, A., von Stosch, M, Wilkinson, S, Glassey J. “Exploiting mAb structure characteristics for rapid screening and a directed QbD implementation in process development”, ACS Biot 253rd meeting, Apr 2017, San Francisco, USA Karlberg, M, von Stosch, M, Glassey, J. “Exploiting mAb structure characteristics for a directed QbD implementation in process development”, WCCE ECAB, Oct 2017, Barcelona, Spain Karlberg, M and Glassey, J. “Exploiting MAB structure characteristics for a directed QbD implementation in process development”, ESBES, Sep 2018, Lisbon, Portugal iii iv Acknowledgements Many people have supported me during the past three years, and I have greatly enjoyed working with all of them. Especially, I would like to thank my main supervisor and friend, Jarka Glassey for pushing me to always do better and for providing encouragement to keep on going. Without this, I would not have learned as much as I now know today for which I am truly grateful. I would like to thank secondary supervisor Agnieszka Bronowska for showing me the cool world of Molecular Dynamics and the endless potential it holds for use in process development of biologics. I also want to thank Joao Victor de Souza Cunha for taking the time in teaching me the theory and application of Molecular Dynamics which added great value to the project. I also want to thank my former supervisor Moritz von Stosch for all the fruitful discussion on multivariate data analysis. In the city of Newcastle and at Newcastle University, I would like to thank my friends Arathi, Andre, Ana, Sylvester and Joao, who made every day an adventure. I truly enjoyed coming to university every day. From Fujifilm Diosynth in Billingham, UK, I would also like to thank the people who supported and helped me during my secondment. I truly appreciate the industrial insight and fruitful discussion that they provided as this clarified the problem statement of this project and encouraged me to continue research on this topic. I would also like to thank my family and friends in Sweden for their continued support and encouragement when writing up this thesis. During the three years of the project I had the pleasure and honour of becoming godfather to my beloved nephew Gabriel and niece Maja for which I will definitely tell tall tales and stories about my great adventure across the seas. This project received funding from the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie Grant Agreement No 643056 (Biorapid project). v vi Table of Contents Abstract ...................................................................................................................................... i List of publications resulting from this research .................................................................. iii List of conference contributions ............................................................................................. iii Acknowledgements ................................................................................................................... v List of Figures ......................................................................................................................... xv List of Tables ......................................................................................................................... xxv Abbreviations ....................................................................................................................... xxix Nomenclature ..................................................................................................................... xxxiii Introduction .............................................................................................................................. 1 Thesis structure ....................................................................................................................... 2 Chapter 1: Literature Review .............................................................................................. 2 Chapter 2: Modelling Development and Assessment ......................................................... 2 Chapter 3: Primary Sequence-based Descriptors ................................................................ 2 Chapter 4: Impact of mAb isotypes and species origins on primary sequence-based descriptors ........................................................................................................................... 3 Chapter 5: QSAR model development: Primary sequence-based descriptors .................... 3 Chapter 6: 3D Structure Descriptors ................................................................................... 3 Chapter 7: QSAR model development: 3D Structure Descriptors ...................................... 3 Chapter 8: Conclusion and Future Perspectives .................................................................. 3 Chapter 1 Literature review .................................................................................................... 5 1.1 Antibody Market ............................................................................................................... 5 1.2 State of the Art in mAb manufacturing............................................................................. 7 1.2.1 Implementation of QbD ............................................................................................. 8 1.2.2 Challenges in QbD implementation ......................................................................... 14 1.2.3 Current Focus and Improvements in Process Development .................................... 15 1.3 Quantitative Structure-Activity Relationship ................................................................. 19 vii 1.3.1 Descriptor generation ............................................................................................... 19 1.3.2 QSAR for protein behaviour prediction .................................................................. 22 1.4 Towards
Recommended publications
  • Does Novartis Need a Big Immuno- Oncology Deal?
