Phil Liebrecht Assistant Deputy Associate Administrator and Deputy Program Manager Space Communications and Navigation NASA HQ

Total Page:16

File Type:pdf, Size:1020Kb

Phil Liebrecht Assistant Deputy Associate Administrator and Deputy Program Manager Space Communications and Navigation NASA HQ Phil Liebrecht Assistant Deputy Associate Administrator and Deputy Program Manager Space Communications and Navigation NASA HQ Meeting the Communications and Navigation Needs of Space missions since 1957 “Keeping the Universe Connected” Public University of Navarra, 2010 [email protected] 1 Operations and Communications Customers 2 Space Operations 101 Relation Between Space Segment, Ground System, and Data Users* Ground System Command Commands Requests Spacecraft and Payload Support • Mission Planning Telemetry • Flight Operations • Flight Dynamics • Perf. Assess., Trending & Archiving Space Data Users • Anomaly Support Segment Data Relay and Level (S/C) Mission Zero Data Processing Mission Data Data • Space-to-ground Comm. • Data Capture • Data Processing • Network Management • Data Distribution • Quick Look * Based on Wertz and Wiley; Space Mission Analysis and Design 3 Communications Theory- Basic Concepts Transmitter and Receiver must use the same language Noise causes interference a) Figures it – no errors (Identify and quantify) b) Figures it – corrects Must be loud enough ENERGY! c) Figures it – incorrectly (message in error) d) Cannot figure- recognizes E L an error T M E XP AIN L E e) Cannot figure- ? TRANSMITTER Distance weakens the sound RECEIVER (calculate the loss) CHANNEL Has to correctly interpret the message - the most difficult job The fundamental problem of communications is that of reproducing at one point either exactly or approximately a message selected at another point. 4 Functional - End to End Process Polarizer To reflector (dish)- Captures Polarizer To reflector (dish) - Directs focuses the signal and focus signal Separate incoming signal Separate incoming signal Diplexer Diplexer from outgoing signal from outgoing signal Amplify the modulated Amplifier Amplify the received signal signal (Low Noise) Amplifier Analog signal Analog signal Ranging Reconstitute the Modulate symbol signal symbol stream Ranging Modulator stream on to the carrier The Demodulator signal Medium Reference Carrier Symbol stream (bits) signal signal Soft Convert to a coded Reconstitute the Symbol Encoder symbol stream bit stream Decoder stream (bits) Bit stream Bit stream Constitute the data Organize data for formats and forward Processor transmission- Frames, Processor the data (Frames, Files) Files as addressed Digital data System Data Mission Data ….. Capture desired Camera Sensor Status information convert to digital format Desired measurements 5 Antenna Gain and Propagation Loss 1 λ 4πA = = 2 Pr Pt 2 Ae Pt 2 e 4πR 4πR λ Propagation Loss (1/LP) Receive Antenna Gain (Gant) In dB: Pr = Pt – LP + Gant – (Lother) 6 Antenna – Operation – Directional Antenna – Size Matters 200 Visible 180 160 140 Infrared 120 ) ic 100 80dB 80 Microwave Gain (dB Gain 60 40 20 Arecibo HST Keck DSN 70m 0 0.1 0.3 1 3 10 30 100 300 1,000 JWST Collecting Dish Diameter (m) Assumes antenna efficiency of 100% 7 What is Noise? • Noise is additional “signal” that does not correspond to the information you are trying to convey. • Noise in a signal takes several forms: – Signal noise • Amplitude noise – error in the magnitude of a signal • Phase noise – error in the frequency / phase modulation – System Noise • Component passive noise • Component active noise (amplifiers, mixers, etc…) – Environmental Noise • Atmospheric noise • Galactic noise • Precipitation • Noise introduces error in the “ideal” modulation and signal in free space which results in errors in the received signal at the destination 8 Direct Sequence Spread Spectrum A DS-CDMA signal is generated by multiplication of a user data signal by a code sequence. Source: Jack Glas, T.U. Delft. http://www.wirelesscommunication.nl/reference/chaptr05/cdma/dscdma.htm) 9 Receiving Direct Sequence Spread Spectrum Signals Signal x(t) Recovered Symbol (Data) x x Filter data rate R spreading code spreading code signal g(t) signal g(t) chip rate Rch chip rate Rch Rch ≈ ≥ 10 symbol (data) rate • Multiplication by the spreading signal once spreads the signal bandwidth. • Multiplication by the spreading signal twice recovers the original signal. • The desired signal gets multiplied twice, but the jamming signal gets multiplied only once. • g(t) must be deterministic, since it must be generated at both the transmitter and receiver, yet it must appear random to authorized listeners. – Generally g(t) is generated as a pre-defined pseudo-random sequence of 1s and –1s through the use of prescribed shift registers. 