Appendix: Planetary Facts, Data and Tools

Planetary Constants

See Tables A1 and A2.

© Springer International Publishing AG 2018 395 A.P. Rossi, S. van Gasselt (eds.), Planetary , Springer Praxis Books, DOI 10.1007/978-3-319-65179-8 396 Appendix: Planetary Facts, Data and Tools 9  9 10   14 10  [bar]  10 1.014 > 1000 > 1000 > 1000 > 1000 p – Atmospheric 1 – pressure – 92 0.006 4–12 7 5 4 5 5 5       10 10 10 10 10 10       [T] B – Magnetic – – field – – 3.0 2.4 – 2.3 – 2.2 1.4 4.3 ] 2 [m/s 0:630 0:620 0:820 0:280 3:710 8:870 9:810 3:710 8:870 0:500 g 10:440 11:150 24:790 ] 3  [kg/m 687  3200 1860 2520 (min) 2600 2161 5243 5427 1271 1400 5514 3933 1638 1326 [–] f 43:62 20:00 58:54 15:41 10:21 1/ Inverse flattening – – – – 298:253 169:894 – –  [km] 620:0 739:0 473:0 715:0 1187:0 1163:0 6378:1 3396:2 2439:7 6051:8 e Equatorial r radius 25559:0 24764:0 60268:0 71492:0   [km] 739:0 473:0 715:0 620:0 1187:0 1163:0 6356:8 3376:2 2439:7 6051:8 p Polar radius r 24973:0 24341:0 54364:0 66854:0  kg] kg] 24 21 10 10 4:010 0:939 4:868 5:972 0:642 0:330   13:030 16:600 86:813 [ [ 102:413 568:340 < 4:400 Mass m m 1898:190 5 1 2 1 2 0 1 0 0 27 14 67 62 Discovery 1930 2005 2004 prehistoric prehistoric prehistoric prehistoric prehistoric prehistoric 1781 1846 1801 2005 Bulk parameters for , dwarf planets and selected Planets Dwarf planets (134340) (1) (136199) Eris (136472) Makemake (136108) Haumea Table A1 Appendix: Planetary Facts, Data and Tools 397 12 7   10 10 12    1 10 – – – – trace – – – – 7.5 1.47 – 7 7 7    10 10 10    – – – – – – – – 1.2 1.20 – – 1.0 0.003 0.006 0.064 0.113 0.146 0.232 0.264 0.223 1.314 1.428 1.235 1.350 1.796 1.620 1471 1876 3013 1148 1609 984 1478 1.236 1088 1936 1834 1880 3528 3344 – – – – – – – – – – – – – 827.67 6:2 11:3 198:2 252:1 531:1 561:4 763:8 734:5 1560:8 2634:1 2410:3 2575:0 1821:6 1738:1 6:2 11:3 198:2 252:1 531:1 561:4 763:8 734:5 1560:8 2634:1 2410:3 2575:0 1821:6 1736:0 15 15 kg] 10 10   21 10  1.476 0:037 0:108 0:617 1:095 2:307 1:806 [ 10.659 47:998 89:319 73:456 148:190 107:598 134:500 m 1877 1877 1610 1610 1610 1789 1789 1684 1684 1672 1655 1671 1610 prehistoric Satellites Earth’s (Mars I) (Mars II) (Jupiter I) (Jupiter II) (Jupiter III) (Jupiter IV) (Saturn I) (Saturn II) (Saturn III) (Saturn IV) (Saturn V) (Saturn VI) (Saturn VIII) 398 Appendix: Planetary Facts, Data and Tools ? ? ? 0.03 3.13 4.00 [˚] 23.44 25.19 26.73 97.77 28.32 57.47 " 177.36 Axis obliquity [˚] 7:00 0:00 1:85 1:30 2:64 2:49 0:77 1:77 i 29:01 28:19 10:59 17:16 44:04 inclination 9:93 7:77 3:92 9:07 23:93 24:62 10:66 16:11 25:90 17:24 153:29  [h] 1407:60 5832:60   P Rotation period [–] 0:206 0:007 0:017 0:094 0:049 0:156 0:191 0:057 0:046 0:076 0:011 0:249 Orbit eccentricity 0:441 km] 6 10 57:91  108:21 149:60 227:93 778:57 414:02 [ 6838:87 6465:25 1433:53 2872:46 4495:06 5906:38 a Semi major axis 10162:50 km] 6 10 69:82  108:94 152:10 249:23 816:62 445:41 [ 7904:75 7701:75 1514:50 3003:62 4545:67 7375:93 Q Apoapsis 14602:00 km] 6 10  46:00 [ 107:48 147:09 206:62 740:52 382:62 q Periapsis 5772:98 5228:74 1352:55 2741:30 4444:45 4436:82 5723:00 88:0 90:6 365:3 687:0 224:7 4332:6 1681:63 [d] 10759:2 30685:4 60189:0 Orbit period T 112897:0 103774:0 203830:0 Orbital and axis parameters for planets, dwarf planets and selected satellites Planets Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Dwarf planets (134340) Pluto (1) Ceres (136199) Eris (136472) Makemake (136108) Haumea Table A2 Appendix: Planetary Facts, Data and Tools 399 6:69 0:00 0:00 0:10 0:00 0:00 0:00 0:00 0:00 1:94 0:33 0:00 0:00 5:15 1:09 0:93 0:05 0:47 1:57 0:02 0:35 1:12 0:19 0:02 0:33 0:20 15:47 synchronous synchronous 27.32 synchronous synchronous synchronous synchronous synchronous synchronous synchronous synchronous synchronous synchronous synchronous To plane 0:015 0:004 0:055 0:000 0:001 0:009 0:020 0:002 0:005 0:000 0:007 0:029 0:028 0:001 9:38 23:46 421:70 384:00 527:04 670:90 185:54 377:30 238:04 294:62 1221:83 1070:40 1883:00 3561:30 km] 3 10 9:52  23:47 [ 423:40 405:40 527:57 676:94 189:18 378:23 239:16 294:62 a 1897:00 1257:51 1071:60 3662:00 9:23 23:46 420:00 362:60 526:51 664:86 181:90 376:57 236:92 294:62 1186:15 1069:20 1869:00 3460:60 km] 3 10  [ 1:77 0:32 0:94 4:52 1:26 3:55 1:89 2:74 7:15 1:37 q 27:32 16:69 15:95 79:32 Satellites Earth’s moon Phobos (Mars I) Deimos (Mars II) Io (Jupiter I) Europa (Jupiter II) Ganymede (Jupiter III) Callisto (Jupiter IV) Mimas (Saturn I) Enceladus (Saturn II) Tethys (Saturn III) Dione (Saturn IV) Rhea (Saturn V) Titan (Saturn VI) Iapetus (Saturn VIII) 400 Appendix: Planetary Facts, Data and Tools

Planetary Exploration Missions

A complete list of planetary exploration missions is provided in Table A3.Mostof those missions are focused on an individual target body (e.g. Mars), several are cov- ering multiple ones (e.g. - to the Saturn system, or to the Moon and 1620 Geographos). In the majority of cases also disciplines other than Geology are covered by missions’ science objectives and their experiments.

Data and Tools

Planetary Geology, with the notable exception of the study of or returned samples by either robots or humans, is largely based on remotely collected data. Those data have historically been shared within large communities in a relatively open fashion. Even during the Cold War, cooperation was active across US and Soviet scientists involved in planetary exploration. Nowadays, planetary data are hosted and curated in dedicated archives that make available to anyone a range of science data products: from raw to calibrated, derived data (often described as higher-level data)(TableA4, as well as outreach products based on those, e.g. NASA Planetary Photojournal.1 The Planetary Data System (PDS) stands both for (1) the standards used in archiving planetary data (used also beyond NASA, that first developed them), (2) the organisation responsible of distributing and preserving data according to those standards, as well as (3) the distributed archives physically hosting those data. Please note that data provided in this appendix might have a lifetime shorter than that of a book. Most agency and government URLs are likely to be available indefinitely or suitably redirected, though. Please refer, for an updated view, to the GitHubrepository.2 We also suggest to monitor resource collections, listed below, maintained by long-term archives, such as NASA PDSand ESA PSA or any other provider associated to the IPDA Code for introductory data handling of planetary data is available on the book’s companion free GitHub repository.