    Sandoz’s Biosimilar Rejection Ups Key Clinical Data And Drug Expert View Risks, But Won’t Kill Market Approvals Expected New data on growth in China’s FDA’s rejection of Sandoz’s version of In 2H 2016 Scrip takes a look at some turbulent pharma sector paint a Amgen’s Neulasta has revealed the truth clinical trial read-outs and drug approvals mixed and complex picture, indicating that chasing the biosimilar market may expected, clinical trials due to report in both challenges and opportunities be riskier & more costly (p3) the second half of the year (p18) ahead (p20) 29 July 2016 No. 3813 Scripscripintelligence.com Pharma intelligence | informa space given what’s coming.” The company has previously stressed that its leadership position in chimeric antigen receptor T-cell therapy (CAR-Ts) will get it back in the thick of it. “I believe that we have a very strong self-generated, through in-licensing and through acquisition, early-stage immuno- oncology pipeline,” he said. And, he reiterat- ed the common refrain in the industry that success in the field will be determined over the long-term through the development of combinations. In May, Novartis announced a restructur- ing to break Novartis Oncology out into a separate business unit led by its own CEO, Bruno Strigini, who will report directly to Joseph Jimenez Jimenez. Merck & Co. Inc., Bristol and Roche have already launched the first immune check- point inhibitors, the PD-1/L1 inhibitors Key- Does Novartis Need A Big Immuno- truda (pembrolizumab), Opdivo (nivolumab) and Tecentriq (atezolizumab), respectively, while many others are in mid- to late-stage Oncology Deal? Jimenez Says No clinical development by drug makers like JESSICA MERRILL [email protected] AstraZeneca and Pfizer Inc.
    [Show full text]
  • ( 12 ) Patent Application Publication ( 10 ) Pub . No .: US 2020/0121788 A1
    US 20200121788A1 IN (19 ) United States (12 ) Patent Application Publication ( 10) Pub . No .: US 2020/0121788 A1 MASSIMINI et al. (43 ) Pub . Date : Apr. 23 , 2020 ( 54 ) ABITUZUMAB FOR THE TREATMENT OF A61K 31/44 (2006.01 ) COLORECTAL CANCER A61P 35/00 (2006.01 ) (52 ) U.S. Cl. ( 71) Applicant: Merck Patent GmbH , Darmstadt (DE ) CPC ... A61K 39/39558 (2013.01 ) ; CO7K 16/2848 ( 2013.01 ) ; CO7K 16/2863 ( 2013.01 ) ; CO7K ( 72 ) Inventors: Giorgio MASSIMINI, Darmstadt (DE ) ; 16/22 (2013.01 ) ; A61K 31/4745 ( 2013.01 ) ; Ilhan Celik , Zwingenberg (DE ) ; Josef A61K 31/513 ( 2013.01 ) ; A61K 2039/505 Straub , Seeheim - Jugenheim (DE ) ; Rolf ( 2013.01) ; A61K 31/519 ( 2013.01 ) ; A61K Bruns, Darmstadt ( DE ) 33/243 (2019.01 ) ; A6IK 38/179 ( 2013.01) ; A61K 31/44 ( 2013.01) ; A61P 35/00 ( 2018.01 ) ; ( 73 ) Assignee: Merck Patent GmbH , Darmstadt (DE ) CO7K 2317/76 ( 2013.01) ; A61K 31/7072 ( 21 ) Appl. No .: 16 /657,828 ( 2013.01) ( 22 ) Filed : Oct. 18 , 2019 (57 ) ABSTRACT Methods of treatment of colorectal cancer can include the Related U.S. Application Data administration of the anti - alpha - v integrin (receptor ) anti (60 ) Provisional application No. 62 / 748,114 , filed on Oct. body Abituzumab . Preferably , the methods of treating col 19 , 2018 . orectal cancer can include treating Stage II - IV colorectal cancer, metastatic colorectal cancer , left - sided colorectal Publication Classification cancer and /or left- sided metastatic colorectal cancer, involv ( 51) Int. Ci. ing the administration of said Abituzumab to patients in need A61K 39/395 ( 2006.01 ) thereof. Abituzumab is also useful for the manufacture of a COZK 16/28 ( 2006.01 ) medicament for treating colorectal cancer , preferably col COOK 16/22 ( 2006.01 ) orectal cancer as defined herein .
