PD-1 / PD-L1 Combination Therapies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Clinical Protocol
OncoMed Pharmaceuticals, Inc. Demcizumab CLINICAL PROTOCOL Protocol No. M18-006 Title: YOSEMITE: A 3-Arm Phase 2 Double-Blind Randomized StudY of Gemcitabine, Abraxane® Plus PlacebO versuS GEMcitabIne, Abraxane® plus 1 or 2 TruncatEd Courses of Demcizumab in Subjects with 1st-Line Metastatic Pancreatic Ductal Adenocarcinoma Version: 23 October 2014 Amendment 1: 24 November 2014 Amendment 2: 10 February 2015 Amendment 3: 28 May 2015 Amendment 4: 31 March 2016 Amendment 5: 19 December 2016 EudraCT Number: 2014‐003355‐56 Sponsor: OncoMed Pharmaceuticals, Inc. 800 Chesapeake Drive Redwood City, CA 94063 Phone: 650-995-8200 CONFIDENTIAL This document contains proprietary and confidential information of OncoMed Pharmaceuticals, Inc. Acceptance of this document constitutes agreement by the recipient that no previously unpublished information contained herein will be published or disclosed without the prior written approval of OncoMed Pharmaceuticals, Inc. with the exception that this document may be disclosed to study personnel under your supervision who need to know the contents for conducting the study and appropriate Institutional Review Boards/Ethics Committees under the condition that the personnel have agreed to keep this information confidential. The foregoing shall not apply to disclosure required by governmental regulations or laws; however, OncoMed Pharmaceuticals, Inc. shall be promptly notified of any such disclosure. Protocol M18-006, Amendment 5 Page 1 of 130 CONFIDENTIAL 19 December 2016 OncoMed Pharmaceuticals, Inc. Demcizumab SPONSOR CONTACTS Medical Monitor: ___________________ (Primary) ___________________________ Email: ___________________ Phone: ____________________ Medical Monitor: ___________________ (Secondary) ___________________ Email: ___________________ Phone: ___________________ Safety Reporting: Europe, Australia Phone: ___________________ Fax: ___________________ United States Phone: ___________________ Fax: ___________________ Protocol M18-006, Amendment 5 Page 2 of 130 CONFIDENTIAL 19 December 2016 OncoMed Pharmaceuticals, Inc. -
Precision Medicine for Human Cancers with Notch Signaling Dysregulation (Review)
INTERNATIONAL JOURNAL OF MOleCular meDICine 45: 279-297, 2020 Precision medicine for human cancers with Notch signaling dysregulation (Review) MASUKO KATOH1 and MASARU KATOH2 1M & M PrecMed, Tokyo 113-0033; 2Department of Omics Network, National Cancer Center, Tokyo 104-0045, Japan Received September 16, 2019; Accepted November 20, 2019 DOI: 10.3892/ijmm.2019.4418 Abstract. NOTCH1, NOTCH2, NOTCH3 and NOTCH4 are conjugate (ADC) Rova-T, and DLL3-targeting chimeric antigen transmembrane receptors that transduce juxtacrine signals of receptor‑modified T cells (CAR‑Ts), AMG 119, are promising the delta-like canonical Notch ligand (DLL)1, DLL3, DLL4, anti-cancer therapeutics, as are other ADCs or CAR-Ts targeting jagged canonical Notch ligand (JAG)1 and JAG2. Canonical tumor necrosis factor receptor superfamily member 17, Notch signaling activates the transcription of BMI1 proto-onco- CD19, CD22, CD30, CD79B, CD205, Claudin 18.2, fibro- gene polycomb ring finger, cyclin D1, CD44, cyclin dependent blast growth factor receptor (FGFR)2, FGFR3, receptor-type kinase inhibitor 1A, hes family bHLH transcription factor 1, tyrosine-protein kinase FLT3, HER2, hepatocyte growth factor hes related family bHLH transcription factor with YRPW receptor, NECTIN4, inactive tyrosine-protein kinase 7, inac- motif 1, MYC, NOTCH3, RE1 silencing transcription factor and tive tyrosine-protein kinase transmembrane receptor ROR1 transcription factor 7 in a cellular context-dependent manner, and tumor-associated calcium signal transducer 2. ADCs and while non-canonical Notch signaling activates NF-κB and Rac CAR-Ts could alter the therapeutic framework for refractory family small GTPase 1. Notch signaling is aberrantly activated cancers, especially diffuse-type gastric cancer, ovarian cancer in breast cancer, non-small-cell lung cancer and hematological and pancreatic cancer with peritoneal dissemination. -
