Andrew Lai Thesis

Total Page:16

File Type:pdf, Size:1020Kb

Andrew Lai Thesis TOWARDS THE DEVELOPMENT OF NOVEL BISPECIFIC ANTIBODIES TO INHIBIT KEY CELL SURFACE RECEPTORS INTEGRAL FOR THE GROWTH AND MIGRATION OF TUMOUR CELLS Andrew Lai Bachelor of Science, UNSW 2008 Master of Biotechnology, QUT 2010 Bachelor of Applied Science (Hons), QUT 2012 Submitted for the degree of Doctor of Philosophy Institute of Health and Biomedical Innovation Faculty of Health Queensland University of Technology 2016 Keywords Breast cancer, extracellular matrix, insulin-like growth factor, metastasis, migration, therapeutics, phage display, single chain variable fragments, vitronectin Towards the development of novel bispecific antibodies to inhibit key cell surface receptors integral for the growth and migration of tumour cells i Abstract Metastatic breast cancer, or breast cancer which has spread from the primary tumour to distal secondary sites, remains a major killer of women today. Researchers have observed that the relationship between tumour cells and its surrounding environment plays an important role in cancer progression. One such interaction is between the Insulin-like growth factor (IGF) system and the integrin system, which has been demonstrated to be involved in cancer cell metabolic activity and migration. Therefore, the aim of this project was to translate this knowledge into the generation of bispecific antibody fragments (BsAb) targeting both systems, in order to disrupt their roles in cancer growth and metastasis. To screen for IGF-1R and αv integrin binding ScFv, a phage display enrichment procedure using the Tomlinson ScFv libraries was conducted. After the panning cycles, 192 clones were screened for binding using ELISA, of which 16 were selected for sequencing. Analysis of the results revealed 1 IGF-R and 3 αv integrin unique binding ScFv, which were all subsequently expressed in a bacterial expression system. The ScFv were purified to a high degree using Ni-NTA and protein-L agarose affinity chromatography and were further assessed using size exclusion chromatography to detect the presence of any ScFv aggregates. Functional characterisation studies using MCF-7 breast cancer cells indicated that the IGF-1R targeting ScFv was able to inhibit both IGF-I and VN dependent metabolic activity and migration. Cell-based assays were also used to characterise the anti-αv integrin ScFv, however, no inhibition of cell attachment or migration was observed. Investigation into possible reasons for the inability to inhibit cell processes revealed the original αv integrin sample used for panning may not have been fit for purpose. Thus, while the anti-IGF-1R ScFv shows potential, the lack of a functional anti-αv integrin ScFv made the generation of a bi-specific antibody fragment unachievable within this project. In light of these results, further characterisation should be conducted to assess the potential therapeutic treatment of breast cancer using the generated ScFv. ii Towards the development of novel bispecific antibodies to inhibit key cell surface receptors integral for the growth and migration of tumour cells Table of Contents Keywords .................................................................................................................................. i Abstract .................................................................................................................................... ii Table of Contents .................................................................................................................... iii List of Figures ........................................................................................................................ vii List of Tables .......................................................................................................................... ix List of Abbreviations ................................................................................................................x Statement of Original Authorship ...........................................................................................xv Acknowledgements ............................................................................................................... xvi Literature Review ............................................................................. 1 1.1 Breast cancer ...................................................................................................................2 1.2 Targeted cancer therapies ...............................................................................................3 1.3 Insulin-like growth factor system ...................................................................................6 1.4 Integrins ..........................................................................................................................8 1.5 IGF-1R and αv integrin signalling pathway interaction .................................................9 1.6 IGF-1R and VN binding integrin targeting strategies ..................................................10 1.7 Antibody structure and fragmentation ..........................................................................14 1.8 Bispecific antibodies .....................................................................................................15 1.9 Antibody generation .....................................................................................................18 1.10 Phage display ................................................................................................................19 1.10.1 KM13 phage physiology and structure ...............................................................21 1.10.2 Phage display selection ......................................................................................22 1.11 Conclusion and knowledge gaps ..................................................................................23 1.12 Project outline ...............................................................................................................24 1.12.1 Hypothesis ..........................................................................................................24 1.12.2 Aims ...................................................................................................................24 Materials and Methods .................................................................. 