10 Spreading: Effect of Spread Spectrum G(f) Jammer with total power J JO = J/W Before Spreading w Gss(f) J'o = Jo (W/Wss) After Spreading wss 11 Digital Modulation Bi-Phase Shift Keying (BPSK) Quadrature Phase Shift Keying (QPSK) 12 CC/RS Concatenated Coding Performance Capacity Gap = 2.8 dB Coding Gain = 8 dB 13 Metric Tracking Ranging • Range is the distance from ground station to spacecraft. – Usually measured as “Round-trip” ranging: station, to spacecraft (R1), to station (R2). AKA, RTLT, Round-trip light time. – Distance = (RTLT/2) * light speed • Methods – Tone (signal itself) – PN (pseudo Noise) R1 R2 14 Metric Tracking Doppler = Range Rate An observed/perceived change in the frequency of a radio wave due to the rate of change in distance (relative velocity) between transmitter and receiver. Doppler compensation 15 Spacecraft-Quasar Differential Angular Techniques • Common-modes out most error sources • Leaves accurate measure of S/C-to- Quasar separation angle 16 GPS Space Applications Critical to a Range of Space Operations, Science, and Exploration Enterprises GPS services already enable: GPS / QZSS monitoring station at Kokee Park, Hawaii (NASA –JAXA 2009 Agreement) • Real-time On-Board Autonomous Navigation: –Reduces the burden and costs –Enables new methods of spaceflight such as precision formation flying and station-keeping • Attitude Determination: –Used on the ISS • Earth Sciences: –Remote sensing tool supports Jules Verne ATV during rendezvous with ISS in 2008 atmospheric and ionospheric sciences • GPS relative navigation used –Geodesy, and geodynamics -- from • Future navigation on ATV to be performed via combined GPS/Galileo receiver monitoring sea level heights and climate change to understanding the gravity field • International space agencies planning to use similar robust capabilities from Galileo and other GNSS constellations 17 Space Communications and Navigation Systems Engineering Fundamentals • To achieve successful space communication with microwaves you need: – Line of sight between the space vehicle and the receiver – Ability to point the antennas at each other (PAT) – Need sufficient received signal power compared to background noise • Large antennas • Ultra low noise cooled preamplifiers • Large transmitters (ground stations) – Use of error correcting coding and disruption tolerant protocols to improve performance in noise – Typically integrated metric tracking measurements – With increased distances these become even more important (and difficult) 18 SCaN Current Networks The current NASA space communications architecture embraces three operational networks that collectively provide communications services to supported missions using space-based and ground-based assets Near Earth Network - NASA, commercial, and partner ground stations and integration systems providing space communications and tracking services to orbital and suborbital missions Space Network - constellation of geosynchronous relays (TDRSS) and associated ground systems Deep Space Network - ground stations spaced around the world providing continuous coverage of satellites from Earth Orbit (GEO) to the edge of our solar system NASA Integrated Services Network (NISN) - not part of SCaN; provides terrestrial connectivity 19 Orbits and View Deep Space Network TDRSS Provides continual tracking to spacecraft above 30,000 km altitude .3 complexes around the Earth .34 to 70 meter antennas on the Earth Goldstone View TDRSS Space Network Provides continuous tracking of Earth Madrid Canberra spacecraft below GEO View View .Constellation of relay spacecraft at three GEO nodes around the Earth .5 meter tracking antennas in space 30,000 Km Near Earth Network Provides tracking of near earth LEO (600 orbiting spacecraft. Km) .10 to 18 meter antennas on the Earth View looking down on the Earth’s North Pole Together they provide nearly continuous coverage across the Solar System! 