Polatuzumab Vedotin - R/R DLBCL RG7769 PD1-TIM3 Bimab - Solid Tumors NSCLC RG7446 Tecentriq – Her2-Pos
Pipeline summary Marketed products additional indications Global Development late-stage trials pRED (Roche Pharma Research & Early Development) gRED (Genentech Research & Early Development) 1 Changes to the development pipeline FY 2018 update New to phase I New to phase II New to phase III New to registration 3 NMEs: 2 NMEs transitioned from Ph1 1 NME transitioned from Ph2: 2 NMEs + 1 AI transitioned from Ph2 RG6217 - HBV RG7906 - psychiatric disorders RG6042 HTT ASO - Huntington’s following filing in EU and US: RG6237 - neuromuscular disorders RG6058 tiragolumab + Tecentriq - 6 AIs: RG7596 polatuzumab vedotin - r/r DLBCL RG7769 PD1-TIM3 biMAb - solid tumors NSCLC RG7446 Tecentriq – Her2-pos. BC neoadj RG6268 entrectinib - NSCLC ROS1+ 1 AI: 1 NME starting Ph2 RG7446 Tecentriq – high risk NMIBC RG6268 entrectinib – NTRK1 pan-tumor RG7601 Venclexta + gilteritinib – r/r RG6180 iNeST (personalized cancer RG6152 Xofluza - influenza hosp. patients 3 AIs transitioned from Ph3 following AML vaccine) + pembrolizumab - malignant RG6152 Xofluza – influenza pediatric filing in EU and US: melanoma patients RG7446 Tecentriq + nab-paclitaxel 1L 1 NME following termination of Ph3 RG7601 Venclexta - r/r MM t(11:14) non sq NSCLC RG7412 crenezumab – familial RG7601 Venclexta + HMA/LDAC - 1L RG7446 Tecentriq + nab-paclitaxel Alzheimer’s disease healthy individuals AML* 1LTNBC RG7446 Tecentriq + chemo - 1L extensive 1 AI: stage SCLC RG7446 Tecentriq SC – NSCLC Removed from phase I Removed from phase II Removed from phase III Removed from registration 2 NMEs: -
Prior Approaches and Future Directions Marna Williams1, Anna Spreafico2, Kapil Vashisht3, Mary Jane Hinrichs4
Author Manuscript Published OnlineFirst on June 16, 2020; DOI: 10.1158/1535-7163.MCT-19-0993 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Patient Selection Strategies to Maximize Therapeutic Index of Antibody Drug Conjugates: Prior Approaches and Future Directions Marna Williams1, Anna Spreafico2, Kapil Vashisht3, Mary Jane Hinrichs4 1Translational Medicine, Oncology, AstraZeneca, Gaithersburg, USA 2Drug Development Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada 3AstraZeneca, Gaithersburg, USA. 4Early Development Oncology, Ipsen LLC, USA Corresponding author: Marna Williams Email: [email protected] Postal address: One MedImmune Way, Gaithersburg, MD, 20878 Phone: 301-398-1241 Fax: 240-306-1545 Running title Patient Selection Strategies for Antibody Drug Conjugates Keywords Antibody drug conjugates; therapeutic index; patient selection; biomarkers; cancer Conflicts of interest This study was funded by AstraZeneca. MW, KV and MJH are all current or former employees of AstraZeneca with stock/stock options in AstraZeneca. AS has been Advisory Board Consultant to Merck, Bristol-Myers Squibb, Novartis, Oncorus, Janssen, and has received Grant/Research support from Novartis, Bristol-Myers Squibb, Symphogen AstraZeneca/Medimmune, Merck, Bayer, Surface Oncology, Northern Biologics, Janssen Oncology/Johnson & Johnson, Roche, Regeneron, and Alkermes. Word count: Abstract: 197 Manuscript: 5,268 (excluding abstract) + 683 figure/table legends and footnotes Figures/tables: 5 (as agreed) 1 Downloaded from mct.aacrjournals.org on September 24, 2021. © 2020 American Association for Cancer Research. Author Manuscript Published OnlineFirst on June 16, 2020; DOI: 10.1158/1535-7163.MCT-19-0993 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. -
Scientific Annual Report 2019
Scientific Annual Report 2019 Scientific Annual Report 2019 Contents 2 Introduction 14 Board members Director of Research 18 Group leaders 18 Neil Aaronson 37 Kees Jalink 56 Hein te Riele 19 Reuven Agami 38 Jos Jonkers 57 Lonneke van de Poll 20 Leila Akkari 39 Marleen Kok 58 Winette van der Graaf 21 Regina Beets-Tan 40 Pia Kvistborg and Olga Husson 22 Roderick Beijersbergen 41 Tineke Lenstra 60 Uulke van der Heide 23 Jos Beijnen 42 Sabine Linn 61 Michiel van der Heijden 24 André Bergman 43 René Medema 62 Wim van Harten 25 René Bernards 44 Gerrit Meijer and 63 Flora van Leeuwen and 26 Christian Blank Remond Fijneman Matti Rookus 27 Eveline Bleiker 46 Daniel Peeper 65 Fred van