Insulin-Like Growth Factor (IGF) Pathway Targeting in Cancer: Role of the IGF Axis and Opportunities for Future Combination Studies

Total Page:16

File Type:pdf, Size:1020Kb

Insulin-Like Growth Factor (IGF) Pathway Targeting in Cancer: Role of the IGF Axis and Opportunities for Future Combination Studies Targ Oncol (2017) 12:571–597 DOI 10.1007/s11523-017-0514-5 REVIEW ARTICLE Insulin-Like Growth Factor (IGF) Pathway Targeting in Cancer: Role of the IGF Axis and Opportunities for Future Combination Studies Aaron Simpson1 & Wilfride Petnga1 & Valentine M. Macaulay 1 & Ulrike Weyer-Czernilofsky2 & Thomas Bogenrieder2,3 Published online: 16 August 2017 # The Author(s) 2017. This article is an open access publication Abstract Despite a strong preclinical rationale for targeting preclude their use at clinically effective doses. Conversely, the insulin-like growth factor (IGF) axis in cancer, clinical IGF-1/IGF-2 ligand-neutralizing mAbs inhibit proliferative/ studies of IGF-1 receptor (IGF-1R)-targeted monotherapies anti-apoptotic signaling via IGF-1R and INSR-A, without have been largely disappointing, and any potential success compromising the metabolic function of INSR-B. Therefore, has been limited by the lack of validated predictive bio- combination regimens that include these agents may be more markers for patient enrichment. A large body of preclinical efficacious and tolerable versus IGF-1R-targeted combinations. evidence suggests that the key role of the IGF axis in cancer Herein, we review the preclinical and clinical experience with is in driving treatment resistance, via general proliferative/ IGF-targeted therapies to-date, and discuss the rationale for survival mechanisms, interactions with other mitogenic sig- future combination approaches as a means to overcome treat- naling networks, and class-specific mechanisms such as DNA ment resistance. damage repair. Consequently, combining IGF-targeted agents with standard cytotoxic agents, other targeted agents, endo- Key Points crine therapies, or immunotherapies represents an attractive therapeutic approach. Anti-IGF-1R monoclonal antibodies Therapeutic targeting of insulin-like growth factor (IGF) (mAbs) do not inhibit IGF ligand 2 (IGF-2) activation of the signaling has been investigated in many types of human insulin receptor isoform-A (INSR-A), which may limit their cancer. anti-proliferative activity. In addition, due to their lack of spec- ificity, IGF-1R tyrosine kinase inhibitors are associated with Interactions between the IGF axis and other signaling hyperglycemia as a result of interference with signaling networks can result in resistance to therapies that target through the classical metabolic INSR-B isoform; this may individual signaling pathways. IGF-targeted combination therapy represents a promising Aaron Simpson and Wilfride Petnga are joint first authors approach to anti-cancer therapy, as supported by a large Enhanced content body of preclinical evidence. To view enhanced content for this article go to http://www.medengine. com/Redeem/5D48F06008D136AC. * Thomas Bogenrieder [email protected] 1 The IGF Axis and Its Role in Tumor Biology 1 Department of Oncology, University of Oxford, Oxford, UK 2 Boehringer Ingelheim RCV, Dr. Boehringer Gasse 5-11, 1.1 IGF: Dramatis Moleculae 1121 Vienna, Austria 3 Department of Urology, University Hospital Grosshadern, Insulin-like growth factor (IGF) signaling plays an important Ludwig-Maximilians-University, Marchioninistrasse 15, role in regulating growth and development in normal human 81377 Munich, Germany tissues by promoting cellular proliferation and differentiation 572 Targ Oncol (2017) 12:571–597 and preventing apoptosis [1, 2]. The IGF axis comprises insu- The IGF system also encompasses various IGF-binding lin and two related ligands, IGF ligands 1 and 2 (IGF-1 and proteins (IGFBPs), IGFBP-specific proteases, and IGFBP- IGF-2) that regulate cellular processes by interacting with spe- related peptides, which bind to and modify the activity of cific cell-surface receptors (Fig. 1)[1, 5]. The IGF-1 receptor IGF