1http://photojournal.jpl.nasa.gov. 2https://github.com/openplanetary/planetarygeology-book. Appendix: Planetary Facts, Data and Tools 401

Table A3 Planetary missions until the end of 2016 (source: NASA NSSDC) Launch date Nation Mission name Notes Target 1959-01-02 USSR Flyby Moon 1959-03-03 USA Flyby Moon 1959-09-12 USSR Impact Moon 1959-10-04 USSR Probe Moon 1960-10-10 USSR Marsnik 1 (Failure) Mars 1960-10-14 USSR Marsnik 2 Mars Flyby (Failure) Mar 1961-02-04 USSR Sputnik 7 Venus Impact (Failure) Venus 1961-02-12 USSR 1 Venus Flyby (Failure) Venus 1961-08-23 USA Test Flight (Failure) Moon 1961-11-18 USA Test Flight (Failure) Moon 1962-01-26 USA Impact (Failure) Moon 1962-04-23 USA Impact Moon 1962-08-25 USSR Sputnik 19 Venus Flyby (Failure) Venus 1962-08-27 USA 2 Venus Flyby Venus 1962-09-01 USSR Sputnik 20 Venus Flyby (Failure) Venus 1962-09-12 USSR Sputnik 21 Venus Flyby (Failure) Venus 1962-10-18 USA Impact (Failure) Moon 1962-10-24 USSR Sputnik 22 Attempted Mars Flyby Mars 1962-11-01 USSR Mars Flyby (Failure) Mars 1962-11-04 USSR Sputnik 24 Attempted Mars Mars 1963-04-02 USSR Flyby Moon 1963-11-11 USSR Cosmos 21 Test Flight (Failure) Venus 1964-01-30 USA Impact Moon 1964-02-19 USSR Venera 1964A Venus Flyby (Failure) Venus 1964-03-01 USSR Venera 1964B Venus Flyby (Failure) Venus 1964-03-27 USSR Cosmos 27 Venus Flyby (Failure) Venus 1964-04-02 USSR Zond 1 Venus Flyby (Failure) Venus 1964-07-28 USA Impact Moon 1964-11-05 USA Attempted Mars Flyby Mars 1964-11-28 USA Mars Flyby Mars 1964-11-30 USSR Mars Flyby (Contact Lost) Mars 1965-02-17 USA Impact Moon 1965-03-21 USA Impact Moon 1965-05-09 USSR Impact Moon 1965-06-08 USSR Attempted Lander Moon 1965-07-18 USSR Lunar Flyby—Mars Test Vehicle Mars 1965-07-18 USSR Zond 3 Flyby Moon 1965-10-04 USSR Impact Moon 1965-11-12 USSR Venus Flyby (Failure) Venus (continued) 402 Appendix: Planetary Facts, Data and Tools

Table A3 (continued) Launch date Nation Mission name Notes Target 1965-11-16 USSR Venus Lander (Failure) Venus 1965-11-23 USSR Cosmos 96 Attempted Venus Lander? Venus 1965-11-23 USSR Venera 1965A Venus Flyby (Failure) Venus 1965-12-03 USSR Impact Moon 1966-01-31 USSR Lander Moon 1966-03-31 USSR Orbiter Moon 1966-05-30 USA Lander Moon 1966-08-10 USA Orbiter Moon 1966-08-24 USSR Orbiter Moon 1966-09-20 USA Lander (Failure) Moon 1966-10-22 USSR Orbiter Moon 1966-11-06 USA Orbiter Moon 1966-12-21 USSR Lander Moon 1967-02-04 USA Orbiter Moon 1967-04-17 USA Lander Moon 1967-05-08 USA Orbiter Moon 1967-06-12 USSR Venus Probe Venus 1967-06-14 USA Venus Flyby Venus 1967-06-17 USSR Cosmos 167 Venus Probe (Failure) Venus 1967-07-14 USA Lander (Failure) Moon 1967-07-19 USA Orbiter Moon 1967-08-01 USA Orbiter Moon 1967-09-08 USA Lander Moon 1967-11-07 USA Lander Moon 1968-01-07 USA Lander Moon 1968-04-07 USSR Orbiter Moon 1968-09-15 USSR Return Probe Moon 1968-11-10 USSR Zond 6 Return Probe Moon 1968-12-21 USA 8 Crewed Orbiter Moon 1969-01-05 USSR Venera 5 Venus Probe Venus 1969-01-10 USSR Venus Probe Venus 1969-02-25 USA Mariner 6 Mars Flyby Mars 1969-03-27 USA Mariner 7 Mars Flyby Mars 1969-03-27 USSR Mars 1969A Mars Orbiter (Failure) Mars 1969-04-02 USSR Mars 1969B Mars Orbiter (Failure) Mars 1969-05-18 USA Orbiter Moon 1969-07-13 USSR Orbiter Moon 1969-07-16 USA Crewed Landing Moon 1969-08-07 USSR Zond 7 Return Probe Moon 1969-11-14 USA Crewed Landing Moon 1970-04-11 USA Crewed Landing (aborted) Moon (continued) Appendix: Planetary Facts, Data and Tools 403

Table A3 (continued) Launch date Nation Mission name Notes Target 1970-08-17 USSR Venera 7 Venus Lander Venus 1970-08-22 USSR Cosmos 359 Attempted Venus Probe Venus 1970-09-12 USSR Sample Return Moon 1970-10-20 USSR Zond 8 Return Probe Moon 1970-11-10 USSR Rover Moon 1971-01-31 USA Crewed Landing Moon 1971-05-09 USA Mars Flyby (Failure) Mars 1971-05-10 USSR Cosmos 419 Attempted Mars Orbiter/Lander Mars 1971-05-19 USSR Mars Orbiter/ Attempted Lander Mars 1971-05-28 USSR Mars Orbiter/ Lander Mars 1971-05-30 USA Mars Orbiter Mars 1971-07-26 USA Crewed Landing Moon 1971-09-02 USSR Impact Moon 1971-09-28 USSR Orbiter Moon 1972-02-14 USSR Sample Return Moon 1972-03-27 USSR Venus Probe Venus 1972-03-31 USSR Cosmos 482 Attempted Venus Probe Venus 1972-04-16 USA Crewed Landing Moon 1972-12-07 USA Crewed Landing Moon 1973-01-08 USSR Rover Moon 1973-06-10 USA (RAE-B) Orbiter Moon 1973-07-21 USSR Mars Flyby (Attempted Mars Mars Orbiter) 1973-07-25 USSR Mars Orbiter Mars 1973-08-05 USSR Mars Lander (Contact Lost) Mars 1973-08-09 USSR Mars Flyby (Attempted Mars Mars Lander) 1973-11-04 USA Venus/Mercury Flybys Venus 1974-06-02 USSR Orbiter Moon 1974-10-28 USSR Lander Moon 1975-06-08 USSR Venus Orbiter and Lander Venus 1975-06-14 USSR Venera 10 Venus Orbiter and Lander Venus 1975-08-20 USA Mars Orbiter and Lander Mars 1975-09-09 USA Mars Orbiter and Lander Mars 1976-08-14 USSR Sample Return Moon 1978-05-20 USA Pioneer Venus 1 Venus Orbiter Venus 1978-08-08 USA Pioneer Venus 2 Venus Probes Venus 1978-09-09 USSR Venus Flyby Bus and Lander Venus 1978-09-14 USSR Venus Flyby Bus and Lander Venus 1981-10-30 USSR Venus Flyby Bus and Lander Venus 1981-11-04 USSR Venus Flyby Bus and Lander Venus (continued) 404 Appendix: Planetary Facts, Data and Tools

Table A3 (continued) Launch date Nation Mission name Notes Target 1983-06-02 USSR Venus Orbiter Venus 1983-06-07 USSR Venera 16 Venus Orbiter Venus 1984-12-15 USSR Venus Lander and Venus Balloon/ Flyby 1984-12-21 USSR Venus Lander and Venus Balloon/Comet Halley Flyby 1985-07-02 EUR Giotto Halley comet Flyby 1988-07-07 USSR Attempted Mars Mars Orbiter/Phobos Landers 1988-07-12 USSR Mars Orbiter/Attempted Mars Phobos Landers 1989-05-04 USA Venus Orbiter Venus 1989-10-18 USA Jupiter Orbiter/Probe Venus (Venus Flyby) 1990-01-24 JPN Flyby and Orbiter Moon 1992-09-25 USA Attempted Mars Orbiter Mars (Contact Lost) 1994-01-25 USA Clementine Orbiter Moon 1996-11-07 USA Mars Orbiter Mars 1996-11-16 RUS Attempted Mars Mars Orbiter/Landers 1996-12-04 USA Mars Pathfinder Mars Lander and Rover Mars 1997-10-15 USA/EUR Cassini-Huygens Saturn Orbiter (Venus Venus Flyby) 1997-12-24 USA AsiaSat 3/HGS-1 Lunar Flyby Moon 1998-01-07 USA Lunar Orbiter Moon 1998-07-03 JPN (-B) Mars Orbiter Mars 1998-12-11 USA Attempted Mars Orbiter Mars 1999-01-03 USA Attempted Mars Lander Mars 1999-01-03 USA (DS2) Attempted Mars Mars Penetrators 2001-04-07 USA Mars Orbiter Mars 2003-06-02 EUR Mars Orbiter and Mars Lander 2003-06-10 USA (MER-A) Mars 2003-07-08 USA (MER-B) Mars Rover Mars 2003-09-27 EUR SMART 1 Lunar Orbiter Moon 2004-03-02 EUR Comet Orbiter comet 67P 2004-08-03 USA MESSENGER Mercury Orbiter (Two Venus Venus Flybys) (continued) Appendix: Planetary Facts, Data and Tools 405