    [Show full text]
  • Precision Medicine for Human Cancers with Notch Signaling Dysregulation (Review)
    INTERNATIONAL JOURNAL OF MOleCular meDICine 45: 279-297, 2020 Precision medicine for human cancers with Notch signaling dysregulation (Review) MASUKO KATOH1 and MASARU KATOH2 1M & M PrecMed, Tokyo 113-0033; 2Department of Omics Network, National Cancer Center, Tokyo 104-0045, Japan Received September 16, 2019; Accepted November 20, 2019 DOI: 10.3892/ijmm.2019.4418 Abstract. NOTCH1, NOTCH2, NOTCH3 and NOTCH4 are conjugate (ADC) Rova-T, and DLL3-targeting chimeric antigen transmembrane receptors that transduce juxtacrine signals of receptor‑modified T cells (CAR‑Ts), AMG 119, are promising the delta-like canonical Notch ligand (DLL)1, DLL3, DLL4, anti-cancer therapeutics, as are other ADCs or CAR-Ts targeting jagged canonical Notch ligand (JAG)1 and JAG2. Canonical tumor necrosis factor receptor superfamily member 17, Notch signaling activates the transcription of BMI1 proto-onco- CD19, CD22, CD30, CD79B, CD205, Claudin 18.2, fibro- gene polycomb ring finger, cyclin D1, CD44, cyclin dependent blast growth factor receptor (FGFR)2, FGFR3, receptor-type kinase inhibitor 1A, hes family bHLH transcription factor 1, tyrosine-protein kinase FLT3, HER2, hepatocyte growth factor hes related family bHLH transcription factor with YRPW receptor, NECTIN4, inactive tyrosine-protein kinase 7, inac- motif 1, MYC, NOTCH3, RE1 silencing transcription factor and tive tyrosine-protein kinase transmembrane receptor ROR1 transcription factor 7 in a cellular context-dependent manner, and tumor-associated calcium signal transducer 2. ADCs and while non-canonical Notch signaling activates NF-κB and Rac CAR-Ts could alter the therapeutic framework for refractory family small GTPase 1. Notch signaling is aberrantly activated cancers, especially diffuse-type gastric cancer, ovarian cancer in breast cancer, non-small-cell lung cancer and hematological and pancreatic cancer with peritoneal dissemination.
    [Show full text]
  • Recent Advances in Inflammatory Bowel Disease: Mucosal Immune
    Recent advances in basic science Recent advances in inflammatory bowel disease: Gut: first published as 10.1136/gutjnl-2012-303955 on 8 October 2013. Downloaded from mucosal immune cells in intestinal inflammation M Zaeem Cader,1,2 Arthur Kaser1 1Department of Medicine, ABSTRACT Recent years have seen a rapid and exciting Division of Gastroenterology & The intestine and its immune system have evolved to expansion in our understanding of the mucosal Hepatology, University of Cambridge, Addenbrooke’s meet the extraordinary task of maintaining tolerance to immune system with novel insights into environ- Hospital, Cambridge, UK the largest, most complex and diverse microbial mental influences of diet and the microbiota; the 2Wellcome Trust PhD commensal habitat, while meticulously attacking and convergence and integration of fundamental cellu- Programme for Clinicians, containing even minute numbers of occasionally lar processes such as autophagy, microbial sensing Cambridge Institute for incoming pathogens. While our understanding is still far and endoplasmic reticulum (ER) stress; as well as Medical Research, School of Clinical Medicine, University of from complete, recent studies have provided exciting the discovery of new cell types, for example innate Cambridge, Cambridge, UK novel insights into the complex interplay of the many lymphoid cells (ILCs). distinct intestinal immune cell types as well as the The gut is unlike the systemic immune system in Correspondence to discovery of entirely new cell subsets. These studies have several respects and much of the extensive reper- Dr Arthur Kaser, Department of Medicine, Division of also revealed how proper development and function of toire of immune cells and their characteristics are Gastroenterology and the intestinal immune system is dependent on its specific indeed unique to the intestine.
