Arxiv:2005.14160V1 [Astro-Ph.IM] 28 May 2020 Agation with Reasonable Level of Accuracy, One Must Include the In- to the 1980S with the Garstang Model (Garstang 1986)
MNRAS 000,1–18 (2020) Preprint 29 May 2020 Compiled using MNRAS LATEX style file v3.0 Restoring the night sky darkness at Observatorio del Teide: First application of the model Illumina version 2 Martin Aubé,1;2;3 ? Alexandre Simoneau,3 Casiana Muñoz-Tuñón4;5 Javier Díaz-Castro4;5 and Miquel Serra-Ricart4;5 1Département de physique, Cégep de Sherbrooke, Sherbrooke, 475 rue du Cégep, Sherbrooke, Québec, J1E 4K1, Canada 2Physics department, Bishops University, 2600 College St, Sherbrooke, Québec, J1M 1Z7, Canada 3Département de géomatique appliquée, Université de Sherbrooke, 2500 Boulevard de l’UniversitÃľ, Sherbrooke, Québec, J1K 2R1, Canada 4Instituto de Astrofísica de Canarias, Calle VÃŋa LÃąctea, s/n, 38205 San CristÃşbal de La Laguna, Santa Cruz de Tenerife, 38205, Spain 5Departamento de Astrofísica, Universidad de La Laguna (ULL), 38205 La Laguna, Tenerife, Spain Accepted XXX. Received YYY; in original form ZZZ ABSTRACT The propagation of artificial light into real environments is complex. To perform its numerical modelling with accuracy one must consider hyperspectral properties of the lighting devices and their geographic positions, the hyperspectral properties of the ground reflectance, the size and distribution of small-scale obstacles, the blocking effect of topography, the lamps angular photometry and the atmospheric transfer function (aerosols and molecules). A detailed radiative transfer model can be used to evaluate how a particular change in the lighting infrastructure may affect the sky radiance. In this paper, we use the new version (v2) of the Illumina model to evaluate a night sky restoration plan for the Teide Observatory located on the island of Tenerife, Spain.
[Show full text]