Table A3 (continued) Launch date Nation Mission name Notes Target 2005-08-12 USA Mars Reconnaisance Mars Orbiter Mars Orbiter 2005-11-09 EUR ESA Venus Orbiter Venus 2006-01-20 USA Pluto and Belt Flyby 2007-08-04 USA Mars Scout Lander Mars 2007-09-14 JPN Kaguya (SELENE) Lunar Orbiter Moon 2007-10-24 CHN Chang’e 1 Lunar Orbiter Moon 2008-10-22 IND Chandrayaan-1 Lunar Orbiter Moon 2009-06-17 USA Lunar Reconnaissance Lunar Orbiter Moon Orbiter 2009-06-17 USA LCROSS Lunar Orbiter and Moon Impactor 2010-05-20 JPN Attempted ISAS Venus Venus Orbiter 2010-10-01 CHN Chang’e 2 Lunar Orbiter Moon 2011-09-10 USA Gravity Recovery And Lunar Orbiter Moon Interior Laboratory (GRAIL) 2011-11-08 CHN Yinghuo-1 Attempted Mars Orbiter Mars 2011-11-08 RUS Phobos-Grunt Attempted Mars Moon Phobos Lander 2011-11-26 USA Mars Science Mars Rover Mars Laboratory 2013-09-06 USA Lunar and Lunar Orbiter Moon Dust Environment Explorer 2013-11-05 IND Mangalyaan ISRO () Mars Mars Orbiter 2013-11-18 USA MAVEN Mars Scout Mission Mars Orbiter 2013-12-01 CHN Chang’e 3 Lunar Lander and Rover Moon 2016-03-14 EUR ExoMars TGO Mars Orbiter and Mars Lander 2016-09-08 USA OSIRIS-REx Asteroid orbiter and Asteroid lander 101955 Bennu 406 Appendix: Planetary Facts, Data and Tools

Table A4 Processing levels of planetary data: the definition of processing levels might be slightly confusing Description NASA CODMAC PDS3 PDS4 Isis3 Received telemetry data Packet data L1 (raw) – Telemetry – Reconstructed, unprocessed data L0 L2 – Raw – L0 with ancillary information L1A L3 EDR Partially processed L0 L1A processed to sensor units L1B L4 CDR Partially processed L1 Derived physical units per each L2 L5 (derived) RDR Calibrated L2 sensor unit (pixel) of L1B Variables mapped at uniform time L3 L5 DDR Derived L3+ and space scales Model outputs or derived data L4 L5 DDR Derived L3+ NASA terminology is similar to that currently used for Earth Observation Remote Sensing data. Terminology in Fig. A1 corresponds to the last column of this table

Data Sources

Spacecraft data used in planetary geological studies are available free of charge on the public domain, after a variable embargo period—in general of few — where experiment teams have exclusive access to data. Software and extensive documentation are typically distributed along with data, but tools and their availabil- ity are variable across experiments and missions. This section contains some pointers to data and documentation. The level of long-term support varies: archives are long-term preserved as well as institutionally supported tools, which are also long-term supported. The software tool scenario is rapidly changing, though.

Planetary Data Archives

Planetary Data Systems and (sample) analogue archives worldwide typically offer long term storage, curation and availability of data or samples returned by space- crafts. The amount of extraterrestrial samples is limited, but data are steadily growing and from the few Gigabytes of total digital data holdings of few decades ago are moving towards Petabytes, several order of magnitude more. space agencies maintain archives from data returned by their respective missions.

NASA Planetary Data System Nodes

The NASA Planetary Data System offers data and related documentation and tools typically by broad disciplines and areas or experiment types, i.e. through several Appendix: Planetary Facts, Data and Tools 407 nodes (e.g. Geosciences, Imaging , Small Bodies, Rings). The starting point to access all PDS resources is the NASA PDS main page.3 Data can be available on more than one node and search functions are available in all of them as well as from centralised (mainly web) interfaces. The most relevant node for geological analyses is the PDS Geosciences Node hosted at Washington University in St. Louis.4 Originally data were distributed to scientists on physical archives (first CD, then DVD-based), lately all data are distributed online-only, although the term volume is still used. Rover-based data are geometrically much more complex and search of data by time of observation and activity along a path/traverse is usually easier to explore and use those data. The PDS Geosciences NODE Analyst’s notebook5 provides access to Apollo, MER and MSL and more.

ESA Archive

ESA hosts all data coming from its planetary missions on the PSA,6 following PDS standards. Most data from ESA PSA are also mirrored on PDS nodes (e.g. MEX HRSC). PSA is hosted in a single location at the ESAC establishment of ESA (together with astronomy data archives).

Processing Levels

Data acquired by spacecraft are returned most of the times not as science-ready products. The of the different levels of calibration and processing can slightly vary, but its relative order does not (e.g. from PDS), therefore a higher level number corresponds to more science-usable data or, higher-level data products (Table A4). See Figs. A1 and A2.

Web Services

The number of web services providing access, visualisation and analytics for planetary data is constantly growing, and the individual services fast evolving. Data search and discovery, possible from PDS and PDS, is enhanced within the

3https://pds.nasa.gov. 4http://pds-geosciences.wustl.edu. 5http://an.rsl.wustl.edu. 6http://www.cosmos.esa.int/web/psa. 408 Appendix: Planetary Facts, Data and Tools

Fig. A1 Processing level examples for an imaging experiment. Levels indicated are using USGS Isis3 naming conventions. For comparison see Table A4

Fig. A2 Processing level examples for a spectrometer (NASA MGS TES), in this case, non- imaging: TES spectra undergo various level of processing, after being corrected for instrumental, systematic and atmospheric effects (source: MGS TES, M. D’Amore)

Planetary Virtual Observatory (VO) of EuroPlanet VESPA7: the VO approach, originally developed for Astronomy, allows powerful data search capabilities across an arbitrary number of archives.

7http://europlanet-vespa.eu. Appendix: Planetary Facts, Data and Tools 409

Web mapping services (such as Web GIS systems) are widespread. Several are provided by USGS Astrogeology.8

Tool Directories

Several directories for planetary data analysis tools are maintained, e.g. by the PDS Geosciences Node,9 and, of a more general on PDS10 and IPDA.11

Imaging Tools

Video Image Communication and Retrieval (VICAR)

VICAR, originally developed since the 1960s at JPL and used for processing data from several missions, has been recently open-sourced. Its architecture influenced several later processing system such as USGS ISIS. Several pipelines use VICAR or its customisations adaptation for delivering higher-level data products to archives, e.g. MEX HRSC. VICAR is available from JPL.12

USGS Integrated Software for Imaging and Spectrometers (ISIS)

ISIS13 is a modular system developed by the USGS Astrogeology Branch and it supports several experiments on board NASA missions and beyond (e.g. ESA, ISRO, JAXA). It consists of a large set of programs to import, handle, calibrate radiometrically and geometrically planetary data from imaging cameras and spec- trometers. Extensive documentation and user support is provided by USGS. Processing of data with ISIS starts from EDR data, i.e. neither radiometrically nor geometrically calibrated data. Radiometric and geometric calibration are performed in sequence. Once imagery is map-projected it can, for example be mosaicked or further processed. The workflow to produce digital image maps is simplified in Fig. A1. In most cases, metadata either needed or produced by the processing chains are contained in separate labels, with standards that are out of scope for this appendix,

8http://astrowebmaps.wr.usgs.gov/webmapatlas/Layers/maps.html. 9http://pds-geosciences.wustl.edu/tools/. 10https://pds.jpl.nasa.gov/tools/. 11https://planetarydata.org/services/registry. 12http://www-mipl.jpl.nasa.gov/vicar_open.html. 13https://isis.astrogeology.usgs.gov. 410 Appendix: Planetary Facts, Data and Tools but contained on the PDS standard documents.14 In the simplest case, they appear as keyword = value. The PDS label of a sample imaging experiment (MRO CTX in this case) is something like: PDS_VERSION_ID = PDS3 FILE_NAME = "D21_035563_1987_XN_18N282W.IMG" RECORD_TYPE = FIXED_LENGTH RECORD_BYTES = 5056 FILE_RECORDS = 20481 LABEL_RECORDS = 1 ^IMAGE = 2 SPACECRAFT_NAME = MARS_RECONNAISSANCE_ORBITER INSTRUMENT_NAME = "CONTEXT CAMERA" INSTRUMENT_HOST_NAME = "MARS RECONNAISSANCE ORBITER" MISSION_PHASE_NAME = "ESP" TARGET_NAME = MARS INSTRUMENT_ID = CTX PRODUCER_ID = MRO_CTX_TEAM DATA_SET_ID = "MRO-M-CTX-2-EDR-L0-V1.0" PRODUCT_CREATION_TIME = 2014-07-01T20:11:28 SOFTWARE_NAME = "makepds05 $Revision: 1.16 $" UPLOAD_ID = "UNK" ORIGINAL_PRODUCT_ID = "4A_04_10B2034C00" PRODUCT_ID = "D21_035563_1987_XN_18N282W" START_TIME = 2014-02-26T14:46:46.527 STOP_TIME = 2014-02-26T14:47:24.963 SPACECRAFT_CLOCK_START_COUNT = "1077893243:194" SPACECRAFT_CLOCK_STOP_COUNT = "N/A" FOCAL_PLANE_TEMPERATURE = 293.3 SAMPLE_BIT_MODE_ID = "SQROOT" OFFSET_MODE_ID = "197/200/187" LINE_EXPOSURE_DURATION = 1.877 SAMPLING_FACTOR = 1 SAMPLE_FIRST_PIXEL = 0 RATIONALE_DESC = "Ride-along with HiRISE" DATA_QUALITY_DESC = "OK" ORBIT_NUMBER = 35563 OBJECT = IMAGE LINES = 20480 LINE_SAMPLES = 5056 LINE_PREFIX_BYTES = 0 LINE_SUFFIX_BYTES = 0 SAMPLE_TYPE = UNSIGNED_INTEGER SAMPLE_BITS = 8 SAMPLE_BIT_MASK = 2#11111111# CHECKSUM = 16#13621F48# END_OBJECT = IMAGE END