    [Show full text]
  • Andrew Lai Thesis
    TOWARDS THE DEVELOPMENT OF NOVEL BISPECIFIC ANTIBODIES TO INHIBIT KEY CELL SURFACE RECEPTORS INTEGRAL FOR THE GROWTH AND MIGRATION OF TUMOUR CELLS Andrew Lai Bachelor of Science, UNSW 2008 Master of Biotechnology, QUT 2010 Bachelor of Applied Science (Hons), QUT 2012 Submitted for the degree of Doctor of Philosophy Institute of Health and Biomedical Innovation Faculty of Health Queensland University of Technology 2016 Keywords Breast cancer, extracellular matrix, insulin-like growth factor, metastasis, migration, therapeutics, phage display, single chain variable fragments, vitronectin Towards the development of novel bispecific antibodies to inhibit key cell surface receptors integral for the growth and migration of tumour cells i Abstract Metastatic breast cancer, or breast cancer which has spread from the primary tumour to distal secondary sites, remains a major killer of women today. Researchers have observed that the relationship between tumour cells and its surrounding environment plays an important role in cancer progression. One such interaction is between the Insulin-like growth factor (IGF) system and the integrin system, which has been demonstrated to be involved in cancer cell metabolic activity and migration. Therefore, the aim of this project was to translate this knowledge into the generation of bispecific antibody fragments (BsAb) targeting both systems, in order to disrupt their roles in cancer growth and metastasis. To screen for IGF-1R and αv integrin binding ScFv, a phage display enrichment procedure using the Tomlinson ScFv libraries was conducted. After the panning cycles, 192 clones were screened for binding using ELISA, of which 16 were selected for sequencing. Analysis of the results revealed 1 IGF-R and 3 αv integrin unique binding ScFv, which were all subsequently expressed in a bacterial expression system.
    [Show full text]
  • Where Do Novel Drugs of 2016 Fit In?
    FORMULARY JEOPARDY: WHERE DO NOVEL DRUGS OF 2016 FIT IN? Maabo Kludze, PharmD, MBA, CDE, BCPS, Associate Director Elizabeth A. Shlom, PharmD, BCPS, SVP & Director Clinical Pharmacy Program Acurity, Inc. Privileged and Confidential August 15, 2017 Privileged and Confidential Program Objectives By the end of the presentation, the pharmacist or pharmacy technician participant will be able to: ◆ Identify orphan drugs and first-in-class medications approved by the FDA in 2016. ◆ Describe the role of new agents approved for use in oncology patients. ◆ Identify and discuss the role of novel monoclonal antibodies. ◆ Discuss at least two new medications that address public health concerns. Neither Dr. Kludze nor Dr. Shlom have any conflicts of interest in regards to this presentation. Privileged and Confidential 2016 NDA Approvals (NMEs/BLAs) ◆ Nuplazid (primavanserin) P ◆ Adlyxin (lixisenatide) ◆ Ocaliva (obeticholic acid) P, O ◆ Anthim (obitoxaximab) O ◆ Rubraca (rucaparib camsylate) P, O ◆ Axumin (fluciclovive F18) P ◆ Spinraza (nusinersen sodium) P, O ◆ Briviact (brivaracetam) ◆ Taltz (ixekizumab) ◆ Cinqair (reslizumab) ◆ Tecentriq (atezolizumab) P ◆ Defitelio (defibrotide sodium) P, O ◆ Venclexta (venetoclax) P, O ◆ Epclusa (sofosburvir and velpatasvir) P ◆ Xiidra (lifitigrast) P ◆ Eucrisa (crisaborole) ◆ Zepatier (elbasvir and grazoprevir) P ◆ Exondys 51 (eteplirsen) P, O ◆ Zinbyrta (daclizumab) ◆ Lartruvo (olaratumab) P, O ◆ Zinplava (bezlotoxumab) P ◆ NETSTPOT (gallium Ga 68 dotatate) P, O O = Orphan; P = Priority Review; Red = BLA Privileged and Confidential History of FDA Approvals Privileged and Confidential Orphan Drugs ◆FDA Office of Orphan Products Development • Orphan Drug Act (1983) – drugs and biologics . “intended for safe and effective treatment, diagnosis or prevention of rare diseases/disorders that affect fewer than 200,000 people in the U.S.
    [Show full text]
  • Classification Decisions Taken by the Harmonized System Committee from the 47Th to 60Th Sessions (2011
    CLASSIFICATION DECISIONS TAKEN BY THE HARMONIZED SYSTEM COMMITTEE FROM THE 47TH TO 60TH SESSIONS (2011 - 2018) WORLD CUSTOMS ORGANIZATION Rue du Marché 30 B-1210 Brussels Belgium November 2011 Copyright © 2011 World Customs Organization. All rights reserved. Requests and inquiries concerning translation, reproduction and adaptation rights should be addressed to [email protected]. D/2011/0448/25 The following list contains the classification decisions (other than those subject to a reservation) taken by the Harmonized System Committee ( 47th Session – March 2011) on specific products, together with their related Harmonized System code numbers and, in certain cases, the classification rationale. Advice Parties seeking to import or export merchandise covered by a decision are advised to verify the implementation of the decision by the importing or exporting country, as the case may be. HS codes Classification No Product description Classification considered rationale 1. Preparation, in the form of a powder, consisting of 92 % sugar, 6 % 2106.90 GRIs 1 and 6 black currant powder, anticaking agent, citric acid and black currant flavouring, put up for retail sale in 32-gram sachets, intended to be consumed as a beverage after mixing with hot water. 2. Vanutide cridificar (INN List 100). 3002.20 3. Certain INN products. Chapters 28, 29 (See “INN List 101” at the end of this publication.) and 30 4. Certain INN products. Chapters 13, 29 (See “INN List 102” at the end of this publication.) and 30 5. Certain INN products. Chapters 28, 29, (See “INN List 103” at the end of this publication.) 30, 35 and 39 6. Re-classification of INN products.
