(50000) Quaoar, See Quaoar (90377) Sedna, See Sedna 1992 QB1 267
Total Page:16
File Type:pdf, Size:1020Kb
Index (50000) Quaoar, see Quaoar Apollo Mission Science Reports 114 (90377) Sedna, see Sedna Apollo samples 114, 115, 122, 1992 QB1 267, 268 ap-value, 3-hour, conversion from Kp 10 1996 TL66 268 arcade, post-eruptive 24–26 1998 WW31 274 Archimedian spiral 11 2000 CR105 269 Arecibo observatory 63 2000 OO67 277 Ariel, carbon dioxide ice 256–257 2003 EL61 270, 271, 273, 274, 275, 286, astrometric detection, of extrasolar planets – mass 273 190 – satellites 273 Atlas 230, 242, 244 – water ice 273 Bartels, Julius 4, 8 2003 UB313 269, 270, 271–272, 274, 286 – methane 271–272 Becquerel, Antoine Henry 3 – orbital parameters 271 Biermann, Ludwig 5 – satellite 272 biomass, from chemolithoautotrophs, on Earth 169 – spectroscopic studies 271 –, – on Mars 169 2005 FY 269, 270, 272–273, 286 9 bombardment, late heavy 68, 70, 71, 77, 78 – atmosphere 273 Borealis basin 68, 71, 72 – methane 272–273 ‘Brown Dwarf Desert’ 181, 188 – orbital parameters 272 brown dwarfs, deuterium-burning limit 181 51 Pegasi b 179, 185 – formation 181 Alfvén, Hannes 11 Callisto 197, 198, 199, 200, 204, 205, 206, ALH84001 (martian meteorite) 160 207, 211, 213 Amalthea 198, 199, 200, 204–205, 206, 207 – accretion 206, 207 – bright crater 199 – compared with Ganymede 204, 207 – density 205 – composition 204 – discovery by Barnard 205 – geology 213 – discovery of icy nature 200 – ice thickness 204 – evidence for icy composition 205 – internal structure 197, 198, 204 – internal structure 198 – multi-ringed impact basins 205, 211 – orbit 205 – partial differentiation 200, 204, 206, 213 – physical properties 198 – physical properties 198 Ap*-index 8 – surface 200, 204, 213 – variation 8 – water layer 204 Ap-index, daily 6, 8 Caloris basin 57, 61, 68–69, 70–71, 73, 75, Apollo 14 121 77 Apollo 15 116 carbon dioxide ice, sublimation in vacuum Apollo 17 112, 116, 117, 300 318 Index carbon monoxide ice, sublimation in vacuum –, –, – surface temperature 297 300 –, –, – water loss rate 306, 308 Carrington, Richard 2, 19 –, – periodic nature of 295 Cassini-Huygens, at Saturn 217–249, 289 – 2P/Encke 296 Cassini, Jean Dominique 217, 218, 238 – 9P/Tempel-1 297, 300, 303, 304, 311–312 Cassini orbiter, scientific investigations 218, –, – nucleus, composition 312 220 –, –, – density 300 – Titan observations 235–238 –, –, – dust layer 311, 312 Cassini spacecraft, at Jupiter 221 –, –, – ejection plume from 311, 312 – at Venus 87, 96 –, –, – mass 311 Celsius, Anders 2 –, –, – shape 303, 311 Centaurs 268, 281, 282, 283, 285, 286, 287, –, –, – size 297, 303, 311 288 –, –, – spin period 311 – colours 281, 282, 283, 288 –, –, – surface properties 303, 311 – orbital elements 268 –, –, – temperature 304 – surface composition 287 – 19P/Borrelly 297, 298, 309, 310 – with water ice detected 285, 286 –, – nucleus, albedo 298 Chapman, Sydney 4 –, –, – jets 298, 310 Charon 269, 271, 273, 274, 275, 279 –, –, – shape 298, 309, 310 – density 271 –, –, – size 297, 298, 310 – mass 271 –, –, – surface properties 298 – radius 271 – 55P/Tempel-Tuttle 296 chemical reactions, supplying metabolic – 67P/Churyumov-Gerasimenko 32, 312 energy 168, 170 – 81P/Wild-2 