14https://pds.nasa.gov/tools/standards-reference.shtml. Appendix: Planetary Facts, Data and Tools 411

The PDS label contains basic image metadata, such as its size in pixels, that are used, together with ancillary data, such as SPICE geometrical information, to perform computations of various kind, e.g. map-projecting imagery. As an example, the corresponding subset of a level-2 (radiometrically and geometrically calibrated) Isis3 cube is:

Object = IsisCube Object = Core StartByte = 65537 Format = Tile TileSamples = 128 TileLines = 128

Group = Dimensions Samples = 9278 Lines = 24954 Bands = 1 End_Group

Group = Pixels Type = Real ByteOrder = Lsb Base = 0.0 Multiplier = 1.0 End_Group End_Object

Group = Instrument SpacecraftName = Mars_Reconnaissance_Orbiter InstrumentId = CTX TargetName = Mars MissionPhaseName = ESP StartTime = 2014-02-26T14:46:46.527 SpacecraftClockCount = 1077893243:194 OffsetModeId = 197/200/187 LineExposureDuration = 1.877 FocalPlaneTemperature = 293.3 SampleBitModeId = SQROOT SpatialSumming = 1 SampleFirstPixel = 0 End_Group

Group = Archive DataSetId = MRO-M-CTX-2-EDR-L0-V1.0 ProductId = D21_035563_1987_XN_18N282W ProducerId = MRO_CTX_TEAM ProductCreationTime = 2014-07-01T20:11:28 OrbitNumber = 35563 End_Group 412 Appendix: Planetary Facts, Data and Tools

Group = BandBin FilterName = BroadBand Center = 0.65 Width = 0.15 End_Group

Group = Kernels NaifFrameCode = -74021 LeapSecond = lsk/naif0011.tls TargetAttitudeShape = pck/pck00009.tpc TargetPosition = (Table, spk/de405.bsp) InstrumentPointing = (Table, ck/mro_sc_psp_140225_140303.bc, fk/mro_v15.tf) Instrument = Null SpacecraftClock = ..sclk/MRO_SCLKSCET....tsc InstrumentPosition = (Table, pk/mro_psp30.bsp) InstrumentAddendum = iak/mroctxAddendum005.ti ShapeModel = dems/molaMars.cub InstrumentPositionQuality = Reconstructed InstrumentPointingQuality = Reconstructed CameraVersion = 1 End_Group

Group = Radiometry FlatFile = calibration/ctxFlat_0002.cub iof = 2.07298495391369e-04 End_Group

Group = Mapping ProjectionName = EQUIRECTANGULAR CenterLongitude = 0.0 TargetName = Mars EquatorialRadius = 3396190.0 PolarRadius = 3396190.0 LatitudeType = Planetocentric LongitudeDirection = PositiveEast LongitudeDomain = 360 MinimumLatitude = 17.529197173545 MaximumLatitude = 19.634177543578 MinimumLongitude = 77.520831823657 MaximumLongitude = 78.303405709876 UpperLeftCornerX = 4595020.0 UpperLeftCornerY = 1163810.0 PixelResolution = 5.0 Scale = 11854.939504661 CenterLatitude = 0.0 End_Group

[...] The substantially increased amount of items is generated by the processing pipeline and it reflects the increased information content of the data, including Appendix: Planetary Facts, Data and Tools 413 also geometrical (mapping) information as well as a record of used ancillary data (kernels), useful for reconstructing and reproducing the processing steps applied to the data product.

NASA Ames Stereo Pipeline (ASP)

Stereogrammetry from remote sensing imagery can produced digital terrain models usable as topographic base for detailed geological observations (large scale topogra- phy is often guaranteed by global low-resolution laser altimetry, on most terrestrial planets at least). The NASA Stereo Pipeline,15 developed at the AMES research center is an actively developed, powerful Open-Source photogrammetric package, capable of working with data from most planetary missions. It is very actively supported via a discussion group/mailing list.

JMars/JMoon, etc.

JMars16 and its companion tools for other planetary bodies (e.g. Moon) is a popular GIS system. It provided access to a large base of remote sensing data and it is actively developed.

Tools Usable on the Web

The tools above, especially ISIS, can be also run as web services on demand, producing e.g. mosaics, resampling or reprojecting data. Processing on the Web (POW)17 allows such functionalities and data processing and delivery on demand (not in real time). On demand processing is also provided by the e-Mars MarSI system.18 A recent development of on-line real-time analytics on planetary data is constituted by PlanetServer/EarthServer,19 using OGC WCPS to query data. Access and download of data such as MEX HRSC can be achieved using tools developed by experiment teams and freely accessible, such as HRSC Maps orbit locator.20 There are numerous other tools and services available from USGS and others. This number is very likely to increase on very short time scales. Please refer to the

15http://ti.arc.nasa.gov/tech/asr/intelligent-robotics/ngt/stereo/. 16https://jmars.mars.asu.edu. 17http://astrocloud.wr.usgs.gov. 18https://emars.univ-lyon1.fr/MarsSI/. 19http://planetserver.eu. 20http://maps.planet.fu-berlin.de. 414 Appendix: Planetary Facts, Data and Tools

USGS Astrogeology Branch Mercator Lab21 as well as the GitHub repository of the present book.22 Additionally, citizen science projects and tools exist, either based on surface change detection using multitemporal data or on texture analysis, such as Planet4,23 supported by the HiRISE experiment team.

Documentation and Resources

Documentation on planetary exploration is available on a variety of long-term maintained web sites (a subset is reported below), as well as on more volatile media (not reported here): NASA Space Science Coordinated Data Archive (NSSDCA24) contains up-to- date information on planetary missions and facts, also beyond NASA.

Tutorials and Workshops

Planetary data workshops (also known as data user workshops, or alike) are avail- able from PDS, PSA and additional parties. They tend to be updated periodically. An up to date list of workshop relevant for is maintained on the PDS Geosciences Node.25 ESA PSA has a dedicated workshop page.26 Planetary data analysis and mapping workshops are also regularly run at USGS and materials collected for anyone to use.27 Few recent representative workshops are listed below (the list is not exhaus- tive): • MEX HRSC / OMEGA data workshop (2007, 2008) • MEX MARSIS (2008) • MRO CRISM data user workshop (2009, 2012) • Chandrayaan M3 data workshop (2010) • MRO SHARAD data workshop (2014) • USGS Planetary data workshop (2012, 2015) • ESAC Planetary GIS data workshop (2015) • MSL ChemCam (2015)

21http://astrogeology.usgs.gov/facilities/mrctr-gis-lab. 22https://github.com/openplanetary/planetarygeology-book. 23https://www.planetfour.org. 24http://nssdc.gsfc.nasa.gov/planetary. 25http://pds-geosciences.wustl.edu/workshops/. 26http://www.sciops.esa.int/index.php?project=PSA&page=workshops. 27http://astrogeology.usgs.gov/groups/Planetary-Data-Workshop. Appendix: Planetary Facts, Data and Tools 415

Additional Resources

Additional resources include discussion groups or online communities such as OpenPlanetary,28 Isis Support,29 NASA Stereo Pipeline mailing list.30

28https://github.com/openplanetary. 29http://isis.astrogeology.usgs.gov/fixit. [email protected]. Locations

