Primary and Acquired Resistance to Immunotherapy in Lung Cancer: Unveiling the Mechanisms Underlying of Immune Checkpoint Blockade Therapy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Clinical Protocol
OncoMed Pharmaceuticals, Inc. Demcizumab CLINICAL PROTOCOL Protocol No. M18-006 Title: YOSEMITE: A 3-Arm Phase 2 Double-Blind Randomized StudY of Gemcitabine, Abraxane® Plus PlacebO versuS GEMcitabIne, Abraxane® plus 1 or 2 TruncatEd Courses of Demcizumab in Subjects with 1st-Line Metastatic Pancreatic Ductal Adenocarcinoma Version: 23 October 2014 Amendment 1: 24 November 2014 Amendment 2: 10 February 2015 Amendment 3: 28 May 2015 Amendment 4: 31 March 2016 Amendment 5: 19 December 2016 EudraCT Number: 2014‐003355‐56 Sponsor: OncoMed Pharmaceuticals, Inc. 800 Chesapeake Drive Redwood City, CA 94063 Phone: 650-995-8200 CONFIDENTIAL This document contains proprietary and confidential information of OncoMed Pharmaceuticals, Inc. Acceptance of this document constitutes agreement by the recipient that no previously unpublished information contained herein will be published or disclosed without the prior written approval of OncoMed Pharmaceuticals, Inc. with the exception that this document may be disclosed to study personnel under your supervision who need to know the contents for conducting the study and appropriate Institutional Review Boards/Ethics Committees under the condition that the personnel have agreed to keep this information confidential. The foregoing shall not apply to disclosure required by governmental regulations or laws; however, OncoMed Pharmaceuticals, Inc. shall be promptly notified of any such disclosure. Protocol M18-006, Amendment 5 Page 1 of 130 CONFIDENTIAL 19 December 2016 OncoMed Pharmaceuticals, Inc. Demcizumab SPONSOR CONTACTS Medical Monitor: ___________________ (Primary) ___________________________ Email: ___________________ Phone: ____________________ Medical Monitor: ___________________ (Secondary) ___________________ Email: ___________________ Phone: ___________________ Safety Reporting: Europe, Australia Phone: ___________________ Fax: ___________________ United States Phone: ___________________ Fax: ___________________ Protocol M18-006, Amendment 5 Page 2 of 130 CONFIDENTIAL 19 December 2016 OncoMed Pharmaceuticals, Inc. -
HER2 Inhibition in Gastro-Oesophageal Cancer: a Review Drawing on Lessons Learned from Breast Cancer
Submit a Manuscript: http://www.f6publishing.com World J Gastrointest Oncol 2018 July 15; 10(7): 159-171 DOI: 10.4251/wjgo.v10.i7.159 ISSN 1948-5204 (online) REVIEW HER2 inhibition in gastro-oesophageal cancer: A review drawing on lessons learned from breast cancer Hazel Lote, Nicola Valeri, Ian Chau Hazel Lote, Nicola Valeri, Centre for Molecular Pathology, Accepted: May 30, 2018 Institute of Cancer Research, Sutton SM2 5NG, United Kingdom Article in press: May 30, 2018 Published online: July 15, 2018 Hazel Lote, Nicola Valeri, Ian Chau, Department of Medicine, Royal Marsden Hospital, Sutton SM2 5PT, United Kingdom ORCID number: Hazel Lote (0000-0003-1172-0372); Nicola Valeri (0000-0002-5426-5683); Ian Chau (0000-0003-0286-8703). Abstract Human epidermal growth factor receptor 2 (HER2)- Author contributions: Lote H wrote the original manuscript and revised it following peer review comments; Valeri N reviewed inhibition is an important therapeutic strategy in HER2- the manuscript; Chau I reviewed and contributed to the content of amplified gastro-oesophageal cancer (GOC). A significant the manuscript. proportion of GOC patients display HER2 amplification, yet HER2 inhibition in these patients has not displayed Supported by National Health Service funding to the National the success seen in HER2 amplified breast cancer. Mu- Institute for Health Research Biomedical Research Centre at ch of the current evidence surrounding HER2 has been the Royal Marsden NHS Foundation Trust and The Institute of obtained from studies in breast cancer, and we are only re- Cancer Research, No. A62, No. A100, No. A101 and No. A159; Cancer Research UK funding, No. -
Precision Medicine for Human Cancers with Notch Signaling Dysregulation (Review)