    [Show full text]
  • Tanibirumab (CUI C3490677) Add to Cart
    5/17/2018 NCI Metathesaurus Contains Exact Match Begins With Name Code Property Relationship Source ALL Advanced Search NCIm Version: 201706 Version 2.8 (using LexEVS 6.5) Home | NCIt Hierarchy | Sources | Help Suggest changes to this concept Tanibirumab (CUI C3490677) Add to Cart Table of Contents Terms & Properties Synonym Details Relationships By Source Terms & Properties Concept Unique Identifier (CUI): C3490677 NCI Thesaurus Code: C102877 (see NCI Thesaurus info) Semantic Type: Immunologic Factor Semantic Type: Amino Acid, Peptide, or Protein Semantic Type: Pharmacologic Substance NCIt Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor tyrosine kinase expressed by endothelial cells, while VEGF is overexpressed in many tumors and is correlated to tumor progression. PDQ Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor
    [Show full text]
  • Download PDF Document
    Journal for ImmunoTherapy of Cancer 2019, 7(Suppl 1):283 https://doi.org/10.1186/s40425-019-0764-0 MEETINGABSTRACTS Open Access 34th Annual Meeting & Pre-Conference Programs of the Society for Immunotherapy of Cancer (SITC 2019): part 2 National Harbor, MD, USA. 10 November 2019 Published: 6 November 2019 About this supplement These abstracts have been published as part of Journal for ImmunoTherapy of Cancer Volume 7 Supplement 1, 2019. The full contents of the supplement are available online at https://jitc.biomedcentral.com/articles/supplements/volume-7-supplement-1. Please note that this is part 2 of 2. Poster Presentations median survival; 3) FTN203 did not negate the efficacy of anti- PD-1 or anti-PD-L1 immunotherapy antibody when combined; 4) Biomarkers, Immune Monitoring, and Novel FTN203 significantly improved the efficacy of anti-PD-1 by further Technologies reducing the tumor growth (by 80% on day 26, P=0.046) and in- creasing the median survival (by 5 days or 14%, Log-rank test P= P501 0.031), against the combo of COMPLETE and anti-PD-1; 5) None Dietary deprivation of non-essential amino acids improves anti-PD- of the mono or combo treatments caused body weight loss. 1 immunotherapy in murine colon cancer Conclusions Zehui Li, PhD, Grace Yang, PhD, Shuang Zhou, PhD, Xin Wang, MD, PhD, Our data supports the use of dietary NEAA deprivation to improve Xiyan Li, PhD the efficacy of anti-PD-1 or anti-PD-L1 immunotherapy for colorectal Filtricine, Inc., Santa Clara, CA, United States cancer without noticeable side effects.
    [Show full text]
  • PD-1 / PD-L1 Combination Therapies
    PD-1 / PD-L1 Combination Therapies Jacob Plieth & Edwin Elmhirst – May 2017 Foreword Sprinkling the immuno-oncology dust When in November 2015 EP Vantage published its first immuno- oncology analysis we identified 215 studies of anti-PD-1/PD-L1 projects combined with other approaches, and called this an important industry theme. It is a measure of how central combos have become that today, barely 18 months on, that total has been blown out of the water. No fewer than 765 studies involving combinations of PD-1 or PD-L1 assets are now listed on the Clinicaltrials.gov registry. This dazzling array owes much to the transformational nature of the data seen with the first wave of anti-PD-1/PD-L1 MAbs. It also indicates how central combinations will be in extending immuno-oncology beyond just a handful of cancers, and beyond certain patient subgroups. But the combo effort is as much about extending the reach of currently available drugs like Keytruda, Opdivo and Tecentriq as it is about making novel approaches viable by combining them with PD-1/PD-L1. On a standalone basis several of the industry’s novel oncology projects have underwhelmed. As data are generated it will therefore be vital for investors to tease out the effect of combinations beyond that of monotherapy, and it is doubtful whether the sprinkling of magic immuno-oncology dust will come to the rescue of substandard products. This is not stopping many companies, as the hundreds of combination studies identified here show. This report aims to quantify how many trials are ongoing with which assets and in which cancer indications, as well as suggesting reasons why some of the most popular approaches are being pursued.