103P/Hartley, comet, 331, 332 , Venus, 152, 166 109P/-Tuttle, comet, 104 Biblis , 156 19P/Borrelly, comet, 332 1P/Halley, comet, 328, 329, 332 , asteroid, 150 Callisto, Jupiter’s moon, 135, 141, 203, 222 3200 Phaethon, 104 Callisto, moon, 134, 143, 209, 285–294 45P/Honda-Mrkos-Pajdušáková, comet, 331 Valhalla, 135 55P/Tempel-Tuttle, comet, 104 Caloris basin, Mercury, 166, 175 67P/Churyumov-Gerasimenko, comet, 7, 50, Ceres, 42 94, 95, 148, 150, 327, 329–332, 340, Ceres, dwarf planet, 148 348, 379 , 307 81P/Wild 2, comet, 329, 330, 332 Charon, Pluto’s moon, 124, 148, 170, 182 9P/Tempel 1, comet, 7, 329, 330, 332, 339 , , 115 , , 135 , 190 Agathe, asteroid, 316 circum-Hellas volcanic province, Mars, 273 Allan Hills, , 105 , US, 133 Antarctica, 104, 105, 281 Colorado Plateau, U.S., 19, 21 Aorounga Crater, Chad, 134 Columbia River, WA, US, 179 Apollinaris Montes, Mars, 176 Copernicus crater, the Moon, 278 Arabic desert, 105 Coprates , Mars, 203 , 273 , Mars, 199 , Mars, 21, 208, 261, 270 D/Shoemaker–Levy 9, comet, 329 Artemis , Venus, 167 Dasht-e Lut, Iran, 19 asteroid belt, 126 Deccan Traps, 159 Atacama Desert, 20, 21 Deimos, Mars’ moon, 370 Athabasca Vallis, Mars, 199 , Venus, 166, 168 Azerbaijan, 172 Dione, Saturn’s moon, 296–298

Barberton greenstone belt, Africa, 354 East African Rift, 166 Barringer Crater, Arizona, 132 , 201 Beacon Valley, U.S., 19 Edgeworth-Kuiper Belt, 326 Beethoven basin, Mercury, 175 Edgeworth-Kuiper belt, 327 Eger, asteroid, 316

© Springer International Publishing AG 2018 417 A.P. Rossi, S. van Gasselt (eds.), Planetary Geology, Springer Praxis Books, DOI 10.1007/978-3-319-65179-8 418 Locations

Egeria, asteroid, 316 Kilauea, Hawaii, U.S., 19, 159 Enceladus, Saturn, 96, 148, 170, 172, 182, 361 Europa, Jupiter, 96, 170, 172, 182, 222, 285, 290, 361, 370 , Venus, 167 Ligeia Mare, Titan, 301 Lonar Crater, India, 18 Falsaron, Iapetus, 295

Maat Mons, Venus, 176 crater, Mars, 173, 200 Main Belt, 315, 316 Galilean Satellites, 285–294 Mairan domes, the Moon, 179 Ganymede, Jupiter, 209, 229 Maja Vallis, Mars, 199 Ganymede, Jupiter’s moon, 134, 135, 141, 172, Mangala Fossae, Mars, 273 222, 361 Mangala Vallis, Mars, 199 Ganymede, moon, 285–294 Manicouagan crater, Canada, 133 Gaspra, asteroid, 316 Mare Imbrium, the Moon, 371 , 366 Mare Orientale, Moon, 131 Gosses Bluff, , 133, 142 Mars, 19, 190, 198, 209, 211, 225–227, Greenland, 104 230–232, 234, 238–243, 361, 369, Gruithuisen domes, the Moon, 179 370 Crater, Mars, 87 Argyre, 135 Gusev crater, Mars, 190 Matronalia , , 321 Mauna Loa, Hawaii, U.S., 19 , Mars, 214 , Mars, 176 , Venus, 167 Bopp, comet, 329 McMurdo Dry Valleys, Antarctica, 19, 21 Haughton Crater, Canada, 18 Meade crater, Venus, 261 Hawaii, 157 Fossae Formation, Mars, 277 Hawaii, U.S., 19 Memnonia, Mars, 152 Hawaii, US, 18 Mercury, 198, 223, 225–227, 229, 231, 238, , Mars, 261, 270 239, 241 Herschel, Mimas, 295 Caloris, 135 Hestia, asteroid, 316 , Mars, 21, 87, 188, 189, 215 Hyakutake, comet, 329 Crater, Arizona, U.S., 18 Hygiea, asteroid, 316 Michalangelo crater, Mercury, 130 Mimas, Saturn’s moon, 294–296 Moon, the, 18, 198, 223–226, 229, 231, 239, Iapetus, Saturn, 209, 210 369 Iapetus, Saturn’s moon, 294–296 Orientale, 135 Iceland, 18 Ida, asteroid, 316 Io, Jupiter, 209, 290 Nördlinger Ries, Germany, 18 Io, Jupiter’s moon, 123, 143, 172, 174, 285 Nakhla, Egypt, 115 Ishtar , Venus, 167 NEA, 370 Isua Supracrustal Belt, Greenland, 354 Neptune, 306–307, 370 Ithaca Chasma, 296–297 , Mars, 150 Itokawa, asteroid, 94 Nysa, asteroid, 316

Jupiter, 225, 370 , Uranus’ moon, 303–305 Procellarum, the Moon, 152, 371 Oceanus Procellaurm, the Moon, 257 Kasei Vallis, Mars, 199 , Mars, 157, 181, 208 Kenya Rift, 166 Oman, 105 Locations 419

Ontong, Java, 179 Svalbard, Norway, 20 Oort Cloud, 326, 327 swiss cheese terrain, Mars, 209, 210, 340 , Venus, 153

Taurus-Littrow, the Moon, 25 P67/Churyumov-Gerasimenko, comet, 42 Terra Meridiani, Mars, 274 Pallas, asteroid, 316 Tethys, Saturn’s moon, 296–298 Pantheon Fossae, Mercury, 167 bulge, Mars, 273 Phobos, 379 Tharsis, Mars, 152, 199 Phobos, Mars’ moon, 150, 370 Montes, Venus, 152 Regio, Venus, 166 Thingvellir, Iceland, 150 Pilbara Craton, Australia, 354 Tinatin Planitia, 156 Pingaluit crater, Canada, 132, 134 Titan, Saturn, 47, 185, 189, 198, 212, 215, 216, Pluto, 124, 148, 170, 182, 307, 324, 348 222, 361, 370 polar caps, Mars, 207–209 , Uranus’ moon, 303–305 Procellarum Terrane, Moon, 115 , 370 , asteroid, 315, 316 Triton, Neptune’s moon, 172, 182, 306–307 Pu’u ’O¯ o,¯ Hawaii, 159 Tuktoyaktuk, Canada, 20 Turgis, Iapetus, 295 , Mars, 176 Rachmaninoff crater, Mercury, 131 Rembrandt basin, Mercury, 152, 175 Rhea Montes, Venus, 152 Fossae, 156 Rhea, Saturn’s moon, 124, 296–298 , Uranus’ moon, 303–305 Richat structure, Mauritania, 73 Upheaval Dome, USA, 142 Ries crater, Germany, 18, 139, 143 Uranus, 370 Rio Tinto, Spain, 21

Valhalla basin, Callisto, 289 Sahara desert, 105, 190 , Mars, 154, 169, 274 San Andreas , CA, US, 153 Venus, 20, 124, 198, 225 Saturn, 124, 225, 370 Venus, surface, 81 Scablands, Washington, US, 199 Vesta, asteroid, 42, 115, 204, 217, 315 Scattered Disk, 326, 327 , Venus, 160 Shergotty (Sherghati), Inida, 115 , crater, 305 Shoemaker-Levy 9, comet, 140 Siberian Traps, 159 , Venus, 176 Yellowstone , U.S., 21 Snake River Plains, Idaho, U.S., 19 Yellowstone National Park, U.S., 357 Spider crater, Australia, 142 Sputnik Planum (informal name), Pluto, 171, 324 Zerga mountain, Mauritania, 208 Steinheim crater, Mars, 137 Persons

Agricola, Georgius (1494–1555), 23 Le Pichon, Xavier (1937), 164

Bernal, J. D. (1901–1971), 348 Marius, Simon (1573–1625), 285 Blagg, Mary A. (1858–1944), 62 Metrodorus of Lampsacus (331–278), 348 Brahe, Tyche (1546–1601), 8 Miller, Stanley L. (1930–2007), 350 Bruno, Giordano (1548–1600), 348 Mitchell, Edgar D. (1930–2016), 18

Cernan, Eugene A. (1934–2017), 18 , Isaac (1642–1726), 9 Copernicus, Nicolaus (1473–1543), 8

Oort, Jan Henrik (1900–1992), 326 da Vinci, Leonardo (1452–1519), 23 Digges, Thomas (1546–1595), 348 Ptolemy, Claudius (100–170), 8

Edgeworth, Kenneth Essex (1880–1972), 326 Engle, Joe H. (1932), 18 Shepard, Alan B. (1923–1998), 18 Epicurus (341–270), 348 Shoemaker, Eugene M. (1928–1997), 18 Snyder, John Parr (1926–1997), 60 , Nicolaus (1638–1686), 23, 125 Galilei, Galileo (1564–1642), 9, 285 Sternfeld, Ary (1905–1980), 348 , Grove K. (1843–1918), 17, 22

Thales of Miletus (624–546), 348 Hörz, Friedrich (1940), 18 Turner, Herbert Hall (1861–1930), 62 , John B.S. (1892–1964), 350 Huygens, Christiaan(1629–1695), 348 von Engelhardt, Wolf J. (1910–2008), 18

Kepler, Johannes (1571–1630), 8 Kuiper, Gerard Peter (1905–1973), 326 Whewell, William (1794–1866), 15

© Springer International Publishing AG 2018 421 A.P. Rossi, S. van Gasselt (eds.), Planetary Geology, Springer Praxis Books, DOI 10.1007/978-3-319-65179-8 Subjects