20 Near Earth Orbit Ground Network 180 165 150 135 120 105 90 75 60 45 30 15 0 15 30 45 60 75 90 105 120 135 150 165 180 90 Svalbard, Norway 90 Poker Flat, Alaska NSC DATALYNX 75 75 60 Sweden 60 USN 45 45 University of Alaska, Wallops Island Fairbanks USN 30 30 Merritt Island, Hawaii Ponce De Leon 15 USN 15 0 0 15 15 South Africa 30 Santiago USN Perth 30 University of Chile USN 45 45 60 60 75 McMurdo Station, Antarctica 75 90 90 180 165 150 135 120 105 90 75 60 45 30 15 0 15 30 45 60 75 90 105 120 135 150 165 180 21 Near Earth Network Support Limits H OF USER GROUND BASED ANTENNA PAT SP L AC FIELD OF VIEW A EC IT R B A R F O T USER SPACECRAFT Wallops Island provides Near Earth Network Support CAN ONLY SUPPORT UP TO 20% OF USER ORBIT, UNDER IDEAL CONDITIONS. MANY ORBITS GO UNSUPPORTED OR HAVE VERY LIMITED SUPPORT. RESPONSE TO USER SPACECRAFT EMERGENCIES DEPENDENT ON ORBIT POSITION. DATA RATES LIMITED. 22 Near Earth Network Resources SG1 SG2 SG4 SGS, Longyearbyen, Svalbard Antennas WGS, Wallops Flight Facility Spitzbergen, Norway Wallops Island, Virginia McMurdo Ground Station 23 Commercial Network Support 13M 13M USN South
Recommended publications
  • VI FORSKER PÅ MARS Kort Om Aktiviteten I Mange Tiår Har Mars Vært Et Yndet Objekt for Forskere Verden Over
    VI FORSKER PÅ MARS Kort om aktiviteten I mange tiår har Mars vært et yndet objekt for forskere verden over. Men hvorfor det? Hva er det med den røde planeten som er så interessant? Her forsøker vi å gi en oversikt over hvorfor vi er så opptatt av Mars. Hva har vi oppdaget, og hva er det vi tenker å gjøre? Det finnes en planet i solsystemet vårt som bare er bebodd av roboter -MARS- Læringsmål Elevene skal kunne - gi eksempler på dagsaktuell forskning og drøfte hvordan ny kunnskap genereres gjennom samarbeid og kritisk tilnærming til eksisterende kunnskap - utforske, forstå og lage teknologiske systemer som består av en sender og en mottaker - gjøre rede for energibevaring og energikvalitet og utforske ulike måter å omdanne, transportere og lagre energi på VI FORSKER PÅ MARS side 1 Innhold Kort om aktiviteten ................................................................................................................................ 1 Læringsmål ................................................................................................................................................ 1 Mars gjennom historien ...................................................................................................................... 3 Romkappløp mot Mars ................................................................................................................... 3 2000-tallet gir rovere i fleng ....................................................................................................... 4 Hva nå? ......................................................................................................................................................
    [Show full text]
  • The Space Impact of the Euro Crisis 50 Years After Mariner 2: Exploration at a Crossroads
    0827_SPN_DOM_00_019_00 (READ ONLY) 8/24/2012 11:39 AM Page 19 www.spacenews.com SPACENEWS 19 August27, 2012 TheSpaceImpact of the Euro Crisis < ROBBIN LAIRD and HARALD MALMGREN > he European sovereign debt crisis Europe will now be challenged in the ing to hide the reality of European bank of the savings of millions of European is not simply abump in historical form of rollbacks of the many inter- weaknesses. The main reason is that eu- citizens. Tprogress; it is the end of aperiod twined strands of integration, fraying rozone economies are far more bank- European leaders are also attempt- of historyand acritical point in Euro- what has been an intricate but incom- dependent than economies like those in ing to initiate amore comprehensive fis- pean and global transition in the 21st plete tapestry. It is questionable whether the United States or United Kingdom, cal union, with new decision-making century. Europe will be able to prevent stalling of where substantial nonbank financing al- mechanisms that transfer sovereignty in The confluence of several trend lines the integration process in the face of ternatives exist for the corporate sector. parallel with the new banking union. We — the unification of Germany,the end widening gaps among the interests of In the eurozone, banks are the fi- do not believe that any of the eurozone of the Soviet Union, the collapse of the each nation and even within each nation. nancial markets; in the U.S., banks are governments are ready for such apoliti- Berlin Wall, the expansion of NATO, Since the birth of the euro, the but one segment of amultifaceted fi- cal transition in which citizens in each the expansion of the European Union French and Germans were in the lead in nancial market.