ligands (Fig. 1)[1, 5]. Aside from their endocrine role (IGF-1R) is a heterotetrameric receptor with two extracellular, in IGF transport, IGFBPs have many additional, IGF- ligand-binding domains (alpha subunits) and two transmem- independent biological functions that modulate cellular brane beta subunits that contain the kinase domain; the alpha growth and survival [8]. For example, in breast cancer, and beta domains are linked by disulfide bonds [6]. Along IGFBP3 has been shown to interact with the epidermal growth with the insulin receptor (INSR), IGF-1R is a member of the factor receptor (EGFR) and can influence the response to receptor tyrosine kinase (RTK) class 2 family of receptors DNA damage [9]. A comprehensive assessment of IGFBP (insulin receptor family) [1, 3]. IGF-1R binds the IGF ligands biology is beyond the scope of this review. However, for more with varying affinities depending on the cell type and exper- details, please refer to a 2014 review paper by Baxter [8]. imental conditions, both IGFs binding with higher affinity than insulin. IGF-2 also binds to INSR-A, a fetal isoform that 1.2 The IGF Axis in Cancer is overexpressed in some tumors, and to IGF-2 receptor (IGF- 2R), a structurally unrelated receptor that lacks tyrosine kinase Increased expression of IGF-1R and/or circulating levels of activity and serves as a scavenger for circulating IGF-2 [7]. IGF ligands has been observed in various cancers, including In addition to INSR-A, which binds insulin and IGF-2 with Ewing sarcoma, breast cancer, prostate cancer, pancreatic can- equal affinity and transmits proliferative/survival signals, cer, melanoma, and many other tumor types; this overexpres- INSR exists in the classical metabolic isoform, INSR-B, sion is associated with faster disease progression and a poor which binds insulin [1] and regulates glucose uptake [5, 7]. prognosis in some tumors [10–12]. Moreover, the presence of Among these components, the IGF axis includes hybrid re- a functional IGF-1R has been shown to be essential for ma- ceptors composed of IGF-1R and INSR isoforms; these IGF- lignant transformation [13]. IGF-1R overexpression can result 1R/INSR heterodimers contain predominantly INSR-A in ma- from the loss of tumor suppressors, including p53, breast can- lignant cells, and bind IGF-1, IGF-2, and insulin [7]. cer gene-1 (BRCA1), von Hippel-Lindau protein and Wilms’s Insulin IGF-1 IGFBPs IGF-2 Free IGF IGFBP ligands fragments IGFBP protease INSR-A/ IGF-1R/ IGF-1R/ INSR-B INSR-B INSR-A INSR-B INSR-A IGF-1R IGF-2R Extracellular matrix Cytoplasm Mainly glucose homeostasis Proliferation/growth/survival/metastasis Fig. 1 Components of the insulin/IGF axis. The IGF axis consists of cross-bind to each other’s receptor, albeit with much weaker affinity than ligands (insulin, IGF-1, and IGF-2), receptors (INSR, IGF-1R, IGF-2R, that for the preferred ligand. Activation of the INSR-B isoform regulates and IGF-1R/INSR hybrid receptors), IGFBPs 1 to 7, and IGFBP glucose metabolism, while activation of IGF-1R, INSR-A, and IGF-1R/ proteases. The IGF ligands bind their receptors and binding proteins INSR hybrid receptors promotes cellular growth, proliferation, survival, with high affinity. IGFBPs bind tightly to IGF ligands, influencing and metastasis. IGF-2R is an unrelated monomeric receptor that acts as a binding to their receptors; IGFBP proteases cleave the IGFBPs into scavenger for circulating IGF-2 [1, 3, 4]. IGF-1/−2 insulin-like growth fragments with lower affinity for the IGF ligands, thereby increasing factor ligand 1/2, IGFBP IGF binding protein, IGF-1R/IGF-2R type 1/ free IGF-1 and IGF-2 bioavailability. IGF-1/IGF-2 and insulin can type 2 IGF receptor, INSR insulin receptor Targ Oncol (2017) 12:571–597 573 tumor suppressor WT1 [14–16]. However, IGF signaling in IGF-1R depletion or inhibition has been shown to attenuate tumor cells is driven by the presence of the ligands rather than repair of radiation-induced double strand breaks (DSBs) in pros- receptor aberrations [14], and there is evidence that a low tate cancer cell lines [31, 