Leeuwen 28 Gerben Borst 47 Anastassis Perrakis 66 Maarten van Lohuizen 29 Thijn Brummelkamp 48 Benjamin Rowland 67 Jacco van Rheenen 30 Karin de Visser 49 Sanne Schagen 68 Bas van Steensel 31 Elzo de Wit 50 Alfred Schinkel 69 Olaf van Tellingen 32 William Faller 51 Marjanka Schmidt 70 Emile Voest 33 John Haanen 52 Ton Schumacher 71 Jelle Wesseling 34 Hugo Horlings 53 Titia Sixma 72 Lodewyk Wessels 35 Heinz Jacobs 54 Jan-Jakob Sonke 73 Lotje Zuur 36 Jacqueline Jacobs 55 Arnoud Sonnenberg 74 Wilbert Zwart 78 Division of 84 Division of 90 Division of Diagnostic Oncology Medical Oncology Surgical Oncology 96 Division of 102 Division of 110 Technology Radiation Oncology Pharmacology Transfer Office and Biometrics 112 Research Facilities 126 Education in 134 Clinical Oncology trials 164 Invited 166 Research 194 Personnel speakers projects index Netherlands Cancer Institute Plesmanlaan 121 1066 CX Amsterdam The Netherlands www.nki.nl Scientific Annual Report 2019 Introduction It is my pleasure to present the 2019 Scientific Annual Report of the Netherlands Cancer Institute. -
The Role of Cancer Stem Cells in Colorectal Cancer: from the Basics to Novel Clinical Trials
cancers Review The Role of Cancer Stem Cells in Colorectal Cancer: From the Basics to Novel Clinical Trials Céline Hervieu 1 , Niki Christou 1,2 , Serge Battu 1 and Muriel Mathonnet 1,2,* 1 EA 3842 CAPTuR “Control of Cell Activation in Tumor Progression and Therapeutic Resistance”, Faculty of Medicine, Genomics, Environment, Immunity, Health and Therapeutics (GEIST) Institute, University of Limoges, 87025 Limoges CEDEX, France; [email protected] (C.H.); [email protected] (N.C.); [email protected] (S.B.) 2 Department of General, Endocrine and Digestive Surgery, University Hospital of Limoges, 87025 Limoges CEDEX, France * Correspondence: [email protected] Simple Summary: Cancer stem cells (CSCs) fuel tumor growth, metastasis and resistance to therapy in colorectal cancer (CRC). These cells therefore represent a promising target for the treatment of CRC but are difficult to study because of the complexity of their isolation. This review presents the methods currently used to isolate colorectal CSCs as well as the techniques for characterizing these cells with their advantages and limitations. The aim of this review is to provide a state-of-the-art on the clinical relevance of CSCs in CRC by outlining current treatments for CRC, the resistance mechanisms developed by CSCs to overcome them, and ongoing clinical trials of drugs targeting CSCs in CRC. Overall, this review addresses the complexity of studying CSCs in CRC research and developing clinically effective treatments to enable CRC patients to achieve a short and long-term therapeutic response. Citation: Hervieu, C.; Christou, N.; Battu, S.; Mathonnet, M. The Role of Abstract: The treatment options available for colorectal cancer (CRC) have increased over the years Cancer Stem Cells in Colorectal and have significantly improved the overall survival of CRC patients. -
Predictive QSAR Tools to Aid in Early Process Development of Monoclonal Antibodies
Predictive QSAR tools to aid in early process development of monoclonal antibodies John Micael Andreas Karlberg Published work submitted to Newcastle University for the degree of Doctor of Philosophy in the School of Engineering November 2019 Abstract Monoclonal antibodies (mAbs) have become one of the fastest growing markets for diagnostic and therapeutic treatments over the last 30 years with a global sales revenue around $89 billion reported in 2017. A popular framework widely used in pharmaceutical industries for designing manufacturing processes for mAbs is Quality by Design (QbD) due to providing a structured and systematic approach in investigation and screening process parameters that might influence the product quality. However, due to the large number of product quality attributes (CQAs) and process parameters that exist in an mAb process platform, extensive investigation is needed to characterise their impact on the product quality which makes the process development costly and time consuming. There is thus an urgent need for methods and tools that can be used for early risk-based selection of