    [Show full text]
  • Generate Viewsheds of Mastcam Images from the Curiosity Rover, Using Arcgis® and Public Datasets
    TECHNICAL Coupling Mars Ground and Orbital Views: Generate REPORTS: METHODS Viewsheds of Mastcam Images From the Curiosity 10.1029/2020EA001247 Rover, Using ArcGIS® and Public Datasets Key Points: 1 2 1 3 4 • Mastcam images from the Curiosity M. Nachon , S. Borges , R. C. Ewing , F. Rivera‐Hernández , N. Stein , and rover are available online but lack a J. K. Van Beek5 public method to be placed back in the Mars orbital context 1Department of Geology and Geophysics, Texas A&M University, College Station, TX, USA, 2Department of Astronomy • This procedure allows users to and Planetary Sciences—College of Engineering, Forestry, and Natural Sciences, Northern Arizona University, Flagstaff, generate Mastcam image viewsheds: 3 4 locate in a map view the Mars AZ, USA, Department of Earth Sciences, Dartmouth College, Hanover, NH, USA, Division of Geological and Planetary 5 terrains visible in Mastcam images Sciences, California Institute of Technology, Pasadena, CA, USA, Malin Space Science Systems, San Diego, CA, USA • This procedure uses ArcGIS® and publicly available Mars datasets Abstract The Mastcam (Mast Camera) instrument onboard the NASA Curiosity rover provides an Supporting Information: exclusive view of Mars: High‐resolution color images from Mastcam allow users to study Gale crater's • Dataset S1 geologic terrains along Curiosity's path. These ground observations complement the spatially broader • Dataset S2 • Dataset S3 views of Gale crater provided by spacecrafts from orbit. However, for a given Mastcam image, it can be • Table S1 challenging to locate the corresponding terrains on the orbital view. No method for locating Mastcam images • Table S2 onto orbital images had been made publicly available.
    [Show full text]
  • Appendix 1: Venus Missions
    Appendix 1: Venus Missions Sputnik 7 (USSR) Launch 02/04/1961 First attempted Venus atmosphere craft; upper stage failed to leave Earth orbit Venera 1 (USSR) Launch 02/12/1961 First attempted flyby; contact lost en route Mariner 1 (US) Launch 07/22/1961 Attempted flyby; launch failure Sputnik 19 (USSR) Launch 08/25/1962 Attempted flyby, stranded in Earth orbit Mariner 2 (US) Launch 08/27/1962 First successful Venus flyby Sputnik 20 (USSR) Launch 09/01/1962 Attempted flyby, upper stage failure Sputnik 21 (USSR) Launch 09/12/1962 Attempted flyby, upper stage failure Cosmos 21 (USSR) Launch 11/11/1963 Possible Venera engineering test flight or attempted flyby Venera 1964A (USSR) Launch 02/19/1964 Attempted flyby, launch failure Venera 1964B (USSR) Launch 03/01/1964 Attempted flyby, launch failure Cosmos 27 (USSR) Launch 03/27/1964 Attempted flyby, upper stage failure Zond 1 (USSR) Launch 04/02/1964 Venus flyby, contact lost May 14; flyby July 14 Venera 2 (USSR) Launch 11/12/1965 Venus flyby, contact lost en route Venera 3 (USSR) Launch 11/16/1965 Venus lander, contact lost en route, first Venus impact March 1, 1966 Cosmos 96 (USSR) Launch 11/23/1965 Possible attempted landing, craft fragmented in Earth orbit Venera 1965A (USSR) Launch 11/23/1965 Flyby attempt (launch failure) Venera 4 (USSR) Launch 06/12/1967 Successful atmospheric probe, arrived at Venus 10/18/1967 Mariner 5 (US) Launch 06/14/1967 Successful flyby 10/19/1967 Cosmos 167 (USSR) Launch 06/17/1967 Attempted atmospheric probe, stranded in Earth orbit Venera 5 (USSR) Launch 01/05/1969 Returned atmospheric data for 53 min on 05/16/1969 M.