33]. circulating IGF-1 concentration can protect against tumori- On activation of IGF-1R or IGF-1R/INSR hybrid recep- genesis [17, 18]. IGF ligands can be delivered to the IGF-1R tors, downstream signal transduction occurs via two major from distant (endocrine) or nearby (paracrine) sources, with pathways (Fig. 2)[5, 34]. Activation of the RAS/mitogen- circulating free-ligand levels regulated by the different activated protein kinase (MAPK) cascade results in the tran- IGFBPs [2]. In addition, autocrine production of IGF ligands scription of genes that drive cellular proliferation, such as the in some tumor cells which themselves express IGF-1R can D-type cyclins. Activation of cyclin D/cyclin-dependent ki- also contribute to tumor proliferation [19, 20]. nase 4 (CDK4) complexes leads to increased E2F-dependent In addition to IGF-1 and IGF-1R, overexpression of IGF-2 transcription, via liberation of the E2F transcription factor and INSR-A is reported in a wide range of human cancers, from sequestration by the retinoblastoma protein, so driving including breast, colorectal, prostate, and lung cancers, and is passage through the G1/S-phase transition during cell-cycle also associated with a poor prognosis [21–23]. In preclinical progression [35–37]. In parallel, signaling via the phos- studies, direct upregulation of IGF-2 in response to chemo- phatidylinositol 3-kinase/protein kinase-B (PI3K/Akt) path- therapy was shown to enhance the aggressive properties of way confers protection from apoptosis [5]. In addition, Akt castration-resistant prostate cancer (CRPC) models by activat- acts on cell-cycle regulatory proteins, inducing inhibitory ing INSR-A and/or IGF-1R/INSR-A hybrid receptors; thus, phosphorylation of glycogen synthase kinase-3 beta, p21, both IGF ligands can function as part of an adaptive mecha- and p27, to stabilize type-D cyclins and promote cell-cycle nism that promotes resistance and tumorigenicity in certain progression [38–40]. Akt also promotes cyclin D function via cancers, during or after treatment [23, 24]. Furthermore, in induction of the mammalian target of rapamycin complex 1 tumor cells where IGF-1R and INSR are co-expressed, upreg- (mTORC1), by preventing its inhibition by tuberous sclerosis ulated INSR can compensate for IGF-1R inhibition, thereby complex (TSC) proteins.
Recommended publications
  • Pharmacologic Considerations in the Disposition of Antibodies and Antibody-Drug Conjugates in Preclinical Models and in Patients
    antibodies Review Pharmacologic Considerations in the Disposition of Antibodies and Antibody-Drug Conjugates in Preclinical Models and in Patients Andrew T. Lucas 1,2,3,*, Ryan Robinson 3, Allison N. Schorzman 2, Joseph A. Piscitelli 1, Juan F. Razo 1 and William C. Zamboni 1,2,3 1 University of North Carolina (UNC), Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA; [email protected] (J.A.P.); [email protected] (J.F.R.); [email protected] (W.C.Z.) 2 Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; [email protected] 3 Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-919-966-5242; Fax: +1-919-966-5863 Received: 30 November 2018; Accepted: 22 December 2018; Published: 1 January 2019 Abstract: The rapid advancement in the development of therapeutic proteins, including monoclonal antibodies (mAbs) and antibody-drug conjugates (ADCs), has created a novel mechanism to selectively deliver highly potent cytotoxic agents in the treatment of cancer. These agents provide numerous benefits compared to traditional small molecule drugs, though their clinical use still requires optimization. The pharmacology of mAbs/ADCs is complex and because ADCs are comprised of multiple components, individual agent characteristics and patient variables can affect their disposition. To further improve the clinical use and rational development of these agents, it is imperative to comprehend the complex mechanisms employed by antibody-based agents in traversing numerous biological barriers and how agent/patient factors affect tumor delivery, toxicities, efficacy, and ultimately, biodistribution.