INTERNATIONAL JOURNAL OF MOleCular meDICine 45: 279-297, 2020 Precision medicine for human cancers with Notch signaling dysregulation (Review) MASUKO KATOH1 and MASARU KATOH2 1M & M PrecMed, Tokyo 113-0033; 2Department of Omics Network, National Cancer Center, Tokyo 104-0045, Japan Received September 16, 2019; Accepted November 20, 2019 DOI: 10.3892/ijmm.2019.4418 Abstract. NOTCH1, NOTCH2, NOTCH3 and NOTCH4 are conjugate (ADC) Rova-T, and DLL3-targeting chimeric antigen transmembrane receptors that transduce juxtacrine signals of receptor‑modified T cells (CAR‑Ts), AMG 119, are promising the delta-like canonical Notch ligand (DLL)1, DLL3, DLL4, anti-cancer therapeutics, as are other ADCs or CAR-Ts targeting jagged canonical Notch ligand (JAG)1 and JAG2. Canonical tumor necrosis factor receptor superfamily member 17, Notch signaling activates the transcription of BMI1 proto-onco- CD19, CD22, CD30, CD79B, CD205, Claudin 18.2, fibro- gene polycomb ring finger, cyclin D1, CD44, cyclin dependent blast growth factor receptor (FGFR)2, FGFR3, receptor-type kinase inhibitor 1A, hes family bHLH transcription factor 1, tyrosine-protein kinase FLT3, HER2, hepatocyte growth factor hes related family bHLH transcription factor with YRPW receptor, NECTIN4, inactive tyrosine-protein kinase 7, inac- motif 1, MYC, NOTCH3, RE1 silencing transcription factor and tive tyrosine-protein kinase transmembrane receptor ROR1 transcription factor 7 in a cellular context-dependent manner, and tumor-associated calcium signal transducer 2. ADCs and while non-canonical Notch signaling activates NF-κB and Rac CAR-Ts could alter the therapeutic framework for refractory family small GTPase 1. Notch signaling is aberrantly activated cancers, especially diffuse-type gastric cancer, ovarian cancer in breast cancer, non-small-cell lung cancer and hematological and pancreatic cancer with peritoneal dissemination. -
Pharmacologic Considerations in the Disposition of Antibodies and Antibody-Drug Conjugates in Preclinical Models and in Patients
antibodies Review Pharmacologic Considerations in the Disposition of Antibodies and Antibody-Drug Conjugates in Preclinical Models and in Patients Andrew T. Lucas 1,2,3,*, Ryan Robinson 3, Allison N. Schorzman 2, Joseph A. Piscitelli 1, Juan F. Razo 1 and William C. Zamboni 1,2,3 1 University of North Carolina (UNC), Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA; [email protected] (J.A.P.); [email protected] (J.F.R.); [email protected] (W.C.Z.) 2 Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; [email protected] 3 Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-919-966-5242; Fax: +1-919-966-5863 Received: 30 November 2018; Accepted: 22 December 2018; Published: 1 January 2019 Abstract: The rapid advancement in the development of therapeutic proteins, including monoclonal antibodies (mAbs) and antibody-drug conjugates (ADCs), has created a novel mechanism to selectively deliver highly potent cytotoxic agents in the treatment of cancer. These agents provide numerous benefits compared to traditional small molecule drugs, though their clinical use still requires optimization. The pharmacology of mAbs/ADCs is complex and because ADCs are comprised of multiple components, individual agent characteristics and patient variables can affect their disposition. To further improve the clinical use and rational development of these agents, it is imperative to comprehend the complex mechanisms employed by antibody-based agents in traversing numerous biological barriers and how agent/patient factors affect tumor delivery, toxicities, efficacy, and ultimately, biodistribution. -
The Role of Cancer Stem Cells in Colorectal Cancer: from the Basics to Novel Clinical Trials
cancers Review The Role of Cancer Stem Cells in Colorectal Cancer: From the Basics to Novel Clinical Trials Céline Hervieu 1 , Niki Christou 1,2 , Serge Battu 1 and Muriel Mathonnet 1,2,* 1 EA 3842 CAPTuR “Control of Cell Activation in Tumor Progression and Therapeutic Resistance”, Faculty of Medicine, Genomics, Environment, Immunity, Health and Therapeutics (GEIST) Institute, University of Limoges, 87025 Limoges CEDEX, France; [email protected] (C.H.); [email protected] (N.C.); [email protected] (S.B.) 2 Department of General, Endocrine and Digestive Surgery, University Hospital of Limoges, 87025 Limoges CEDEX, France * Correspondence: [email protected] Simple Summary: Cancer stem cells (CSCs) fuel tumor growth, metastasis and resistance to therapy in colorectal cancer (CRC). These cells therefore represent a promising target for the treatment of CRC but are difficult to study because of the complexity of their isolation. This review presents the methods currently used to isolate colorectal