26 2.1 Introduction ..................................................................................................................27 2.2 Materials .......................................................................................................................27 2.3 Cloning .........................................................................................................................27 2.3.1 General PCR .......................................................................................................27 2.3.2 Mini-prep plasmid isolation ...............................................................................28 2.3.3 Sanger sequencing of plasmids ..........................................................................29 2.4 Mammalian cell culture ................................................................................................30 2.4.1 Propagation of MCF-7 cell lines ........................................................................30 2.4.2 Cell counting ......................................................................................................30 2.4.3 Cryopreservation of cell lines .............................................................................30 2.4.4 Mycoplasma Testing ..........................................................................................31 2.5 Protein isolation from adherent cell cultures ................................................................32 Towards the development of novel bispecific antibodies to inhibit key cell surface receptors integral for the growth and migration of tumour cells iii 2.5.1 Denaturing conditions ........................................................................................ 32 2.5.2 Non-denaturing conditions ................................................................................ 32 2.6 Protein Quantification .................................................................................................. 33 2.7 Protein detection .......................................................................................................... 33 2.7.1 SDS-PAGE and Chemiluminescence Western .................................................. 33 2.7.2 Quantitative Westerns ........................................................................................ 34 2.7.3 Silver staining .................................................................................................... 34 Phage Display selection and screening.......................................... 36 3.1 Introduction .................................................................................................................. 37 3.2 Experimental procedures .............................................................................................. 40 3.2.1 Materials ............................................................................................................ 40 3.2.2 Phage display libraries ....................................................................................... 40 3.2.3 E. coli strain, media, and culture conditions ...................................................... 40 3.2.4 KM13 helper phage amplification ....................................................................
Recommended publications
  • ( 12 ) Patent Application Publication ( 10 ) Pub . No .: US 2020/0121788 A1
    US 20200121788A1 IN (19 ) United States (12 ) Patent Application Publication ( 10) Pub . No .: US 2020/0121788 A1 MASSIMINI et al. (43 ) Pub . Date : Apr. 23 , 2020 ( 54 ) ABITUZUMAB FOR THE TREATMENT OF A61K 31/44 (2006.01 ) COLORECTAL CANCER A61P 35/00 (2006.01 ) (52 ) U.S. Cl. ( 71) Applicant: Merck Patent GmbH , Darmstadt (DE ) CPC ... A61K 39/39558 (2013.01 ) ; CO7K 16/2848 ( 2013.01 ) ; CO7K 16/2863 ( 2013.01 ) ; CO7K ( 72 ) Inventors: Giorgio MASSIMINI, Darmstadt (DE ) ; 16/22 (2013.01 ) ; A61K 31/4745 ( 2013.01 ) ; Ilhan Celik , Zwingenberg (DE ) ; Josef A61K 31/513 ( 2013.01 ) ; A61K 2039/505 Straub , Seeheim - Jugenheim (DE ) ; Rolf ( 2013.01) ; A61K 31/519 ( 2013.01 ) ; A61K Bruns, Darmstadt ( DE ) 33/243 (2019.01 ) ; A6IK 38/179 ( 2013.01) ; A61K 31/44 ( 2013.01) ; A61P 35/00 ( 2018.01 ) ; ( 73 ) Assignee: Merck Patent GmbH , Darmstadt (DE ) CO7K 2317/76 ( 2013.01) ; A61K 31/7072 ( 21 ) Appl. No .: 16 /657,828 ( 2013.01) ( 22 ) Filed : Oct. 18 , 2019 (57 ) ABSTRACT Methods of treatment of colorectal cancer can include the Related U.S. Application Data administration of the anti - alpha - v integrin (receptor ) anti (60 ) Provisional application No. 62 / 748,114 , filed on Oct. body Abituzumab . Preferably , the methods of treating col 19 , 2018 . orectal cancer can include treating Stage II - IV colorectal cancer, metastatic colorectal cancer , left - sided colorectal Publication Classification cancer and /or left- sided metastatic colorectal cancer, involv ( 51) Int. Ci. ing the administration of said Abituzumab to patients in need A61K 39/395 ( 2006.01 ) thereof. Abituzumab is also useful for the manufacture of a COZK 16/28 ( 2006.01 ) medicament for treating colorectal cancer , preferably col COOK 16/22 ( 2006.01 ) orectal cancer as defined herein .