critical product properties and process factors to reduce the number of potential factors that have to be investigated, thereby aiding in speeding up the process development and reduce costs. In this study, a framework for predictive model development based on Quantitative Structure- Activity Relationship (QSAR) modelling was developed to link structural features and properties of mAbs to Hydrophobic Interaction Chromatography (HIC) retention times and expressed mAb yield from HEK cells. Model development was based on a structured approach for incremental model refinement and evaluation that aided in increasing model performance until becoming acceptable in accordance to the OECD guidelines for QSAR models. -
An Update on Antibody Drug Conjugates
Pharmacy & Pharmacology International Journal Review Article Open Access An update on antibody drug conjugates Abstract Volume 6 Issue 2 - 2018 Antibody Drug Conjugates (ADCs) are an emerging class of biopharmaceuticals in which a target-specific monoclonal antibody combines with small molecule Pavankumar Tandra,1 Jairam Krishnamurthy,1 chemotherapeutic agents. ADCs resemble the “magic bullet” version of Paul Ehrlich. Venkatasunil Bendi,2 Avyakta Kallam1 Paul Ehrlich, a German chemist, was the first who envisioned the concept of “magic 1Division of hematology-oncology, University of Nebraska bullet” in which a highly specific drug would be delivered to the target diseased Medical Center, USA tissue while leaving the healthy tissues intact. ADCs widen the therapeutic index of 2Clinical observer in academic neurology, University of the cytotoxic chemotherapy and enhance their potency. FDA approved four ADCs Nebraska Medical center, USA thus far. Some are currently undergoing development (see picture). In this review, we will focus on ADCs approved by the FDA thus far in solid tumors as well as in Correspondence: Pavankumar Tandra, Division of hematology- hematological malignancies. Also, we will discuss the ongoing clinical trials using oncology, University of Nebraska Medical Center, Omaha, NE 68116,USA, Email [email protected] these novel therapeutics. Received: February 05, 2018 | Published: March 14, 2018 Introduction peptide linker.2 CD30 expressing cells internalize BV upon attachment to the receptor. Once internalized, the peptide linker is cleaved, Antibody Drug Conjugates (ADCs) are an emerging class of allowing MMAE to be released and resulting in apoptosis.3 CD30 is biopharmaceuticals in which a target-specific monoclonal antibody expressed in Reed-Sternberg cells, thus making BV a potential agent combines with small molecule chemotherapeutic agents. -
Classification Decisions Taken by the Harmonized System Committee from the 47Th to 60Th Sessions (2011
CLASSIFICATION DECISIONS TAKEN BY THE HARMONIZED SYSTEM COMMITTEE FROM THE 47TH TO 60TH SESSIONS (2011 - 2018) WORLD CUSTOMS ORGANIZATION Rue du Marché 30 B-1210 Brussels Belgium November 2011 Copyright © 2011 World Customs Organization. All rights reserved. Requests and inquiries concerning translation, reproduction and adaptation rights should be addressed to [email protected]. D/2011/0448/25 The following list contains the classification decisions (other than those subject to a reservation) taken by the Harmonized System Committee ( 47th Session – March 2011) on specific products, together with their related Harmonized System code numbers and, in certain cases, the classification rationale. Advice Parties seeking to import or export merchandise covered by a decision are advised to verify the implementation of the decision by the importing or exporting country, as the case may be. HS codes Classification No Product description Classification considered rationale 1. Preparation, in the form of a powder, consisting of 92 % sugar, 6 % 2106.90 GRIs 1 and 6 black currant powder, anticaking agent, citric acid and black currant flavouring, put up for retail sale in 32-gram sachets, intended to be consumed as a beverage after mixing with hot water. 2. Vanutide cridificar (INN List 100). 3002.20 3. Certain INN products. Chapters 28, 29 (See “INN List 101” at the end of this publication.) and 30 4. Certain INN products. Chapters 13, 29 (See “INN List 102” at the end of this publication.) and 30 5. Certain INN products. Chapters 28, 29, (See “INN List 103” at the end of this publication.) 30, 35 and 39 6. Re-classification of INN products. -