’a’a¯ lava, 159 amphitheater-heads, 196 analogy, role of, 16 angle of incidence, 141 map projection angle of repose, 188 Equirectangular, 61 Angrites, 119 Yarkovsky effect, 126 angular momentum, 221 angular unconformity, 29 anhydrous silicates, 379 ablation, 209 Antarctica, 215 ablation till, 208 Apollo, 123, 125, 217, 317, 348 ablation, meteoroid, 104 Apollo 17, NASA mission, 25 abrasion, 191 Apollo samples, 115 absolute age, 124, 125 Apollo seismic experiments, 224 acapulcoites, 113 Apollo, geophysical equipment, 79 accommodation space, 263 Apollo, NASA Program, 72 accretion, 221, 314 aquifers, 198 , crater, 289, 290 , Mars, 190 achondrites, 113 arachnoids, 155, 180 acidophiles, 359 Ares Vallis, 212 acoustic fluidization, 144 arid (Mars) analogues, 19 active layer, 211 , 305–306 active pits, comet, 337 artificial intelligence, 13 aeolianite, 189 asteroid flux, 126 agglomeration, 313 airbrush painting technique, 56 classification, 106 alasses, 212 asteroids, resource prospecting, 377–380 albedo, 286, 287 , 347 ALH84001, 105, 363 Astrogeology Science Center, 63 alkaliphiles, 360 , 18 alluvial fan, 20, 200, 201 Atacama Desert, 215 alluvial fans, 200 atmosphere alluvial plains, 193, 200 density, 186, 187 alteration, 213, 214 planetary, 185 , 198, 200, 204 atmospheric erosion, 243 Amoeboid olivine aggregates (AOA), 111 atmospheric escape, 242

© Springer International Publishing AG 2018 423 A.P. Rossi, S. van Gasselt (eds.), Planetary Geology, Springer Praxis Books, DOI 10.1007/978-3-319-65179-8 424 Subjects atmospheric windows, 41 channel, fluvial, 193 Aubrite meteorites, 316 channelised lava flows, 159 Aubrites, 118 channels, 199 aureole, 192 anastomosing, 195 authigenesis, 214–215 braided, 195 automated mapping, 67 meanders, 195 avalanches, 206 subglacial, 208 chaos regions, 292 chaotic terrain, 199 backlimb, 153 Charon, 307 ballistic ejecta, 139 chassignites, 115 ballistic sedimentation, 136 chemical alteration, 213 ballistic trajectory, 136 chemical sediments, 215 barchan, see dnes189 chondrite basal stress, 207 carbonaceous, 108 basaltic rocks, 173 Chondrites, 106 basin carbonaceous, 106 multi-ring, 288 enstatite, 106 Bingham fluid, 205 ordinary, 106 , 364 chondrules, 110, 314 blind thrust, 153 classification, meteorites, 118 Brachinites, 118 clathrates, 330 , 132, 143 clay minerals, 213, 215 bright plains (Ganymede), 288 Clementine, 79 brines, 215 clinoforms, 26 brittle deformation, 155 CMOS, 38 bulk composition, 225 CO2 defrosting, 206 bundle adjustment, 57, 58 CO2 , 207 buoyancy force, 132, 228 coating, weathering, 217 Buto Facula, 290 coherence, reasoning, 17 cohesion, 187, 190, 202 C-group asteroids, 316 collapse, 170 C-type, asteroid, 378 collisional orogens, 163 CAI, 111, 221 coma, comet, 328 Calcium-Aluminium inclusions (CAI), 314 cometesimal, 332 caldera, 157, 307 , 324–340 cantaloupe terrain, 307 comparative planetology, 249 carbohydrates, 302 , 129 carbon, 379 composition, grains, 187 carbonaceous chondrites, 315, 350 condensation, 113 carbonates, 213, 215 conduction, 228 cartographic standards, 55 consilience, reasoning, 17 cartography, 55 consistency, reasoning, 17 Cassini, G. D. (astronomer), 295 continental rift, 152 catastrophic flooding, 199 control network, 56, 57 catastrophic floods, 20, 200 convection, 228, 229, 231 CCD, 38 convergence, 16 central peak, 132 convergent plate boundary, 171 central uplift, 133, 134 cooling history, 154 Chandrayaan-1, 42 cooling-limited flows, 160 channel coordinate system, 57 inner channel, 198 core, 222 interior channel, 198 coronae, 168, 180, 306 lava channel, 198 cosmic rays, 217 Subjects 425 cosmic sediments, 106 depositional lobes, 202 crater diagenesis, 214–215 central pit, 289 diapirism, 155 dome, 289 dichotomy dome crater, 289 Ganymede-Callisto, 286 pedestal, 289 dichotomy boundary, Mars, 168 ray, 298 differentiated meteorites, 113 Crater-Size Frequency-Distribution (CSFD), differentiation, 222 125 differentiation, Earth, 353 creep, 187 digital cartography, 57 cross-bedding, 200 digital geologic mapping, 64 cross-beddings, 189 dike, 164 , 222 dike emplacement, 174 crustal field, 239–241 dike swarm, 168 cryo-lava, 305 diogenites, 115 cryokarst, 210 discharge cryotectonics, 170 bankful, 198 cryovolcanism, 170, 172, 285, 291, 293, 299, bankfull, 195 300, 305, 307 rate, 199, 200 , 88, 216 subglacial lake, 199 Curiosity rover, 200, 214, 215, 375 discharge rate, 194, 195 Curiosity,MSL,50 dislodgement, grains, 186 dissolution, 212, 215 divergent plate boundary, 171 D/H ratio, 331 , 307 Darcy–Weisbach, 194 double ridges, 291 dark plains (Callisto), 288 downlap, 27 dark spots, 209 drainage, 196 dark streaks, 190, 203, 209 drainage area, 195, 196 Darwinian-type evolution, 351 drainage density, 195, 198 debris flow, 198, 206 drainage network, 196 debris flows, 202, 205, 206 drone, 75 decompression, 176 drones, 72 Deep Impact, 329 drumlins, 207 Deep Impact, NASA mission, 73 ductile deformation, 155 degassing, 160 field, 189 Deimos, 379 dune, transversal, 188 delta, 202 dunes, 189, 200 bottomsets, 202 barchan, 188–190 fan, 201 longitudinal, 188 foresets, 202 seif, 189 Gilbert (fluvial), 201 , 189 topsets, 202 transverse, 189 density, 224–228 dust devils, 190, 278 density, grains, 187 dust tail, comet, 329 deposition dust, Mars, 190 delta fan, 201 dwarf planet, 7 fluvial, 200 dynamo, chemical, 236 subaeial, 201 dynamo, compositional, 236 subaeqeous, 200 dynamo, planetary, 236–239 subaerial, 200 subaqueous, 202 deposition fan, 199 Early Bombardment, 258 depositional fan, 193 ejecta 426 Subjects