    [Show full text]
  • Etude Des Résistances Adaptatives Aux Inhibiteurs De Tyrosine Kinase De L’EGFR Dans Les Cancers Bronchiques
    Thèse d’exercice Faculté de Pharmacie Année 2020 Thèse N° MÉMOIRE DU DIPLÔME D'ÉTUDES SPÉCIALISÉES D’INNOVATION PHARMACEUTIQUE ET RECHERCHE TENANT LIEU DE THÈSE D’EXERCICE POUR LE DIPLÔME D’ÉTAT DE DOCTEUR ENPHARMACIE Présentée et soutenue publiquement le 24 septembre 2020 par Sarah FIGAROL Née le 19 septembre 1989 à Toulouse Etude des résistances adaptatives aux inhibiteurs de tyrosine kinase de l’EGFR dans les cancers bronchiques Thèse dirigée par Gilles Favre Examinateurs : M. Franck Saint-Marcoux, président du jury M.Gilles Favre, directeur de thèse M. Jean-Marie Canonge, juge M. Julien Mazières, juge M. Antonio Maraver, juge Thèse d’exercice Faculté de Pharmacie Année 2020 Thèse N° MÉMOIRE DU DIPLÔME D'ÉTUDES SPÉCIALISÉES D’INNOVATION PHARMACEUTIQUE ET RECHERCHE TENANT LIEU DE THÈSE D’EXERCICE POUR LE DIPLÔME D’ÉTAT DE DOCTEUR ENPHARMACIE Présentée et soutenue publiquement le 24 septembre 2020 par Sarah FIGAROL Née le 19 septembre 1989 à Toulouse Etude des résistances adaptatives aux inhibiteurs de tyrosine kinase de l’EGFR dans les cancers bronchiques Thèse dirigée par Gilles Favre Examinateurs : M. Franck Saint-Marcoux, président du jury M.Gilles Favre, directeur de thèse M. Jean-Marie Canonge, juge M. Julien Mazières, juge M. Antonio Maraver, juge Sarah FIGAROL | Thèse d’exercice | Université de Limoges |2020 3 Licence CC BY-NC-ND 3.0 Liste des enseignants Le 1er septembre 2019 PROFESSEURS : BATTU Serge CHIMIE ANALYTIQUE CARDOT Philippe CHIMIE ANALYTIQUE ET BROMATOLOGIE DESMOULIERE Alexis PHYSIOLOGIE DUROUX Jean-Luc BIOPHYSIQUE,
    [Show full text]
  • Predictive QSAR Tools to Aid in Early Process Development of Monoclonal Antibodies
    Predictive QSAR tools to aid in early process development of monoclonal antibodies John Micael Andreas Karlberg Published work submitted to Newcastle University for the degree of Doctor of Philosophy in the School of Engineering November 2019 Abstract Monoclonal antibodies (mAbs) have become one of the fastest growing markets for diagnostic and therapeutic treatments over the last 30 years with a global sales revenue around $89 billion reported in 2017. A popular framework widely used in pharmaceutical industries for designing manufacturing processes for mAbs is Quality by Design (QbD) due to providing a structured and systematic approach in investigation and screening process parameters that might influence the product quality. However, due to the large number of product quality attributes (CQAs) and process parameters that exist in an mAb process platform, extensive investigation is needed to characterise their impact on the product quality which makes the process development costly and time consuming. There is thus an urgent need for methods and tools that can be used for early risk-based selection of critical product properties and process factors to reduce the number of potential factors that have to be investigated, thereby aiding in speeding up the process development and reduce costs. In this study, a framework for predictive model development based on Quantitative Structure- Activity Relationship (QSAR) modelling was developed to link structural features and properties of mAbs to Hydrophobic Interaction Chromatography (HIC) retention times and expressed mAb yield from HEK cells. Model development was based on a structured approach for incremental model refinement and evaluation that aided in increasing model performance until becoming acceptable in accordance to the OECD guidelines for QSAR models.