297, 298, 301, 302, 309, chemolithoautotrophs 167–169, 170, 171 310–311, 313, 314 – habitats 168–169, 170, 171 –, – nucleus 297, Chryse Planitia 138, 140 –, –, – jets 302 circumstellar disks 182, 186, 187 –, –, – shape 301, 309, 310 CIRs, see co-rotating interaction regions –, –, – size 297, 298, 301, 310 Clementine mission 115 –, –, – surface properties 301, 302, 311, CMEs, see coronal mass ejections 313–314 comet, 1P/Halley 296, 297, 299, 301, 305, –, –, – topography 313–314 306, 307, 308, 309, 310, 311 –, –, – water loss rate 302 –, – CHON particles from 305 –, – orbit 313 –, – gas and dust, composition 296 – 109P/Swift-Tuttle 296 –, – lifetime 309 – dirty snowball nucleus model 296 –, – meteoroid streams 308 – Hale-Bopp 295, 298, 308 –, – nucleus 296, 297 –, – nucleus, size 298 –, –, – activity 296, 297, 306, 307, 310 –, –, – water loss rate 308 –, –, – albedo 296, 306 – Hyakutake 295 –, –, – jets 296, 306 – Lexell 296 –, –, – mass loss rate 308 – Lyttleton model 296 –, –, – mass 308 – nucleus, active region, rate of retreat 300 –, –, – retreat of surface 308, 309 –, – composition 298 –, –, – shape 296, 297, 301, 310 –, – crater density 309 –, –, – size 296, 297, 310 –, – density of 300 –, –, – snows, composition 299 –, – dust 296, 300, 302, 303, 304, 305, 306, –, –, – spin mode 305, 310 307, 315 –, –, – surface area 306 –, – dust layer equation 306 –, –, – surface properties 297 –, – dust layer, thickness 306 Index 319 –, – formation 298 coronal holes 5, 6, 7, 8, 10, 11, 12, 14, 19, –, – gas 296, 300, 304, 305, 306, 307, 315 35–36, 38, 40 –, – gas production rate 300 – fast solar wind streams 8, 10 –, – ices 299 coronal mass ejection, 1998 June 11 21–22 –, – illumination 301 – 1999 August 5 20 –, – incident radiation 300 – 2000 February 25 –, – interior 299, 302 – 2000 July 14 32–34 –, –, – temperature 299, 301–302 – 2002 January 4 23 –, – mass loss rate 300, 308 – halo 24, 25, 38, 41 –, – model of 301–307 coronal mass ejections 16, 19–35, 38–42, 45 –, – outbursts 309–310 – acceleration 20 –, – precession 301 – and flares 21 –, – schematic model 305 – development of 21 –, – shape 299, 301 – kinetic energy 19–20 –, – size 298 – mass 19–20 –, – snow to dust mass ratio 299, 305, 307 – occurrence rate 19–20 –, – snows, chemical composition 299 – source regions 38–39, 40 –, – spin 301, 304, 309 – speed 19–20, 41 –, – splitting 301, 307, 309 – structure 20–22 – Shoemaker-Levy 9 307 coronal transients, see coronal mass ejections co-rotating interaction regions 11–12 comets, activity of 307–310 cosmo-chemistry, primordial 299 – activity, intermittent 299 cryovolcanism 271 – decay 296 – on Ganymede 203, 212 – dust particles, densities 303 – on Titan 232 –, – masses 306 – great 295, 298, 308 Darwin mission 193 – Halley type 296 de Marian, Jean Jacques d’Ortous 2 – intermediate period 296 declinometer 2 – Jupiter family 288 Deep Impact mission 297, 303, 304, 309, – long period 296 311 – mass loss, factors affecting 314 Deep Space 1 spacecraft 297, 298, 310 – missions to 310–315 differential direct detection 191 – nature of 295–316 differentiation, of Europa 200, 204 – non-gravitational effects 296 – of Ganymede 202, 203, 210, 213 – origin in Kuiper belt 288 – partial, of Callisto 