    [Show full text]
  • Predictive QSAR Tools to Aid in Early Process Development of Monoclonal Antibodies
    Predictive QSAR tools to aid in early process development of monoclonal antibodies John Micael Andreas Karlberg Published work submitted to Newcastle University for the degree of Doctor of Philosophy in the School of Engineering November 2019 Abstract Monoclonal antibodies (mAbs) have become one of the fastest growing markets for diagnostic and therapeutic treatments over the last 30 years with a global sales revenue around $89 billion reported in 2017. A popular framework widely used in pharmaceutical industries for designing manufacturing processes for mAbs is Quality by Design (QbD) due to providing a structured and systematic approach in investigation and screening process parameters that might influence the product quality. However, due to the large number of product quality attributes (CQAs) and process parameters that exist in an mAb process platform, extensive investigation is needed to characterise their impact on the product quality which makes the process development costly and time consuming. There is thus an urgent need for methods and tools that can be used for early risk-based selection of critical product properties and process factors to reduce the number of potential factors that have to be investigated, thereby aiding in speeding up the process development and reduce costs. In this study, a framework for predictive model development based on Quantitative Structure- Activity Relationship (QSAR) modelling was developed to link structural features and properties of mAbs to Hydrophobic Interaction Chromatography (HIC) retention times and expressed mAb yield from HEK cells. Model development was based on a structured approach for incremental model refinement and evaluation that aided in increasing model performance until becoming acceptable in accordance to the OECD guidelines for QSAR models.
    [Show full text]
  • Classification Decisions Taken by the Harmonized System Committee from the 47Th to 60Th Sessions (2011
    CLASSIFICATION DECISIONS TAKEN BY THE HARMONIZED SYSTEM COMMITTEE FROM THE 47TH TO 60TH SESSIONS (2011 - 2018) WORLD CUSTOMS ORGANIZATION Rue du Marché 30 B-1210 Brussels Belgium November 2011 Copyright © 2011 World Customs Organization. All rights reserved. Requests and inquiries concerning translation, reproduction and adaptation rights should be addressed to [email protected]. D/2011/0448/25 The following list contains the classification decisions (other than those subject to a reservation) taken by the Harmonized System Committee ( 47th Session – March 2011) on specific products, together with their related Harmonized System code numbers and, in certain cases, the classification rationale. Advice Parties seeking to import or export merchandise covered by a decision are advised to verify the implementation of the decision by the importing or exporting country, as the case may be. HS codes Classification No Product description Classification considered rationale 1. Preparation, in the form of a powder, consisting of 92 % sugar, 6 % 2106.90 GRIs 1 and 6 black currant powder, anticaking agent, citric acid and black currant flavouring, put up for retail sale in 32-gram sachets, intended to be consumed as a beverage after mixing with hot water. 2. Vanutide cridificar (INN List 100). 3002.20 3. Certain INN products. Chapters 28, 29 (See “INN List 101” at the end of this publication.) and 30 4. Certain INN products. Chapters 13, 29 (See “INN List 102” at the end of this publication.) and 30 5. Certain INN products. Chapters 28, 29, (See “INN List 103” at the end of this publication.) 30, 35 and 39 6. Re-classification of INN products.
    [Show full text]
  • Therapeutic Targeting of the IGF Axis
    cells Review Therapeutic Targeting of the IGF Axis Eliot Osher and Valentine M. Macaulay * Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK * Correspondence: [email protected]; Tel.: +44-1865617337 Received: 8 July 2019; Accepted: 9 August 2019; Published: 14 August 2019 Abstract: The insulin like growth factor (IGF) axis plays a fundamental role in normal growth and development, and when deregulated makes an important contribution to disease. Here, we review the functions mediated by ligand-induced IGF axis activation, and discuss the evidence for the involvement of IGF signaling in the pathogenesis of cancer, endocrine disorders including acromegaly, diabetes and thyroid eye disease, skin diseases such as acne and psoriasis, and the frailty that accompanies aging. We discuss the use of IGF axis inhibitors, focusing on the different approaches that have been taken to develop effective and tolerable ways to block this important signaling pathway. We outline the advantages and disadvantages of each approach, and discuss progress in evaluating these agents, including factors that contributed to the failure of many of these novel therapeutics in early phase cancer trials. Finally, we summarize grounds for cautious optimism for ongoing and future studies of IGF blockade in cancer and non-malignant disorders including thyroid eye disease and aging. Keywords: IGF; type 1 IGF receptor; IGF-1R; cancer; acromegaly; ophthalmopathy; IGF inhibitor 1. Introduction Insulin like growth factors (IGFs) are small (~7.5 kDa) ligands that play a critical role in many biological processes including proliferation and protection from apoptosis and normal somatic growth and development [1]. IGFs are members of a ligand family that includes insulin, a dipeptide comprised of A and B chains linked via two disulfide bonds, with a third disulfide linkage within the A chain.