butterfly ejecta, 142 flood plains, 200 curtain, 141 flow double layer (DLE), 138, 139 concentrated, 198, 199 facies, 136 diluted, 199 forbidden ejecta zone, 142 laminar, 194, 198, 205 multiple layer (MLE), 138 turbulent, 194, 198, 205 rampart, 138 fluidization, 204 rayed, 287 flute marks, 199 single-layer, 138 fluvial bars, 199 ejecta curtain, 136 fluvial basin, 193 elliptical threshold angle, 141 fluvial erosion, 193 emission angle, ",37 fluvial processes, 193–202 en echelon, faults, 151 forelimb, 153 Enceladus, 298–300 formation age encounter velocities, 103 chondrite parent bodies metamorphism, entrainment, grains, 186, 187, 190, 200 119 eolian processes, 186–192, 215 chondrules, 119 eolian sandstone, 190 Earth–Moon system, 119 epicycles, 8 magmatic differentiation of asteroids, 119 equatorial bulge, 225 magmatic iron meteorites, 119 equifinality, 16, 218 Mars core, 119 erosion primitive achondrites, 119 bedrock, 195, 199, 207 fractures, 149 fluvial, 193 fragmentation, meteoroid, 104 erosional truncation, 28 Fraunhofer Linien, 108 eruption type, 157 Fremdlinge, 111 eskers, 208 friction angle, 203, 204 etched terrain, 216 friction factor, channel flow, 194 ethane, 300 friction melting, 143 eucrites, 115 friction velocity, 186, 187 evaporation, 196, 215 threshold, 187 evolved magmas, 174 frictional heating, 103 exobiology, 202, 348 point, 207 ExoMars, 50, 363 ExoMars 2020, 363 , 13 Gale crater, 216 explanatory surprise, 17 Galileo (spacecraft), 285, 288 explosive eruption, 160 Galileo, spacecraft, 316 extreme environments, 356 Ganymede grooved terrain, 291 ocean, 289 facies, 200 gas chromatography, 50 facies analysis, 90 gas planet, 7 fault degradation, 151 gazetteer, 63 fault displacement-length relationship, 151 Gegenschein, 103 fault true dip, 151 Geminids, 104 fault-bounded terraces, 143 , 55 fault-propagation fold, 153 geodetic control, 57 faults, 150 Geographic Information System, 57 felsic rocks, 173 Geographic Information Systems (GIS), 55 fissure eruption, 158 geologic cross section, 26 flat-field, 58 geological reasoning, 17 flocculation, 189 geometric calibration, 58 flood basalts, 175 , crater, 304 Subjects 427 giant dike swarms, 170 human exploration, 13, 34, 72, 86 Giotto, 329 hummocks, 211 GIS analysis, 69 hummocky terrain, 212 GIS applications, 64 Huygens, 302 glacial landforms, 206–209 Huygens, lander, 49 glacier, 207 hydration, 243 glaciers, 207, 208 hydrocarbons, 295, 300, 370 cold-based, 207, 208 hydrofractures, 164 wet-based, 207 hydrothermal activity, 171 global volcanic resurfacing, 175 hydrothermal systems, 350 GPS, 162 hydroxides, 214 graben, 151, 297 hyperthermophiles, 356 graben system, 307 hyperthermophilic, 354 granite-greenstone belt, 163 granular flows, 205, 206 granule ripple, 189 ice deformation, 207 gravitational focusing, 288 ice lenses, 212 gravity, 187, 194 ice sheets, 207 gravity flows, 188 ice wedges, 211 gravity measurements, 45 icy intrusions, 175 gravity-dominated cratering, 128 IDP, interplanetary dust particles, 103 Great Oxidation Event, 355 ilmenite, 371 greenhouse effect, on Venus, 241 image processing, 57 Greg crater, Mars, 208 imaging cameras, 37 grooves, 199 impact ground truth, 72 deformation, 143 ground-truth, 47 melt, 143 gullies, 20, 132, 203, 206 plume, 138 gypsum, 189 shock wave, 127 target, 132 target composition, 142 habitability, 354 , 18, 185, 200, 202–204 Hack exponent, 196 central peak, 130 Hack’s law, 196 central pit, 134 Hadean Habitable Earth, 352 central pit crater, 143 half-graben, 151 central uplift, 134, 142 halophiles, 360 chains, 140 hand-mosaics, 56 cluster, 140 Hawaiian eruption, 158 complex, 129 Hayabusa, 50, 51, 60 complex crater, 143 Hayavusa, 75 depth-diameter ratio, 128 heat flow, 162 ellipticity, 141 heat flux, 232 excavation stage, 128 heat-pipe mode, 172 excess-ejecta crater, 139 HED meteorites, 115 impact basin, 143 Helium-3, 370, 373, 388 modification stage, 128 Hellas Planitia, 202 multi-ring, 135 , 198, 200, 208 multi-ring basin, 130, 143 hollows, Mercury, 340 obliteration, 123 Horton–Strahler classification, 195 palimpsests, 143 hot spot volcanism, 172 peak-ring, 130, 134–135, 136 hot spots, 172 , 139 howardites, 115 perched crater, 139 Hubble , 329, 348 pits, 141 428 Subjects

production function, 123 Space Telescope, 349 rate, 127 Kirkwood gaps, 126 rayed crater, 139, 140 komatiites, 174 ring formation, 135 KREEP, 115, 258, 371, 372 ring syncline, 133 Kuiper belt, 313 saturation, 123 Kuiper Belt Object (KBO), 127, 306 secondary, 140 shape, 141 simple, 129 lacustrine deposits, 189 simple-to-complex transition, 130 lahar, 205 terrace, 133 lander exploration, 72–74 trains, 140 landing site selection, 75, 92 transient cavity, 129, 132 landslide, 203, 204 impact cratercavity, 128 Laplace resonance, 293 impact cratercentral uplift, 144 Large Igneous Provinces, 156 impact craterpeak crater laser altimetry, 43 peak ring, 144 (LHB), 126, 317, impact craters, 213 354 impact craters gardening, 213 lateral transition, 26 impact cratersecondary, 141 layer termination, 26 impact melt, 138 lee side, dune, 188 impact-target weakening, 143 Leonids, 104 impactor flux, 126 levees, 205, 206 impactor population, 123 LHB, 354 impacts , 225 low velocity, 128 LIDAR, 72 impactshypervelocity, 128 life appearance, 351 In Situ Resource Utilization, ISRU, 369 , 362 in-situ analyses, 48 life, definition, 349 in-situ laboratories, 48–50 life, origin, 349 incidence angle, Â,37 linear dunes, see dnes189 infiltration, bedrock, 196, 198 liquidus, 224 InSight, 224 lithospheric plates, 161 internal friction, angle, 202 lobate ejecta, 138 International Astronomical Union (IAU), 55 lobate scarps, 154 intraplate volcanism, 171 lodranites, 114 intrusions, 174 loess deposit, 190 inverted channels, 200 low-viscosity lava, 181 tail, comet, 328 Luna, 123, 125, 317 iron meteorites, 117 Luna 3, 38 iron oxides, 214 Luna samples, 115 iron snow, 237 Lunar Crater Observation and Sensing Satellite iron sulfates, 215 (LCROSS), 373 ISIS, image processing system, 58–60 , 79 ISIS3 label, 411 Lunar Reconnaissance Orbiter, 41, 42 ISO, 67 Lunar Reconnaissance Orbiter (LRO), 373 isostasy, 147

M-type, asteroid, 378 jökulhlaups, 199 Mössbauer spectrometry, 48 jkulhlaups, 273 magma, 174 magma ocean, 114, 224 kaolinite, 214 magma viscosity, 160 karst, 215 magma-water interaction, 161 Subjects 429 magmatic underplating, 162 , 224–228 chlorides, 215 mass wasting, 185 magnetic field, 236, 238 mass-wasting processes, 202–206 magnetic measurements, 45 MDIM, 38 magnetization, chemical remanent, 239 Mean Motion Resonances (MMR), 317 magnetization, shock remanent, 239 meander, 195 magnetization, thermoremanent, 239 , 191, 192 Main Belt (asteroids), 378 mega-ripples, 200 Main Belt, asteroids, 313 megaripples, 189 Manning coefficient, n, 194 Melkart, 289 Manning equation, 194 melt lense, 133 , 222 MER, 87 mantle flow, 162 Mercury, 199 mantle plumes, 171 Mesosiderites, 119 manual mapping, 67 metadata, 57, 67–68 map projection, 60–62 metadata standardisation, 68 Mercator, 61 metadata, mapping, 67 Polar Stereographic, 62 meteor showers, 104 Simple cylindrical, 61 Sinusoidal, 61 weathering, 105 map projections, 60 meteorite differentiation, 114 map quadrangles, 62 meteorites map scale classification, 106 mapping, 67 meteorites, lunar, 115 published, 67 meteorites, Mars, 115 map series design, 62 meteoroid, 104 map symbols, 66 meteroite map-making process, 67 naming, 105 mapping process, 17 methane, 181, 300 mapping recommendations, 67 , 104 maria, 175, 179 Miller’s experiment, 350 maria loading, 154 , 305–306 Mariner, 38 Missoula floods, 20 Mariner 4, 38 mobile-lid regime, 230–231 Mariner 9, 18, 20, 362 moment of inertia factor, MOIF, 226 Mars, 185, 189, 198, 199, 204, 206–208 moment of inertia, MOI, 225 , 50 Momoy, 300 Mars analogues, 18 monogenic volcano, 157 Mars atmosphere, 241 Moon , 389 (MER), 363 Moon village, 98 Mars Express, 42, 60 Moon, Earth’s, 199, 204 Mars Global Surveyor, 42 Moon, resource prospecting, 370–375 Mars Odyssey, 41, 42 moraines, 206, 208 , 38 MSL, 88, 363 Mars Reconnaissance Orbiter, 38, 42, 376 MSL, Curiosity, 50 Mars sample return, 93 mud volcanism, 172 Mars simulation chamber, 21 mudflow, 205 Mars, ground truth, 84–92 multi-ring basin, 130, 135 Mars, resource prospecting, 375–377 multiple working hypotheses, 17 Mars2020, 363 , 204 mascon, 136 NAIF, Navigation and Ancillary Information MASCOT, 50 Facility, 59 mascot, lander, 75 , 115 430 Subjects