200, 204, 206, 213 – short period 296 Dione 218, 242, 244 –, – colours 288 Doppler spectral separation 191 – spectroscopic observations 299 – spectroscopy of 296 Earth, biomass 161, 169 – surface colours 288 – diversity of life 160 – tails, direction 5 – life 160, 161, 162, 167, 172–173 Cordelia 256 – micro-organisms, extreme environments core accretion model (theory) 177, 186, 188 161, 162 corona, solar, see solar corona earth-like planets 188, 192, 193 coronagraph 19 Earth-Moon system, angular momentum coronagraphic imaging 192 112, 113, 116, 119 coronal ‘bubbles’, see coronal mass eccentricity of orbit, extrasolar planets, ejections pumping 182 coronal heating 21 – known extrasolar planets, distribution 182 320 Index eclipse, total solar 4 –, – transit 183–185, 189–190 EGPs, see extrasolar giant planets – earth-like 188, 192, 193 electrojet currents 9 – ‘Hot Jupiters’ 177, 179, 184, 185, 187 Elysium Planitia 144 –, – atmospheres 184, 185 Enceladus 240–242 –, – masses 187 – and E ring 240 –, – orbital distance 179, 185, 187 – fountain-like sources 241 –, – orbital periods 179, 185 energy sources, for life 167–169 –, – surface temperature 179, 185 equatorial ring current, magnetospheric 9 – inclination of orbit 179 Europa 197, 198, 199, 200–202, 204, 206, –Mp sin i 179–180, 182 207, 208, 209–210, 211, 214, 215 –, – as function of orbit radius 182 – composition 200–202 –, – distribution 180 – differentiation 200, 204 – multiple systems 180, 182 – evidence for liquid water 197, 201 –, – orbital resonances 182 – geology 209–210 – naming convention 179 – ice thickness 197, 201 – optical detection 179, 190–192 – internal structure 197, 198, 200–202 –, – coronagraphic imaging 192 – ocean 197, 201, 202, 210, 211 –, – differential direct detection 191 – physical properties 198 –, – Doppler spectral separation 191 – possible life 214, 215 –, – interferometric imaging 191–192 – resurfacing 209, 210 – orbital eccentricity, distribution 182 – surface 197, 209–210 –, – pumping 182 – tidal heating 201, 202, 207 – orbital radius, distribution 181 – volcanism 214 – parent stars, metallicity 182, 187 EUV observations, of solar corona 1, 5, 6, 7, – radial velocity detection 179–183, 189 13–14, 16, 21, 24, 26, 38 – searches, around brown dwarfs 179 exoplanets, see extrasolar planets –, – around dim stars 179 Explorer 10 5 –, – around white dwarfs 179 extrasolar giant planets 178, 180, 181, 182, – transit detection 183–185, 189–190 185, 187, 189, 190, 191 – transit spectroscopy 184–185 – Class I 185 – Class V 185 – classification 185 F (Fraunhofer)-corona 19 – in Extrasolar Planets Encyclopedia 180 Fabricius, Johannes and David 2 extrasolar planet, 51 Pegasi b 179, 185 Ferraro, Vincent 4 – HD 209458 b 183, 184, 185, 189 filaments, disappearing, see prominences, – transit detection, first 183, 184 eruptive Extrasolar Planets Encyclopedia 180 – magnetic field structure 40 extrasolar planets, around pulsar 193 Fitzgerald, George Francis 3 – astrometric detection 190 flare, white light, first observation 1, 2, 19 – atmospheres 184, 185, 192, 193 flares, solar 1, 2, 3, 19, 20–21, 26, 27, 28, – detection, astrometric 190 34, 42 –, – microlensing 192 –, – optical 179, 190–192 GAIA spacecraft 190 –, –, –