    [Show full text]
  • The Role of Biological Therapy in Metastatic Colorectal Cancer After First-Line Treatment: a Meta-Analysis of Randomised Trials
    REVIEW British Journal of Cancer (2014) 111, 1122–1131 | doi: 10.1038/bjc.2014.404 Keywords: colorectal; biological; meta-analysis The role of biological therapy in metastatic colorectal cancer after first-line treatment: a meta-analysis of randomised trials E Segelov1, D Chan*,2, J Shapiro3, T J Price4, C S Karapetis5, N C Tebbutt6 and N Pavlakis2 1St Vincent’s Clinical School, University of New South Wales, Sydney, NSW 2052, Australia; 2Royal North Shore Hospital, St Leonards, Sydney, NSW 2065, Australia; 3Monash University and Cabrini Hospital, Melbourne, VIC 3800, Australia; 4The Queen Elizabeth Hospital and University of Adelaide, Woodville South, SA 5011, Australia; 5Flinders University and Flinders Medical Centre, Flinders Centre for Innovation in Cancer, Bedford Park, SA, 5042, Australia and 6Austin Health, VIC 3084, Australia Purpose: Biologic agents have achieved variable results in relapsed metastatic colorectal cancer (mCRC). Systematic meta-analysis was undertaken to determine the efficacy of biological therapy. Methods: Major databases were searched for randomised studies of mCRC after first-line treatment comparing (1) standard treatment plus biologic agent with standard treatment or (2) standard treatment with biologic agent with the same treatment with different biologic agent(s). Data were extracted on study design, participants, interventions and outcomes. Study quality was assessed using the MERGE criteria. Comparable data were pooled for meta-analysis. Results: Twenty eligible studies with 8225 patients were identified. The use of any biologic therapy improved overall survival with hazard ratio (HR) 0.87 (95% confidence interval (CI) 0.82–0.91, Po0.00001), progression-free survival (PFS) with HR 0.71 (95% CI 0.67–0.74, Po0.0001) and overall response rate (ORR) with odds ratio (OR) 2.38 (95% CI 2.03–2.78, Po0.00001).
    [Show full text]
  • IGF2 Mediates Resistance to Isoform-Selective-Inhibitors of the PI3K in HPV Positive Head and Neck Cancer
    cancers Article IGF2 Mediates Resistance to Isoform-Selective-Inhibitors of the PI3K in HPV Positive Head and Neck Cancer Mai Badarni 1,2, Manu Prasad 1,2 , Artemiy Golden 3, Baisali Bhattacharya 1,2, Liron Levin 4,5, Ksenia M. Yegodayev 1,2, Orr Dimitstein 2,6, Ben-Zion Joshua 2,7, Limor Cohen 1,2, Ekaterina Khrameeva 3, Dexin Kong 8 , Angel Porgador 1,2, Alex Braiman 1,2, Jennifer R. Grandis 9, Barak Rotblat 5,10,* and Moshe Elkabets 1,2,* 1 The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; [email protected] (M.B.); [email protected] (M.P.); [email protected] (B.B.); [email protected] (K.M.Y.); [email protected] (L.C.); [email protected] (A.P.); [email protected] (A.B.) 2 Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; [email protected] (O.D.); [email protected] (B.-Z.J.) 3 Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; [email protected] (A.G.); [email protected] (E.K.) 4 Bioinformatics Core Facility, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; [email protected] 5 The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel 6 Department of Otolaryngology—Head and Neck Surgery, Soroka University Medical Center, Beer-Sheva 84105, Israel 7 Citation: Badarni, M.; Prasad, M.; Department of Otorhinolaryngology and Head & Neck Surgery, Barzilay Medical Center, Ashkelon 7830604, Israel Golden, A.; Bhattacharya, B.; Levin, 8 School of Pharmaceutical Sciences, Tianjin Medical University, Tianjin 300070, China; [email protected] L.; Yegodayev, K.M.; Dimitstein, O.; 9 Department of Otolaryngology—Head and Neck Surgery, University of California San Francisco, Joshua, B.-Z.; Cohen, L.; Khrameeva, San Francisco, CA 94143, USA; [email protected] E.; et al.