    [Show full text]
  • ROVING ACROSS MARS: SEARCHING for EVIDENCE of FORMER HABITABLE ENVIRONMENTS Michael H
    PERSPECTIVE ROVING ACROSS MARS: SEARCHING FOR EVIDENCE OF FORMER HABITABLE ENVIRONMENTS Michael H. Carr* My love affair with Mars started in the late 1960s when I was appointed a member of the Mariner 9 and Viking Orbiter imaging teams. The global surveys of these two missions revealed a geological wonderland in which many of the geological processes that operate here on Earth operate also on Mars, but on a grander scale. I was subsequently involved in almost every Mars mission, both US and non- US, through the early 2000s, and wrote several books on Mars, most recently The Surface of Mars (Carr 2006). I also participated extensively in NASA’s long-range strategic planning for Mars exploration, including assessment of the merits of various techniques, such as penetrators, Mars rovers showing their evolution from 1996 to the present day. FIGURE 1 balloons, airplanes, and rovers. I am, therefore, following the results In the foreground is the tethered rover, Sojourner, launched in 1996. On the left is a model of the rovers Spirit and Opportunity, launched in 2004. from Curiosity with considerable interest. On the right is Curiosity, launched in 2011. IMAGE CREDIT: NASA/JPL-CALTECH The six papers in this issue outline some of the fi ndings of the Mars rover Curiosity, which has spent the last two years on the Martian surface looking for evidence of past habitable conditions. It is not the fi rst rover to explore Mars, but it is by far the most capable (FIG. 1). modest-sized landed vehicles. Advances in guidance enabled landing Included on the vehicle are a number of cameras, an alpha particle at more interesting and promising places, and advances in robotics led X-ray spectrometer (APXS) for contact elemental composition, a spec- to vehicles with more independent capabilities.
    [Show full text]
  • Mariner to Mercury, Venus and Mars
    NASA Facts National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109 Mariner to Mercury, Venus and Mars Between 1962 and late 1973, NASA’s Jet carry a host of scientific instruments. Some of the Propulsion Laboratory designed and built 10 space- instruments, such as cameras, would need to be point- craft named Mariner to explore the inner solar system ed at the target body it was studying. Other instru- -- visiting the planets Venus, Mars and Mercury for ments were non-directional and studied phenomena the first time, and returning to Venus and Mars for such as magnetic fields and charged particles. JPL additional close observations. The final mission in the engineers proposed to make the Mariners “three-axis- series, Mariner 10, flew past Venus before going on to stabilized,” meaning that unlike other space probes encounter Mercury, after which it returned to Mercury they would not spin. for a total of three flybys. The next-to-last, Mariner Each of the Mariner projects was designed to have 9, became the first ever to orbit another planet when two spacecraft launched on separate rockets, in case it rached Mars for about a year of mapping and mea- of difficulties with the nearly untried launch vehicles. surement. Mariner 1, Mariner 3, and Mariner 8 were in fact lost The Mariners were all relatively small robotic during launch, but their backups were successful. No explorers, each launched on an Atlas rocket with Mariners were lost in later flight to their destination either an Agena or Centaur upper-stage booster, and planets or before completing their scientific missions.
    [Show full text]
  • (50000) Quaoar, See Quaoar (90377) Sedna, See Sedna 1992 QB1 267