CSCs as well as the techniques for characterizing these cells with their advantages and limitations. The aim of this review is to provide a state-of-the-art on the clinical relevance of CSCs in CRC by outlining current treatments for CRC, the resistance mechanisms developed by CSCs to overcome them, and ongoing clinical trials of drugs targeting CSCs in CRC. Overall, this review addresses the complexity of studying CSCs in CRC research and developing clinically effective treatments to enable CRC patients to achieve a short and long-term therapeutic response. Citation: Hervieu, C.; Christou, N.; Battu, S.; Mathonnet, M. The Role of Abstract: The treatment options available for colorectal cancer (CRC) have increased over the years Cancer Stem Cells in Colorectal and have significantly improved the overall survival of CRC patients. -
Recent Progress and Advances in HGF/MET-Targeted Therapeutic Agents for Cancer Treatment
Biomedicines 2015, 3, 149-181; doi:10.3390/biomedicines3010149 OPEN ACCESS biomedicines ISSN 2227-9059 www.mdpi.com/journal/biomedicines/ Review Recent Progress and Advances in HGF/MET-Targeted Therapeutic Agents for Cancer Treatment Yilong Zhang 1,*, Rajul K. Jain 2 and Min Zhu 1 1 Department of Clinical Pharmacology, Modeling and Simulation, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA; E-Mail: [email protected] 2 Kite Pharma, Inc., 2225 Colorado Avenue, Santa Monica, CA 90404, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-805-447-7131; Fax: +1-805-376-1869. Academic Editor: Giulia Ricci Received: 22 January 2015 / Accepted: 3 March 2015 / Published: 19 March 2015 Abstract: The hepatocyte growth factor (HGF): MET axis is a ligand-mediated receptor tyrosine kinase pathway that is involved in multiple cellular functions, including proliferation, survival, motility, and morphogenesis. Aberrancy in the HGF/MET pathway has been reported in multiple tumor types and is associated with tumor stage and prognosis. Thus, targeting the HGF/MET pathway has become a potential therapeutic strategy in oncology development in the last two decades. A number of novel therapeutic agents—either as therapeutic proteins or small molecules that target the HGF/MET pathway—have been tested in patients with different tumor types in clinical studies. In this review, recent progress in HGF/MET pathway-targeted therapy for cancer treatment, the therapeutic potential of HGF/MET-targeted agents, and challenges in the development of such agents will be discussed. Keywords: HGF; MET; cancer treatment; new therapeutic agents; biomarker 1. -
Etude Des Résistances Adaptatives Aux Inhibiteurs De Tyrosine Kinase De L’EGFR Dans Les Cancers Bronchiques
Thèse d’exercice Faculté de Pharmacie Année 2020 Thèse N° MÉMOIRE DU DIPLÔME D'ÉTUDES SPÉCIALISÉES D’INNOVATION PHARMACEUTIQUE ET RECHERCHE TENANT LIEU DE THÈSE D’EXERCICE POUR LE DIPLÔME D’ÉTAT DE DOCTEUR ENPHARMACIE Présentée et soutenue publiquement le 24 septembre 2020 par Sarah FIGAROL Née le 19 septembre 1989 à Toulouse Etude des résistances adaptatives aux inhibiteurs de tyrosine kinase de l’EGFR dans les cancers bronchiques Thèse dirigée par Gilles Favre Examinateurs : M. Franck Saint-Marcoux, président du jury M.Gilles Favre, directeur de thèse M. Jean-Marie Canonge, juge M. Julien Mazières, juge M. Antonio Maraver, juge Thèse d’exercice Faculté de Pharmacie Année 2020 Thèse N° MÉMOIRE DU DIPLÔME D'ÉTUDES SPÉCIALISÉES D’INNOVATION PHARMACEUTIQUE ET RECHERCHE TENANT LIEU DE THÈSE D’EXERCICE POUR LE DIPLÔME D’ÉTAT DE DOCTEUR ENPHARMACIE Présentée et soutenue publiquement le 24 septembre 2020 par Sarah FIGAROL Née le 19 septembre 1989 à Toulouse Etude des résistances adaptatives aux inhibiteurs de tyrosine kinase de l’EGFR dans les cancers bronchiques Thèse dirigée par Gilles Favre Examinateurs : M. Franck Saint-Marcoux, président du jury M.Gilles Favre, directeur de thèse M. Jean-Marie Canonge, juge M. Julien Mazières, juge M. Antonio Maraver, juge Sarah FIGAROL | Thèse d’exercice | Université de Limoges |2020 3 Licence CC BY-NC-ND 3.0 Liste des enseignants Le 1er septembre 2019 PROFESSEURS : BATTU Serge CHIMIE ANALYTIQUE CARDOT Philippe CHIMIE ANALYTIQUE ET BROMATOLOGIE DESMOULIERE Alexis PHYSIOLOGIE DUROUX Jean-Luc BIOPHYSIQUE, -
Predictive QSAR Tools to Aid in Early Process Development of Monoclonal Antibodies