    [Show full text]
  • 2017 Immuno-Oncology Medicines in Development
    2017 Immuno-Oncology Medicines in Development Adoptive Cell Therapies Drug Name Organization Indication Development Phase ACTR087 + rituximab Unum Therapeutics B-cell lymphoma Phase I (antibody-coupled T-cell receptor Cambridge, MA www.unumrx.com immunotherapy + rituximab) AFP TCR Adaptimmune liver Phase I (T-cell receptor cell therapy) Philadelphia, PA www.adaptimmune.com anti-BCMA CAR-T cell therapy Juno Therapeutics multiple myeloma Phase I Seattle, WA www.junotherapeutics.com Memorial Sloan Kettering New York, NY anti-CD19 "armored" CAR-T Juno Therapeutics recurrent/relapsed chronic Phase I cell therapy Seattle, WA lymphocytic leukemia (CLL) www.junotherapeutics.com Memorial Sloan Kettering New York, NY anti-CD19 CAR-T cell therapy Intrexon B-cell malignancies Phase I Germantown, MD www.dna.com ZIOPHARM Oncology www.ziopharm.com Boston, MA anti-CD19 CAR-T cell therapy Kite Pharma hematological malignancies Phase I (second generation) Santa Monica, CA www.kitepharma.com National Cancer Institute Bethesda, MD Medicines in Development: Immuno-Oncology 1 Adoptive Cell Therapies Drug Name Organization Indication Development Phase anti-CEA CAR-T therapy Sorrento Therapeutics liver metastases Phase I San Diego, CA www.sorrentotherapeutics.com TNK Therapeutics San Diego, CA anti-PSMA CAR-T cell therapy TNK Therapeutics cancer Phase I San Diego, CA www.sorrentotherapeutics.com Sorrento Therapeutics San Diego, CA ATA520 Atara Biotherapeutics multiple myeloma, Phase I (WT1-specific T lymphocyte South San Francisco, CA plasma cell leukemia www.atarabio.com
    [Show full text]
  • The Two Tontti Tudiul Lui Hi Ha Unit
    THETWO TONTTI USTUDIUL 20170267753A1 LUI HI HA UNIT ( 19) United States (12 ) Patent Application Publication (10 ) Pub. No. : US 2017 /0267753 A1 Ehrenpreis (43 ) Pub . Date : Sep . 21 , 2017 ( 54 ) COMBINATION THERAPY FOR (52 ) U .S . CI. CO - ADMINISTRATION OF MONOCLONAL CPC .. .. CO7K 16 / 241 ( 2013 .01 ) ; A61K 39 / 3955 ANTIBODIES ( 2013 .01 ) ; A61K 31 /4706 ( 2013 .01 ) ; A61K 31 / 165 ( 2013 .01 ) ; CO7K 2317 /21 (2013 . 01 ) ; (71 ) Applicant: Eli D Ehrenpreis , Skokie , IL (US ) CO7K 2317/ 24 ( 2013. 01 ) ; A61K 2039/ 505 ( 2013 .01 ) (72 ) Inventor : Eli D Ehrenpreis, Skokie , IL (US ) (57 ) ABSTRACT Disclosed are methods for enhancing the efficacy of mono (21 ) Appl. No. : 15 /605 ,212 clonal antibody therapy , which entails co - administering a therapeutic monoclonal antibody , or a functional fragment (22 ) Filed : May 25 , 2017 thereof, and an effective amount of colchicine or hydroxy chloroquine , or a combination thereof, to a patient in need Related U . S . Application Data thereof . Also disclosed are methods of prolonging or increasing the time a monoclonal antibody remains in the (63 ) Continuation - in - part of application No . 14 / 947 , 193 , circulation of a patient, which entails co - administering a filed on Nov. 20 , 2015 . therapeutic monoclonal antibody , or a functional fragment ( 60 ) Provisional application No . 62/ 082, 682 , filed on Nov . of the monoclonal antibody , and an effective amount of 21 , 2014 . colchicine or hydroxychloroquine , or a combination thereof, to a patient in need thereof, wherein the time themonoclonal antibody remains in the circulation ( e . g . , blood serum ) of the Publication Classification patient is increased relative to the same regimen of admin (51 ) Int .