    Index (50000) Quaoar, see Quaoar Apollo Mission Science Reports 114 (90377) Sedna, see Sedna Apollo samples 114, 115, 122, 1992 QB1 267, 268 ap-value, 3-hour, conversion from Kp 10 1996 TL66 268 arcade, post-eruptive 24–26 1998 WW31 274 Archimedian spiral 11 2000 CR105 269 Arecibo observatory 63 2000 OO67 277 Ariel, carbon dioxide ice 256–257 2003 EL61 270, 271, 273, 274, 275, 286, astrometric detection, of extrasolar planets – mass 273 190 – satellites 273 Atlas 230, 242, 244 – water ice 273 Bartels, Julius 4, 8 2003 UB313 269, 270, 271–272, 274, 286 – methane 271–272 Becquerel, Antoine Henry 3 – orbital parameters 271 Biermann, Ludwig 5 – satellite 272 biomass, from chemolithoautotrophs, on Earth 169 – spectroscopic studies 271 –, – on Mars 169 2005 FY 269, 270, 272–273, 286 9 bombardment, late heavy 68, 70, 71, 77, 78 – atmosphere 273 Borealis basin 68, 71, 72 – methane 272–273 ‘Brown Dwarf Desert’ 181, 188 – orbital parameters 272 brown dwarfs, deuterium-burning limit 181 51 Pegasi b 179, 185 – formation 181 Alfvén, Hannes 11 Callisto 197, 198, 199, 200, 204, 205, 206, ALH84001 (martian meteorite) 160 207, 211, 213 Amalthea 198, 199, 200, 204–205, 206, 207 – accretion 206, 207 – bright crater 199 – compared with Ganymede 204, 207 – density 205 – composition 204 – discovery by Barnard 205 – geology 213 – discovery of icy nature 200 – ice thickness 204 – evidence for icy composition 205 – internal structure 197, 198, 204 – internal structure 198 – multi-ringed impact basins 205, 211 – orbit 205 – partial differentiation 200, 204, 206,
    [Show full text]
  • Elements of Astronomy and Cosmology Outline 1
    ELEMENTS OF ASTRONOMY AND COSMOLOGY OUTLINE 1. The Solar System The Four Inner Planets The Asteroid Belt The Giant Planets The Kuiper Belt 2. The Milky Way Galaxy Neighborhood of the Solar System Exoplanets Star Terminology 3. The Early Universe Twentieth Century Progress Recent Progress 4. Observation Telescopes Ground-Based Telescopes Space-Based Telescopes Exploration of Space 1 – The Solar System The Solar System - 4.6 billion years old - Planet formation lasted 100s millions years - Four rocky planets (Mercury Venus, Earth and Mars) - Four gas giants (Jupiter, Saturn, Uranus and Neptune) Figure 2-2: Schematics of the Solar System The Solar System - Asteroid belt (meteorites) - Kuiper belt (comets) Figure 2-3: Circular orbits of the planets in the solar system The Sun - Contains mostly hydrogen and helium plasma - Sustained nuclear fusion - Temperatures ~ 15 million K - Elements up to Fe form - Is some 5 billion years old - Will last another 5 billion years Figure 2-4: Photo of the sun showing highly textured plasma, dark sunspots, bright active regions, coronal mass ejections at the surface and the sun’s atmosphere. The Sun - Dynamo effect - Magnetic storms - 11-year cycle - Solar wind (energetic protons) Figure 2-5: Close up of dark spots on the sun surface Probe Sent to Observe the Sun - Distance Sun-Earth = 1 AU - 1 AU = 150 million km - Light from the Sun takes 8 minutes to reach Earth - The solar wind takes 4 days to reach Earth Figure 5-11: Space probe used to monitor the sun Venus - Brightest planet at night - 0.7 AU from the
    [Show full text]
  • Combinatorics in Space
    Combinatorics in Space The Mariner 9 Telemetry System Mariner 9 Mission Launched: May 30, 1971 Arrived: Nov. 14, 1971 Turned Off: Oct. 27, 1972 Mission Objectives: (Mariner 8): Map 70% of Martian surface. (Mariner 9): Study temporal changes in Martian atmosphere and surface features. Live TV A black and white TV camera was used to broadcast “live” pictures of the Martian surface. Each photo-receptor in the camera measures the brightness of a section of the Martian surface about 4-5 km square, and outputs a grayness value in the range 0-63. This value is represented as a binary 6-tuple. The TV image is thus digitalized by the photo-receptor bank and is output as a stream of thousands of binary 6-tuples. Coding Needed Without coding and a failure probability p = 0.05, 26% of the image would be in error ... unacceptably poor quality for the nature of the mission. Any coding will increase the length of the transmitted message. Due to power constraints on board the probe and equipment constraints at the receiving stations on Earth, the coded message could not be much more than 5 times as long as the data. Thus, a 6-tuple of data could be coded as a codeword of about 30 bits in length. Other concerns A second concern involves the coding procedure. Storage of data requires shielding of the storage media – this is dead weight aboard the probe and economics require that there be little dead weight. Coding should therefore be done “on the fly”, without permanent memory requirements.