Tanibirumab (CUI C3490677) Add to Cart
5/17/2018 NCI Metathesaurus Contains Exact Match Begins With Name Code Property Relationship Source ALL Advanced Search NCIm Version: 201706 Version 2.8 (using LexEVS 6.5) Home | NCIt Hierarchy | Sources | Help Suggest changes to this concept Tanibirumab (CUI C3490677) Add to Cart Table of Contents Terms & Properties Synonym Details Relationships By Source Terms & Properties Concept Unique Identifier (CUI): C3490677 NCI Thesaurus Code: C102877 (see NCI Thesaurus info) Semantic Type: Immunologic Factor Semantic Type: Amino Acid, Peptide, or Protein Semantic Type: Pharmacologic Substance NCIt Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor tyrosine kinase expressed by endothelial cells, while VEGF is overexpressed in many tumors and is correlated to tumor progression. PDQ Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor -
Roche Template
Changes to the development pipeline Q3 2020 update New to phase I New to phase II New to phase III New to registration 7 NMEs: 2 NMEs: 4 NMEs: 1 NME: RG6091 UBE3A LNA - Angelman syndrome RG7992 FGFR1 x KLB - NASH RG6107 crovalimab - PNH RG6396 Gavreto (pralsetinib) - RET fusion- RG6286 NME - colorectal cancer CHU Oncolytic Type 5 adenovirus - esophageal RG6413+RG6412 REGN-COV2 - SARS-CoV-2 positive NSCLC RG6315 NME - systemic sclerosis cancer prophylaxis RG6330 KRAS G12C - KRAS-mutant solid tumors RG6171 SERD(3) ER+/HER2 - metastatic breast 2 AIs: RG6418 NLRP3 inhibitor - inflammation 5 AIs: cancer RG3648 Xolair - asthma home use 4D-MT 4D-R125 - X-linked retinitis pigmentosa RG6171 SERD(3) - neoadjuvant HR+ breast 7 AIs: RG6396 Gavreto (pralsetinitb) - RET-mutant CHU CD137 agonist switch antibody - solid tumors cancer RG6058 tiragolumab+Tecentriq - stage III medullary thyroid cancer (MTC) RG6413+RG6412 REGN-COV2 - COVID-19+ unresectable 1L NSCLC 2 AIs: adult – ambulatory RG6058 tiragolumab+Tecentriq - locally adv RG7440 ipatasertib+Tecentriq - prostate cancer RG6413+RG6412 REGN-COV2 - COVID-19+ esophageal cancer previously treated with androgen receptor-targeted adult – hospitalized RG6321 PDS with ranibizumab - diabetic therapy retinopathy RG7446 Tecentriq+Venclexta - maintenance 1L RG7159 Gazyva - lupus nephritis ES-SCLC RG7601 Venclexta - 1L MDS RG7446 Tecentriq+cabozantinib - adv RCC RG7446 Tecentriq+cabozantinib - 2L NSCLC Removed from phase I Removed from phase II Removed from phase III Approvals 2 NMEs: 2 AIs: 3 AIs: 3 NMEs approved -
Download PDF Document
Journal for ImmunoTherapy of Cancer 2019, 7(Suppl 1):283 https://doi.org/10.1186/s40425-019-0764-0 MEETINGABSTRACTS Open Access 34th Annual Meeting & Pre-Conference Programs of the Society for Immunotherapy of Cancer (SITC 2019): part 2 National Harbor, MD, USA. 10 November 2019 Published: 6 November 2019 About this supplement These abstracts have been published as part of Journal for ImmunoTherapy of Cancer Volume 7 Supplement 1, 2019. The full contents of the supplement are available online at https://jitc.biomedcentral.com/articles/supplements/volume-7-supplement-1. Please note that this is part 2 of 2. Poster Presentations median survival; 3) FTN203 did not negate the efficacy of anti- PD-1 or anti-PD-L1 immunotherapy antibody when combined; 4) Biomarkers, Immune Monitoring, and Novel FTN203 significantly improved the efficacy of anti-PD-1 by further Technologies reducing the tumor growth (by 80% on day 26, P=0.046) and in- creasing the median survival (by 5 days or 14%, Log-rank test P= P501 0.031), against the combo of COMPLETE and anti-PD-1; 5) None Dietary deprivation of non-essential amino acids improves anti-PD- of the mono or combo treatments caused body weight loss. 1 immunotherapy in murine colon cancer Conclusions Zehui Li, PhD, Grace Yang, PhD, Shuang Zhou, PhD, Xin Wang, MD, PhD, Our data supports the use of dietary NEAA deprivation to improve Xiyan Li, PhD the efficacy of anti-PD-1 or anti-PD-L1 immunotherapy for colorectal Filtricine, Inc., Santa Clara, CA, United States cancer without noticeable side effects.