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2017/0172932 A1 Peyman (43) Pub
    US 20170172932A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2017/0172932 A1 Peyman (43) Pub. Date: Jun. 22, 2017 (54) EARLY CANCER DETECTION AND A 6LX 39/395 (2006.01) ENHANCED IMMUNOTHERAPY A61R 4I/00 (2006.01) (52) U.S. Cl. (71) Applicant: Gholam A. Peyman, Sun City, AZ CPC .......... A61K 9/50 (2013.01); A61K 39/39558 (US) (2013.01); A61K 4I/0052 (2013.01); A61 K 48/00 (2013.01); A61K 35/17 (2013.01); A61 K (72) Inventor: sham A. Peyman, Sun City, AZ 35/15 (2013.01); A61K 2035/124 (2013.01) (21) Appl. No.: 15/143,981 (57) ABSTRACT (22) Filed: May 2, 2016 A method of therapy for a tumor or other pathology by administering a combination of thermotherapy and immu Related U.S. Application Data notherapy optionally combined with gene delivery. The combination therapy beneficially treats the tumor and pre (63) Continuation-in-part of application No. 14/976,321, vents tumor recurrence, either locally or at a different site, by filed on Dec. 21, 2015. boosting the patient’s immune response both at the time or original therapy and/or for later therapy. With respect to Publication Classification gene delivery, the inventive method may be used in cancer (51) Int. Cl. therapy, but is not limited to such use; it will be appreciated A 6LX 9/50 (2006.01) that the inventive method may be used for gene delivery in A6 IK 35/5 (2006.01) general. The controlled and precise application of thermal A6 IK 4.8/00 (2006.01) energy enhances gene transfer to any cell, whether the cell A 6LX 35/7 (2006.01) is a neoplastic cell, a pre-neoplastic cell, or a normal cell.
    [Show full text]
  • Perspektive 2023
    Perspektive 2023 Neue Medikamente in Entwicklung Inhalt 2 Neue Medikamente in Sicht 6 Neue Wege 8 Neue Chancen für Krebspatienten 10 Entzündungen zum Erliegen bringen 13 Infektionen bekämpfen 14 Gegen Krankheiten unterschiedlichster Art 16 Kindermedikamente und Orphan Drugs 19 Medikamente für Männer und Frauen 20 Die neuen Wirkstoffe 23 Der Beitrag Deutschlands 26 Projekte, die bis 2023 zu einer Zulassung führen können 44 Schwerpunkte der vfa-Mitglieder 46 Kontakt Blick voraus Mehr als zehn Jahre dauert es von der Idee bis zur Zulassung, manch- mal mehr als zwanzig. Erfolge mit neuen Medikamenten kann also nur ernten, wer lange vorher gesät hat. Das haben die forschenden Pharma-Unternehmen des vfa in den späten 2000er- und frühen 2010er-Jahren reichlich getan, so dass nun besonders viele Medika- mente in ihrer Erprobung weit fort geschritten sind. Welche es noch vor Ende 2023 bis zu einer Zulassung oder Zulassungserweiterung schaffen könnten, zeigt diese Veröffentlichung. Sie macht deutlich, dass zahlreiche Patientinnen und Patienten gute Aussichten auf bessere Behandlungsmöglich keiten für ihre Leiden haben. vfa – die forschenden Pharma-Unternehmen Perspektive 2023 Neue Medikamente in Sicht Viele Krankheiten sind in den letzten Jahren besser behandelbar geworden, und Patienten und Ärzte hoffen, dass dieser Strom des Fortschritts nicht abreißt. Die Chancen dafür stehen gut. Denn forschende Pharma-Unternehmen entwickeln derzeit gegen mehr als 145 Krankheiten Medikamente, die bis spätestens Ende 2023 die Zulassung erhalten könnten. Das zeigt eine Erhebung des vfa bei seinen Mitgliedsunter nehmen vom Oktober 2019. Demnach könnten bis Ende 2023 insgesamt 434 Sämtliche Projekte, die in der Erhebung erfasst ihrer Projekte zu einer Zulassung oder Zulassungs- wurden, sind ab S.