    [Show full text]
  • Seasonal and Interannual Variability of Solar Radiation at Spirit, Opportunity and Curiosity Landing Sites
    Seasonal and interannual variability of solar radiation at Spirit, Opportunity and Curiosity landing sites Álvaro VICENTE-RETORTILLO1, Mark T. LEMMON2, Germán M. MARTÍNEZ3, Francisco VALERO4, Luis VÁZQUEZ5, Mª Luisa MARTÍN6 1Departamento de Física de la Tierra, Astronomía y Astrofísica II, Universidad Complutense de Madrid, Madrid, Spain, [email protected]. 2Department of Atmospheric Sciences, Texas A&M University, College Station, TX, USA, [email protected]. 3Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI, USA, [email protected]. 4Departamento de Física de la Tierra, Astronomía y Astrofísica II, Universidad Complutense de Madrid, Madrid, Spain, [email protected]. 5Departamento de Matemática Aplicada, Universidad Complutense de Madrid, Madrid, Spain, [email protected]. 6Departamento de Matemática Aplicada, Universidad de Valladolid, Segovia, Spain, [email protected]. Received: 14/04/2016 Accepted: 22/09/2016 Abstract In this article we characterize the radiative environment at the landing sites of NASA's Mars Exploration Rover (MER) and Mars Science Laboratory (MSL) missions. We use opacity values obtained at the surface from direct imaging of the Sun and our radiative transfer model COMIMART to analyze the seasonal and interannual variability of the daily irradiation at the MER and MSL landing sites. In addition, we analyze the behavior of the direct and diffuse components of the solar radiation at these landing sites. Key words: Solar radiation; Mars Exploration Rovers; Mars Science Laboratory; opacity, dust; radiative transfer model; Mars exploration. Variabilidad estacional e interanual de la radiación solar en las coordenadas de aterrizaje de Spirit, Opportunity y Curiosity Resumen El presente artículo está dedicado a la caracterización del entorno radiativo en los lugares de aterrizaje de las misiones de la NASA de Mars Exploration Rover (MER) y de Mars Science Laboratory (MSL).
    [Show full text]
  • Pre-Mission Insights on the Interior of Mars Suzanne E
    Pre-mission InSights on the Interior of Mars Suzanne E. Smrekar, Philippe Lognonné, Tilman Spohn, W. Bruce Banerdt, Doris Breuer, Ulrich Christensen, Véronique Dehant, Mélanie Drilleau, William Folkner, Nobuaki Fuji, et al. To cite this version: Suzanne E. Smrekar, Philippe Lognonné, Tilman Spohn, W. Bruce Banerdt, Doris Breuer, et al.. Pre-mission InSights on the Interior of Mars. Space Science Reviews, Springer Verlag, 2019, 215 (1), pp.1-72. 10.1007/s11214-018-0563-9. hal-01990798 HAL Id: hal-01990798 https://hal.archives-ouvertes.fr/hal-01990798 Submitted on 23 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Open Archive Toulouse Archive Ouverte (OATAO ) OATAO is an open access repository that collects the wor of some Toulouse researchers and ma es it freely available over the web where possible. This is an author's version published in: https://oatao.univ-toulouse.fr/21690 Official URL : https://doi.org/10.1007/s11214-018-0563-9 To cite this version : Smrekar, Suzanne E. and Lognonné, Philippe and Spohn, Tilman ,... [et al.]. Pre-mission InSights on the Interior of Mars. (2019) Space Science Reviews, 215 (1).
    [Show full text]
  • Getting to Mars How Close Is Mars?
    Getting to Mars How close is Mars? Exploring Mars 1960-2004 Of 42 probes launched: 9 crashed on launch or failed to leave Earth orbit 4 failed en route to Mars 4 failed to stop at Mars 1 failed on entering Mars orbit 1 orbiter crashed on Mars 6 landers crashed on Mars 3 flyby missions succeeded 9 orbiters succeeded 4 landers succeeded 1 lander en route Score so far: Earthlings 16, Martians 25, 1 in play Mars Express Mars Exploration Rover Mars Exploration Rover Mars Exploration Rover 1: Meridiani (Opportunity) 2: Gusev (Spirit) 3: Isidis (Beagle-2) 4: Mars Polar Lander Launch Window 21: Jun-Jul 2003 Mars Express 2003 Jun 2 In Mars orbit Dec 25 Beagle 2 Lander 2003 Jun 2 Crashed at Isidis Dec 25 Spirit/ Rover A 2003 Jun 10 Landed at Gusev Jan 4 Opportunity/ Rover B 2003 Jul 8 Heading to Meridiani on Sunday Launch Window 1: Oct 1960 1M No. 1 1960 Oct 10 Rocket crashed in Siberia 1M No. 2 1960 Oct 14 Rocket crashed in Kazakhstan Launch Window 2: October-November 1962 2MV-4 No. 1 1962 Oct 24 Rocket blew up in parking orbit during Cuban Missile Crisis 2MV-4 No. 2 "Mars-1" 1962 Nov 1 Lost attitude control - Missed Mars by 200000 km 2MV-3 No. 1 1962 Nov 4 Rocket failed to restart in parking orbit The Mars-1 probe Launch Window 3: November 1964 Mariner 3 1964 Nov 5 Failed after launch, nose cone failed to separate Mariner 4 1964 Nov 28 SUCCESS, flyby in Jul 1965 3MV-4 No.
    [Show full text]