    [Show full text]
  • Andrew Lai Thesis
    TOWARDS THE DEVELOPMENT OF NOVEL BISPECIFIC ANTIBODIES TO INHIBIT KEY CELL SURFACE RECEPTORS INTEGRAL FOR THE GROWTH AND MIGRATION OF TUMOUR CELLS Andrew Lai Bachelor of Science, UNSW 2008 Master of Biotechnology, QUT 2010 Bachelor of Applied Science (Hons), QUT 2012 Submitted for the degree of Doctor of Philosophy Institute of Health and Biomedical Innovation Faculty of Health Queensland University of Technology 2016 Keywords Breast cancer, extracellular matrix, insulin-like growth factor, metastasis, migration, therapeutics, phage display, single chain variable fragments, vitronectin Towards the development of novel bispecific antibodies to inhibit key cell surface receptors integral for the growth and migration of tumour cells i Abstract Metastatic breast cancer, or breast cancer which has spread from the primary tumour to distal secondary sites, remains a major killer of women today. Researchers have observed that the relationship between tumour cells and its surrounding environment plays an important role in cancer progression. One such interaction is between the Insulin-like growth factor (IGF) system and the integrin system, which has been demonstrated to be involved in cancer cell metabolic activity and migration. Therefore, the aim of this project was to translate this knowledge into the generation of bispecific antibody fragments (BsAb) targeting both systems, in order to disrupt their roles in cancer growth and metastasis. To screen for IGF-1R and αv integrin binding ScFv, a phage display enrichment procedure using the Tomlinson ScFv libraries was conducted. After the panning cycles, 192 clones were screened for binding using ELISA, of which 16 were selected for sequencing. Analysis of the results revealed 1 IGF-R and 3 αv integrin unique binding ScFv, which were all subsequently expressed in a bacterial expression system.
    [Show full text]
  • Targeted and Novel Therapy in Advanced Gastric Cancer Julie H
    Selim et al. Exp Hematol Oncol (2019) 8:25 https://doi.org/10.1186/s40164-019-0149-6 Experimental Hematology & Oncology REVIEW Open Access Targeted and novel therapy in advanced gastric cancer Julie H. Selim1 , Shagufta Shaheen2 , Wei‑Chun Sheu3 and Chung‑Tsen Hsueh4* Abstract The systemic treatment options for advanced gastric cancer (GC) have evolved rapidly in recent years. We have reviewed the recent data of clinical trial incorporating targeted agents, including inhibitors of angiogenesis, human epidermal growth factor receptor 2 (HER2), mesenchymal–epithelial transition, epidermal growth factor receptor, mammalian target of rapamycin, claudin‑18.2, programmed death‑1 and DNA. Addition of trastuzumab to platinum‑ based chemotherapy has become standard of care as front‑line therapy in advanced GC overexpressing HER2. In the second‑line setting, ramucirumab with paclitaxel signifcantly improves overall survival compared to paclitaxel alone. For patients with refractory disease, apatinib, nivolumab, ramucirumab and TAS‑102 have demonstrated single‑agent activity with improved overall survival compared to placebo alone. Pembrolizumab has demonstrated more than 50% response rate in microsatellite instability‑high tumors, 15% response rate in tumors expressing programmed death ligand 1, and non‑inferior outcome in frst‑line treatment compared to chemotherapy. This review summarizes the current state and progress of research on targeted therapy for advanced GC. Keywords: Gastric cancer, Targeted therapy, Human epidermal growth factor receptor 2, Programmed death‑1, Vascular endothelial growth factor receptor 2 Background GC mortality which is consistent with overall decrease in Gastric cancer (GC), including adenocarcinoma of the GC-related deaths [4]. gastroesophageal junction (GEJ) and stomach, is the ffth Tere have been several eforts to perform large-scale most common cancer and the third leading cause of can- molecular profling and classifcation of GC.