Nanedi Vallis, Mars, 198 patterned ground, 19 NASA Resource Prospector, 383 PDS label, 410 natural philosophy, 15 , Mars, 200 Navier–, 202 peak-ring crater, 130 NEA, 377 pedogenesis, 270 Near-Earth Objects, NEO, 126 Peléan eruption, 158 , 289 pene-palimpsest, 289, 290 Neith, crater, 290 perchlorates, 213, 215, 277 Neumann lines, 117 periglacial, 211, 213 New Horizons, 124, 307, 324 periglacial landforms, 211–213 Newtonian fluid, 205 permafrost, 21, 198, 199, 208, 211, 212 , Mars, 198 Perseids, 104 , 198 phase angle, ',37 nomenclature, 57 Philae, 50 non-magmatic iron meteorites, 118 Phobos, Mars moon, 94 nonconformity, 29 Phobos-2, 379 normal faults, 151 Phoenix Lander, 50, 211, 213, 215, 376 normal stress, 202 photodissociation, 328 novae, 155, 180 photogrammetry, 42, 60 nucleus, comet, 328 photoionization, 328 photometric correction, 58 phreatomagmatic eruptions, 161 obduction, 266 piezophiles, 360 oblique impact, 141, 142 Pilbara craton, 353 oligarchic growth, 222 pillow lavas, 161 olivine, 189, 214 pingos, 212, 213 one-plate planets, 149 pitted cones, 172 Opportunity rover, 21, 215, 376 Planetary Data System, 57 optical mining, 382 planetary dynamics, 254 ore formation, 376 planetary embryos, 222 organic compounds, 379 Planetary Image Cartography System (PICS), organic material, meteorites, 112 58 organic matter, extraterrestrial, 350 , 62 orogen, 266 , 364 orogenic belts, 161 planetary protection, 52 orthorectification, 60 planetary resource extraction, 380–382 Treaty, 389 planetary resource mining, 380 outflow channel, 199, 200 planetesimals, 222, 257 outflow channels, 20, 199 , 149, 156, 162, 200 outgassing, 178 playa deposit, 189 outlet, 193 Plinian eruption, 158 overland flow, 196 plume, 299 overland flows, 196 Pluto, 307 polar lakes, 212 polygenetic volcano, 157 pahoehoe¯ lava, 159 polygonal cracks, 206 paleo-resonance, 297 polygons, 213 paleolake, 202 polygons, non-sorted, 211 palimpsest, 289, 290 polygons, sorted, 211 Pallasites, 116 positional accuracy, 59 , 349 potential fields, 44–45 paraconformity, 29 , 225 partial pressure, 207 precipitation, 196 Pathfinder, 225 primitive life, 351 Subjects 431 primordial life, 352 ridged plains, 175 primordial soup, 350 rifts, 153 principle of cross-cutting, 24 ring of fire, 171 principle of lateral continuity, 23 ripple ring basins, 135 principle of original horizontality, 23 ripples, 188, 189, 200 production function, 123, 125 roches moutonnées, 207 progradation, 27 rock glaciers, 208 proto-atmosphere, 242 rock magnetisatin types, 239 protoplanetary disk, 221, 313 rockfalls, 202 pseudotachylites, 143 Rosetta, 42, 348, 379 psychrophiles, 358 Rosetta spacecraft, 327–330, 332 pushbroom, 39 rotational slides, 202 pushframe, 39 roughness, 186 pyroclastic flows, 205 roughness length, 186 pyroclastic material, 179 rover exploration, 74–75 pyroclasts, 176 rover mobility, 74 pyroxene, 189 RSL, 278 runoff, 196 runout distance, landslide, 204 radar, imaging, 44 radar, interferometry, 44 radial fractures, 155 S-type, asteroid, 316, 378 radiance, 36 sagduction, 163 radiogenic heat production, 163 saltation, 187, 189, 190 radiometric ages, 125 saltation, grains, 187 radiometric calibration, 58 sample caching, 90 Raman spectrometry, 48 sample return, 51–52 , 50 sand dunes, 190 Ranger VII, 56 sand sheet, 189 Rayleigh number, 228, 229, 232 sand wedges, 211 recurrent slope lineae, 21, 203, 206 sapping, 19, 21, 269 recurring slope lineae, RSL, 376 sapping valleys, 196 refractory inclusions, 106 saprolite, 214 regmaglypts, 105 Saturn, 185 regolith, 196, 213, 217, 261 scalloped terrain, 210 regressive erosion, 196 scalloped terrains, 210 relative age, 124 Scientific Revolution, 8 relative age dating, 24 secondary atmosphere, 242 Remote Sensing, 56 secondary craters, 136 remote sensing, active, 35 secular planetary cooling, 167 remote sensing, ambiguity, 72 sedimentary rocks, 155 remote sensing, passive, 35 sediments reptation, 189 eolian, 191 reptation, grains, 187 lacustrine, 191 reseau marks, 38 seepage, 196 resonance orbit, 126 segregation, ice, 211, 212 resonance zone, 319 seif (dune), 189 resonance, Laplace, 290 seismic measurements, 45 resource processing, 383–385 seismic methods, 224 resurfacing, 288 seismic profiles, 26 resurfacing rate, 123 seismics and subsurface sounding, 45–47 retrograde rotation, 225 SELENE, 60 rheologic boundary, 154 selenography, 6 ridge belts, 278 shear force, wind, 186 432 Subjects shear stress, 202 Strombolian eruption, 158 shear stress, critical, 205 subglacial lakes, 22 shergottites, 115 sublimation, 185, 208–210 shock heating, 144 sublimation polygons, 210 shock melting, 143 sublimation rate, 210 , 109, 117, 127 subsurface flow, 196 shock wave, 127 superposition, principle of, 23 attenuation, 127 superrotation, 81 sill, 164 surface flow, 196 simple crater, 129 suspension, 187, 190 sinkholes, 216 synchronous rotation, 285 sinuous , 179 synthetic reasoning, 15 sinuous valley, 198 skylight, 159 slab pull, 161 tear-drop shaped islands, 199 slides, 202 tectonic style, 161 slipface, 189 tectonism, 291, 300, 307 slope streaks, 204 terrestrial analogues, 18, 71 small bodies, ground truth, 93–94 formation, 222 Small Main-Belt Asteroid Spectroscopic terrestrial weathering, 109 Survey, 316 tesserae, 167, 266, 278 small shields, 181 Tharsis, 204 smectite, 214 thaw, 213 snow avalanche, 204 thaw slumps, 212 snow line, 324 the Moon, ground truth, 76–80 soft sediment deformation, 155 thermal boundary layers, 230 , 363 thermal contraction, 211 elevation angle, ˛,37 thermal contraction cracks, 210 Solar Nebula, 324 thermal contraction polygons, 211 solar-wind particles, 373 thermal metamorphism, 109 solid state crystallisation, 109 thermal segregation, 296 solid-to-water ratio, 198 thermal state, 222 solidus, 224 thermal stress, 211 solifluction, 212, 213 thermokarst, 212, 213 solifluction lobes, 212 thermokarst lakes, 212 space resource utilization, 385–389 thermophiles, 356 Space Studies Board, 364 thermophilic, , 354 , 217 thermostat effect, 234 space-time diagram, 29 Tholen classification, 316 spallation, 136, 139 , 286, 291, 295, 306 SPICE, 59 threshold velocity, 186, 187 spiders, 209 thrust fault, 154 spinel, 371 tidal deformation, 297 Spirit rover, 190 tidal despinning, 167 stagnant-lid regime, 230–231, 234 tidal stress, 293 star, see dnes189 tiger stripes, 299, 300 , 51, 329 Titan, 300–302 Steno’s principles of stratigraphy, 23 transient cavity, 132, 135, 144 stratigraphy, 22 transient cavity depth, 129 stream length, 195 transient cavity diameter, 129 stream order, 195 transverse dunes, see dnes189 strength-dominated cratering, 128 tranverse eolian ridges (TARs), 189 strike-slip faulting, 154 traverse, landing site exploration, 79 stromatolites, 351, 364 tree of life, 354 Subjects 433 tube-fed lava flows, 159 volatile exsolution, 160 tuff cone, 176 volatiles, 185, 204–206, 209 tuff ring, 176 volcanic analogues, 20 tunnel valleys, 208 volcanic dome, 179 turbulence, wind, 187 volcano, 17 two-plate planet, 168 volume, 224–228 volume-limited flows, 160 vortex ring, 138 UAV, 75, 97 Voyager, 285, 287–289, 294, 297, 303, uncompressed density, 225 305–307 unconformity, 28 Vulcanian eruption, 158 uplift, 132 Uranus, 303–306 , Mars, 210 water vapor, 207 Water worlds, ground truth, 94–96 weathering, 214, 243 Valles Marineris, Mars, 204 weathering, chemical, 213–214 valley weathering, mechanical, 213 fluvial, 195 whalebacks, 207 valley networks, 198 whiskbroom, 39 valley, fluvial, 193 Widmannstätten pattern, 117 valleys, 199 wind, 186 varnish, 216 wind streaks, 192 varnishes, 217 wind velocity, 186 vector mapping editing, 67 windward side, dune, 188 Vega, 329 winonaites, 114 Venera, 50 wrinkle ridges, 153 Venera, lander, 81 ventifact, 191 Venus, 192 X-group asteroids, 316 Venus analogues, 20 X-ray diffraction, 50 Venus atmosphere, 241 X-ray fluorescence, 50 Venus, future landers, 82 Venus, ground truth, 81–83 VICAR, image processing system, 58–60 yardangs, 19, 20, 191 vidicon, 38, 74 Yarkovsky-effect, 318 Viking, 20, 38, 50, 225 Yenisey 2, 38 Viking Mars landers, 19, 364 yield strength, 205 viscosity, 205, 206 YORP effect, 318 viscosity, interiors, 229 viscosity, mantle, 232 viscous creep, 206 zenith angle, Â,37 viscous relaxation, 162