    [Show full text]
  • Promising Therapeutic Targets for Treatment of Rheumatoid Arthritis
    REVIEW published: 09 July 2021 doi: 10.3389/fimmu.2021.686155 Promising Therapeutic Targets for Treatment of Rheumatoid Arthritis † † Jie Huang 1 , Xuekun Fu 1 , Xinxin Chen 1, Zheng Li 1, Yuhong Huang 1 and Chao Liang 1,2* 1 Department of Biology, Southern University of Science and Technology, Shenzhen, China, 2 Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China Rheumatoid arthritis (RA) is a systemic poly-articular chronic autoimmune joint disease that mainly damages the hands and feet, which affects 0.5% to 1.0% of the population worldwide. With the sustained development of disease-modifying antirheumatic drugs (DMARDs), significant success has been achieved for preventing and relieving disease activity in RA patients. Unfortunately, some patients still show limited response to DMARDs, which puts forward new requirements for special targets and novel therapies. Understanding the pathogenetic roles of the various molecules in RA could facilitate discovery of potential therapeutic targets and approaches. In this review, both Edited by: existing and emerging targets, including the proteins, small molecular metabolites, and Trine N. Jorgensen, epigenetic regulators related to RA, are discussed, with a focus on the mechanisms that Case Western Reserve University, result in inflammation and the development of new drugs for blocking the various United States modulators in RA. Reviewed by: Åsa Andersson, Keywords: rheumatoid arthritis, targets, proteins, small molecular metabolites, epigenetic regulators Halmstad University, Sweden Abdurrahman Tufan, Gazi University, Turkey *Correspondence: INTRODUCTION Chao Liang [email protected] Rheumatoid arthritis (RA) is classified as a systemic poly-articular chronic autoimmune joint † disease that primarily affects hands and feet.
    [Show full text]
  • 2017 Immuno-Oncology Medicines in Development
    2017 Immuno-Oncology Medicines in Development Adoptive Cell Therapies Drug Name Organization Indication Development Phase ACTR087 + rituximab Unum Therapeutics B-cell lymphoma Phase I (antibody-coupled T-cell receptor Cambridge, MA www.unumrx.com immunotherapy + rituximab) AFP TCR Adaptimmune liver Phase I (T-cell receptor cell therapy) Philadelphia, PA www.adaptimmune.com anti-BCMA CAR-T cell therapy Juno Therapeutics multiple myeloma Phase I Seattle, WA www.junotherapeutics.com Memorial Sloan Kettering New York, NY anti-CD19 "armored" CAR-T Juno Therapeutics recurrent/relapsed chronic Phase I cell therapy Seattle, WA lymphocytic leukemia (CLL) www.junotherapeutics.com Memorial Sloan Kettering New York, NY anti-CD19 CAR-T cell therapy Intrexon B-cell malignancies Phase I Germantown, MD www.dna.com ZIOPHARM Oncology www.ziopharm.com Boston, MA anti-CD19 CAR-T cell therapy Kite Pharma hematological malignancies Phase I (second generation) Santa Monica, CA www.kitepharma.com National Cancer Institute Bethesda, MD Medicines in Development: Immuno-Oncology 1 Adoptive Cell Therapies Drug Name Organization Indication Development Phase anti-CEA CAR-T therapy Sorrento Therapeutics liver metastases Phase I San Diego, CA www.sorrentotherapeutics.com TNK Therapeutics San Diego, CA anti-PSMA CAR-T cell therapy TNK Therapeutics cancer Phase I San Diego, CA www.sorrentotherapeutics.com Sorrento Therapeutics San Diego, CA ATA520 Atara Biotherapeutics multiple myeloma, Phase I (WT1-specific T lymphocyte South San Francisco, CA plasma cell leukemia www.atarabio.com
    [Show full text]