    [Show full text]
  • IGF System in Sarcomas: a Crucial Pathway with Many Unknowns to Exploit for Therapy
    61 1 Journal of Molecular C Mancarella and Targeting IGF system in sarcoma 61:1 T45–T60 Endocrinology K Scotlandi THEMATIC REVIEW 40 YEARS OF IGF1 IGF system in sarcomas: a crucial pathway with many unknowns to exploit for therapy Caterina Mancarella and Katia Scotlandi Experimental Oncology Lab, CRS Development of Biomolecular Therapies, Orthopaedic Rizzoli Institute, Bologna, Italy Correspondence should be addressed to K Scotlandi: [email protected] This paper forms part of a special section on 40 Years of IGF1. The guest editors for this section were Derek LeRoith and Emily Gallagher. Abstract The insulin-like growth factor (IGF) system has gained substantial interest due to its Key Words involvement in regulating cell proliferation, differentiation and survival during anoikis f sarcomas and after conventional and targeted therapies. However, results from clinical trials have f IGF system been largely disappointing, with only a few but notable exceptions, such as trials targeting f targeted therapy sarcomas, especially Ewing sarcoma. This review highlights key studies focusing on IGF f clinical trials signaling in sarcomas, specifically studies underscoring the properties that make this system an attractive therapeutic target and identifies new relationships that may be exploited. This review discusses the potential roles of IGF2 mRNA-binding proteins (IGF2BPs), discoidin domain receptors (DDRs) and metalloproteinase pregnancy-associated plasma protein-A (PAPP-A) in regulating the IGF system. Deeper investigation of these novel regulators of the IGF system may help us to further elucidate the spatial and temporal control of the IGF Journal of Molecular axis, as understanding the control of this axis is essential for future clinical studies.
    [Show full text]
  • Classification Decisions Taken by the Harmonized System Committee from the 47Th to 60Th Sessions (2011
    CLASSIFICATION DECISIONS TAKEN BY THE HARMONIZED SYSTEM COMMITTEE FROM THE 47TH TO 60TH SESSIONS (2011 - 2018) WORLD CUSTOMS ORGANIZATION Rue du Marché 30 B-1210 Brussels Belgium November 2011 Copyright © 2011 World Customs Organization. All rights reserved. Requests and inquiries concerning translation, reproduction and adaptation rights should be addressed to [email protected]. D/2011/0448/25 The following list contains the classification decisions (other than those subject to a reservation) taken by the Harmonized System Committee ( 47th Session – March 2011) on specific products, together with their related Harmonized System code numbers and, in certain cases, the classification rationale. Advice Parties seeking to import or export merchandise covered by a decision are advised to verify the implementation of the decision by the importing or exporting country, as the case may be. HS codes Classification No Product description Classification considered rationale 1. Preparation, in the form of a powder, consisting of 92 % sugar, 6 % 2106.90 GRIs 1 and 6 black currant powder, anticaking agent, citric acid and black currant flavouring, put up for retail sale in 32-gram sachets, intended to be consumed as a beverage after mixing with hot water. 2. Vanutide cridificar (INN List 100). 3002.20 3. Certain INN products. Chapters 28, 29 (See “INN List 101” at the end of this publication.) and 30 4. Certain INN products. Chapters 13, 29 (See “INN List 102” at the end of this publication.) and 30 5. Certain INN products. Chapters 28, 29, (See “INN List 103” at the end of this publication.) 30, 35 and 39 6. Re-classification of INN products.
    [Show full text]
  • Therapeutic Targeting of the IGF Axis
    cells Review Therapeutic Targeting of the IGF Axis Eliot Osher and Valentine M. Macaulay * Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK * Correspondence: [email protected]; Tel.: +44-1865617337 Received: 8 July 2019; Accepted: 9 August 2019; Published: 14 August 2019 Abstract: The insulin like growth factor (IGF) axis plays a fundamental role in normal growth and development, and when deregulated makes an important contribution to disease. Here, we review the functions mediated by ligand-induced IGF axis activation, and discuss the evidence for the involvement of IGF signaling in the pathogenesis of cancer, endocrine disorders including acromegaly, diabetes and thyroid eye disease, skin diseases such as acne and psoriasis, and the frailty that accompanies aging. We discuss the use of IGF axis inhibitors, focusing on the different approaches that have been taken to develop effective and tolerable ways to block this important signaling pathway. We outline the advantages and disadvantages of each approach, and discuss progress in evaluating these agents, including factors that contributed to the failure of many of these novel therapeutics in early phase cancer trials. Finally, we summarize grounds for cautious optimism for ongoing and future studies of IGF blockade in cancer and non-malignant disorders including thyroid eye disease and aging. Keywords: IGF; type 1 IGF receptor; IGF-1R; cancer; acromegaly; ophthalmopathy; IGF inhibitor 1. Introduction Insulin like growth factors (IGFs) are small (~7.5 kDa) ligands that play a critical role in many biological processes including proliferation and protection from apoptosis and normal somatic growth and development [1]. IGFs are members of a ligand family that includes insulin, a dipeptide comprised of A and B chains linked via two disulfide bonds, with a third disulfide linkage within the A chain.