    [Show full text]
  • The IGF-II–Insulin Receptor Isoform-A Autocrine Signal in Cancer: Actionable Perspectives
    cancers Review The IGF-II–Insulin Receptor Isoform-A Autocrine Signal in Cancer: Actionable Perspectives Pierluigi Scalia 1,2,*, Antonio Giordano 1,3 and Stephen J. Williams 1,4 1 Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Biology Department, Temple University, Philadelphia, PA 19122, USA; [email protected] (A.G.); [email protected] (S.J.W.) 2 Istituto Somatogene per la Ricerca Onco-Genomica, ISOPROG, 93100 Caltanissetta, Italy 3 Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy 4 Somatolink Foundation, Inc., Philadelphia, PA 19102, USA * Correspondence: [email protected] Received: 31 December 2019; Accepted: 2 February 2020; Published: 5 February 2020 Abstract: Insulin receptor overexpression is a common event in human cancer. Its overexpression is associated with a relative increase in the expression of its isoform A (IRA), a shorter variant lacking 11 aa in the extracellular domain, conferring high affinity for the binding of IGF-II along with added intracellular signaling specificity for this ligand. Since IGF-II is secreted by the vast majority of malignant solid cancers, where it establishes autocrine stimuli, the co-expression of IGF-II and IRA in cancer provides specific advantages such as apoptosis escape, growth, and proliferation to those cancers bearing such a co-expression pattern. However, little is known about the exact role of this autocrine ligand–receptor system in sustaining cancer malignant features such as angiogenesis, invasion, and metastasis. The recent finding that the overexpression of angiogenic receptor kinase EphB4 along with VEGF-A is tightly dependent on the IGF-II/IRA autocrine system independently of IGFIR provided new perspectives for all malignant IGF2omas (those aggressive solid cancers secreting IGF-II).
    [Show full text]
  • London - Westminster Research Ethics Committee
    Research Ethics Service London - Westminster Research Ethics Committee Annual Report 01 April 2016 - 31 March 2017 Part 1 – Committee Membership and Training Name of REC: London - Westminster Research Ethics Committee Type of REC: RECs recognised to review CTIMPS in healthy volunteers - type i, RECs recognised to review CTIMPS in patients - type iii Type of Flag: Phase 1 Studies in Healthy Volunteers Chair: Mr Robert Goldstein Vice-Chair: Mr Michael Puntis Alternate Vice-Chair: No Alternate Vice-Chair appointed at time of report REC Manager: Ms Rachel Katzenellenbogen REC Assistant: Mr Ewan Waters (01/04/2016-06/03/2017) Ms Laila Sarwar (06/03/2017-31/03/2017) Committee Address: 4 Minshull Street Manchester M1 3DZ Telephone: 0207 104 8012 Email: [email protected] London - Westminster Research Ethics Committee Annual Report Page 2 Chair’s overview of the past year: There has been a good level of ethical debate concerning the applications presented to Westminster REC. Members have in most cases demonstrated a good understanding of the issues. The balance of backgrounds and skills of REC members has been such as to allow different viewpoints to be considered. There has been very good support from the REC Manager both administratively and also through guidance on HRA principles and procedures. The Westminster REC has continued to examine a significant number of clinical drug trials which is one if its main areas of expertise. At this stage, Westminster REC has not seen the new prescreening assessments by the HRA of research applications and so cannot comment on their usefulness and effectiveness.
    [Show full text]
  • (INN) for Biological and Biotechnological Substances
    INN Working Document 05.179 Update 2013 International Nonproprietary Names (INN) for biological and biotechnological substances (a review) INN Working Document 05.179 Distr.: GENERAL ENGLISH ONLY 2013 International Nonproprietary Names (INN) for biological and biotechnological substances (a review) International Nonproprietary Names (INN) Programme Technologies Standards and Norms (TSN) Regulation of Medicines and other Health Technologies (RHT) Essential Medicines and Health Products (EMP) International Nonproprietary Names (INN) for biological and biotechnological substances (a review) © World Health Organization 2013 All rights reserved. Publications of the World Health Organization are available on the WHO web site (www.who.int ) or can be purchased from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected] ). Requests for permission to reproduce or translate WHO publications – whether for sale or for non-commercial distribution – should be addressed to WHO Press through the WHO web site (http://www.who.int/about/licensing/copyright_form/en/index.html ). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned.
    [Show full text]
  • Stembook 2018.Pdf
    The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 WHO/EMP/RHT/TSN/2018.1 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances. Geneva: World Health Organization; 2018 (WHO/EMP/RHT/TSN/2018.1). Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]