Predictive QSAR tools to aid in early process development of monoclonal antibodies John Micael Andreas Karlberg Published work submitted to Newcastle University for the degree of Doctor of Philosophy in the School of Engineering November 2019 Abstract Monoclonal antibodies (mAbs) have become one of the fastest growing markets for diagnostic and therapeutic treatments over the last 30 years with a global sales revenue around $89 billion reported in 2017. A popular framework widely used in pharmaceutical industries for designing manufacturing processes for mAbs is Quality by Design (QbD) due to providing a structured and systematic approach in investigation and screening process parameters that might influence the product quality. However, due to the large number of product quality attributes (CQAs) and process parameters that exist in an mAb process platform, extensive investigation is needed to characterise their impact on the product quality which makes the process development costly and time consuming. There is thus an urgent need for methods and tools that can be used for early risk-based selection of critical product properties and process factors to reduce the number of potential factors that have to be investigated, thereby aiding in speeding up the process development and reduce costs. In this study, a framework for predictive model development based on Quantitative Structure- Activity Relationship (QSAR) modelling was developed to link structural features and properties of mAbs to Hydrophobic Interaction Chromatography (HIC) retention times and expressed mAb yield from HEK cells. Model development was based on a structured approach for incremental model refinement and evaluation that aided in increasing model performance until becoming acceptable in accordance to the OECD guidelines for QSAR models. -
Response to Trastuzumab, Erlotinib, and Bevacizumab, Alone and In
2664 Response to trastuzumab, erlotinib, and bevacizumab, alone and in combination, is correlated with the level of human epidermal growth factor receptor-2 expression in human breast cancer cell lines David R. Emlet, Kathryn A. Brown, not increase apoptosis substantially. These studies sug- Deborah L. Kociban, Agnese A. Pollice, gest that the effects of two and three-drug combinations Charles A. Smith, Ben Brian L. Ong, of trastuzumab, erlotinib, and bevacizumab might offer and Stanley E. Shackney potential therapeutic advantages in HER2-overexpressing breast cancers, although these effects are of low Laboratory of Cancer Cell Biology and Genetics, Department of magnitude, and are likely to be transient. [Mol Cancer Human Oncology, Drexel University College of Medicine and the Ther 2007;6(10):2664–74] Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania Introduction Human epidermal growth factor receptor-2 (HER2), a Abstract member of the epidermal growth factor receptor (EGFR) Human epidermal growth factor receptor-2 (HER2) and family of tyrosine kinases, is overexpressed in 25% to 30% epidermal growth factor receptor (EGFR) heterodimerize to of human breast cancers (1). It has been implicated in activate mitogenic signaling pathways. We have shown cancer progression (2, 3), and has been identified as a previously, using MCF7 subcloned cell lines with graded prognostic and predictive marker for breast cancer out- levels of HER2 expression, that responsiveness to trastu- come (4). Clinically, chemotherapeutic -
The Role of Biological Therapy in Metastatic Colorectal Cancer After First-Line Treatment: a Meta-Analysis of Randomised Trials
REVIEW British Journal of Cancer (2014) 111, 1122–1131 | doi: 10.1038/bjc.2014.404 Keywords: colorectal; biological; meta-analysis The role of biological therapy in metastatic colorectal cancer after first-line treatment: a meta-analysis of randomised trials E Segelov1, D Chan*,2, J Shapiro3, T J Price4, C S Karapetis5, N C Tebbutt6 and N Pavlakis2 1St Vincent’s Clinical School, University of New South Wales, Sydney, NSW 2052, Australia; 2Royal North Shore Hospital, St Leonards, Sydney, NSW 2065, Australia; 3Monash University and Cabrini Hospital, Melbourne, VIC 3800, Australia; 4The Queen Elizabeth Hospital and University of Adelaide, Woodville South, SA 5011, Australia; 5Flinders University and Flinders Medical Centre, Flinders Centre for Innovation in Cancer, Bedford Park, SA, 5042, Australia and 6Austin Health, VIC 3084, Australia Purpose: Biologic agents have achieved variable results in relapsed metastatic colorectal cancer (mCRC). Systematic meta-analysis