    [Show full text]
  • Correlation Between Gene Expression of IGF-1R Pathway Markers and Cetuximab Benefit in Metastatic Colorectal Cancer
    Published OnlineFirst January 31, 2012; DOI: 10.1158/1078-0432.CCR-11-1135 Clinical Cancer Predictive Biomarkers and Personalized Medicine Research Correlation between Gene Expression of IGF-1R Pathway Markers and Cetuximab Benefit in Metastatic Colorectal Cancer Fei Huang, Li-an Xu, and Shirin Khambata-Ford Abstract Purpose: This study examined potential correlations between markers related to the insulin-like growth factor-1 receptor (IGF-1R) pathway and clinical benefit from the anti–epidermal growth factor receptor (EGFR) monoclonal antibody cetuximab in metastatic colorectal cancer (mCRC). Experimental Design: Gene expression profiles for 70 pretreatment specimens from metastatic lesions of patients with chemorefractory mCRC receiving cetuximab monotherapy were analyzed using 74 predefined Gene-Chip probesets representing 33 unique IGF-1R pathway markers to determine correlations with progression-free survival (PFS) and disease control rate. Results: Higher IGF-1R, higher GRB7, and lower INSIG2 expression were associated with longer PFS with cetuximab in univariate analyses, particularly in patients with wild-type K-Ras tumors: median, 122 versus 60 days (P ¼ 0.01), 122 versus 57 days (P ¼ 0.011), and 57 versus 156 days (P < 0.0001), favoring higher IGF- 1R, higher GRB7, and lower INSIG2 expression, respectively. Lower IGF-1 expression was associated with a PFS benefit with cetuximab, whereas lower IGFBP3 and INSR expression levels showed trends for a PFS benefit. Lower INSIG2 expression (vs. higher expression) was associated with greater PFS in the high epiregulin-expressing group (P ¼ 0.001), but not in the low-expressing cohort suggesting an effect independent from the previously reported effect of epiregulin expression.
    [Show full text]
  • Primary and Acquired Resistance to Immunotherapy in Lung Cancer: Unveiling the Mechanisms Underlying of Immune Checkpoint Blockade Therapy
    cancers Review Primary and Acquired Resistance to Immunotherapy in Lung Cancer: Unveiling the Mechanisms Underlying of Immune Checkpoint Blockade Therapy Laura Boyero 1 , Amparo Sánchez-Gastaldo 2, Miriam Alonso 2, 1 1,2,3, , 1,2, , José Francisco Noguera-Uclés , Sonia Molina-Pinelo * y and Reyes Bernabé-Caro * y 1 Institute of Biomedicine of Seville (IBiS) (HUVR, CSIC, Universidad de Sevilla), 41013 Seville, Spain; [email protected] (L.B.); [email protected] (J.F.N.-U.) 2 Medical Oncology Department, Hospital Universitario Virgen del Rocio, 41013 Seville, Spain; [email protected] (A.S.-G.); [email protected] (M.A.) 3 Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain * Correspondence: [email protected] (S.M.-P.); [email protected] (R.B.-C.) These authors contributed equally to this work. y Received: 16 November 2020; Accepted: 9 December 2020; Published: 11 December 2020 Simple Summary: Immuno-oncology has redefined the treatment of lung cancer, with the ultimate goal being the reactivation of the anti-tumor immune response. This has led to the development of several therapeutic strategies focused in this direction. However, a high percentage of lung cancer patients do not respond to these therapies or their responses are transient. Here, we summarized the impact of immunotherapy on lung cancer patients in the latest clinical trials conducted on this disease. As well as the mechanisms of primary and acquired resistance to immunotherapy in this disease. Abstract: After several decades without maintained responses or long-term survival of patients with lung cancer, novel therapies have emerged as a hopeful milestone in this research field.
    [Show full text]