was undertaken to determine the efficacy of biological therapy. Methods: Major databases were searched for randomised studies of mCRC after first-line treatment comparing (1) standard treatment plus biologic agent with standard treatment or (2) standard treatment with biologic agent with the same treatment with different biologic agent(s). Data were extracted on study design, participants, interventions and outcomes. Study quality was assessed using the MERGE criteria. Comparable data were pooled for meta-analysis. Results: Twenty eligible studies with 8225 patients were identified. The use of any biologic therapy improved overall survival with hazard ratio (HR) 0.87 (95% confidence interval (CI) 0.82–0.91, Po0.00001), progression-free survival (PFS) with HR 0.71 (95% CI 0.67–0.74, Po0.0001) and overall response rate (ORR) with odds ratio (OR) 2.38 (95% CI 2.03–2.78, Po0.00001). -
Activating Death Receptor DR5 As a Therapeutic Strategy for Rhabdomyosarcoma
International Scholarly Research Network ISRN Oncology Volume 2012, Article ID 395952, 10 pages doi:10.5402/2012/395952 Review Article Activating Death Receptor DR5 as a Therapeutic Strategy for Rhabdomyosarcoma Zhigang Kang,1, 2 Shi-Yong Sun,3 and Liang Cao1 1 Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA 2 Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, Inc., NCI Frederick, Frederick, MD 21702, USA 3 Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA Correspondence should be addressed to Liang Cao, [email protected] Received 4 January 2012; Accepted 24 January 2012 Academic Editors: E. Boven and S. Mandruzzato Copyright © 2012 Zhigang Kang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children. It is believed to arise from skeletal muscle progenitors, preserving the expression of genes critical for embryonic myogenic development such as MYOD1 and myogenin. RMS is classified as embryonal, which is more common in younger children, or alveolar, which is more prevalent in elder children and adults. Despite aggressive management including surgery, radiation, and chemotherapy, the outcome for children with metastatic RMS is dismal, and the prognosis has remained unchanged for decades. Apoptosis is a highly regulated process critical for embryonic development and tissue and organ homeostasis. Like other types of cancers, RMS develops by evading intrinsic apoptosis via mutations in the p53 tumor suppressor gene. -
Antibody Drug Conjugate Development in Gastrointestinal Cancers: Hopes and Hurdles from Clinical Trials
Wu et al. Cancer Drug Resist 2018;1:204-18 Cancer DOI: 10.20517/cdr.2018.16 Drug Resistance Review Open Access Antibody drug conjugate development in gastrointestinal cancers: hopes and hurdles from clinical trials Xiaorong Wu, Thomas Kilpatrick, Ian Chau Department of Medical oncology, Royal Marsden Hospital NHS foundation trust, Sutton SM2 5PT, UK. Correspondence to: Dr. Ian Chau, Department of Medical Oncology, Royal Marsden Hospital NHS foundation trust, Downs Road, Sutton SM2 5PT, UK. E-mail: [email protected] How to cite this article: Wu X, Kilpatrick T, Chau I. Antibody drug conjugate development in gastrointestinal cancers: hopes and hurdles from clinical trials. Cancer Drug Resist 2018;1:204-18. http://dx.doi.org/10.20517/cdr.2018.16 Received: 31 Aug 2018 First Decision: 8 Oct 2018 Revised: 13 Nov 2018 Accepted: 16 Nov 2018 Published: 19 Dec 2018 Science Editors: Elisa Giovannetti, Jose A. Rodriguez Copy Editor: Cui Yu Production Editor: Huan-Liang Wu Abstract Gastrointestinal (GI) cancers represent the leading cause of cancer-related mortality worldwide. Antibody drug conjugates (ADCs) are a rapidly growing new class of anti-cancer agents which may improve GI cancer patient survival. ADCs combine tumour-antigen specific antibodies with cytotoxic drugs to deliver tumour cell specific chemotherapy. Currently, only two ADCs [brentuximab vedotin and trastuzumab emtansine (T-DM1)] have been Food and Drug Administration approved for the treatment of lymphoma and metastatic breast cancer, respectively. Clinical research evaluating ADCs in GI cancers has shown limited success. In this review, we will retrace the relevant clinical trials investigating ADCs in GI cancers, especially ADCs targeting human epidermal growth receptor 2, mesothelin, guanylyl cyclase C, carcinogenic antigen-related cell adhesion molecule 5 (also known as CEACAM5) and other GI malignancy specific targets.