Lunar Basins – the Moon's Big Bangs

Total Page:16

File Type:pdf, Size:1020Kb

Lunar Basins – the Moon's Big Bangs OH/H20 Enhancements associated with Some Silicic Volcanism as detected by M3 Noah Petro LEAG Annual Meeting 2014 October 23, 2014 H/T Carlé Pieters, Rachel Klima, Brad Jolliff, Lillian Ostrach, Tim Glotch, Josh Bandfield It all starts with Roger Clark Clark et al. (2011) Wet vs. Dry Moon workshop Bullialdus Crater (Klima et al., 2013) Clark et al. (2011) Wet vs. Dry Moon workshop 3 OH/H2O with M • “Polar” water detection (Pieters et al., 2009; Clark et al., 2012) • Bullialdis Central Peak (80 ppm +/- 40 ppm) [Klima et al., 2013] Compton-Belkovich Lunar Prospector Thorium • Thorium enhancement measured by LP • Silicic volcanic complex, ~20 x 30 km • Morphological evidence for small domes and collapse features • Offset of Th due to a pyroclastic eruption? (Jolliff et al., 2011; Wilson et al. ,2014?) Alpha Dome M3 Perspective: Data taken while Chandrayaan-1 at 200 km M3G20090601T064032 750 ~3µm Band Strength Ratio nm A ratio of two bands (2616µm and 2816 µm, B74/B79) highlights ~3 µm feature. 3µm Absorption at CB – Where it is M3G20090601T064032 ~3µm Band Strength Ratio 500m LROC NAC ROI Mosaic -CompBelkLoB 3µm Absorption at CB – Where it isn’t M3G20090601T064032 ~3µm Band Strength Ratio Alpha Dome Blocky Dome LROC NAC ROI Mosaic -CompBelkLoB 500m What is at and around 3µm? • Pieters et al. 2009 - Model near-infrared reflectance spectra of H2O and OH applicable for lunar comparisons. A model of a thin layer of H2O water (red) and ice (blue) on a 10% reflective surface equivalent to ~1000-ppm abundance is distinct from anorthite (green) and a lunar glass analog (black). The shaded area extends beyond the spectral range of M3. Detection of OH/H2O at C-B • Stronger 3µm absorption associated with C-B relative to surroundings • Strongest absorptions are associated with ~3µm Band Depth Ratio craters, some LROC NAC ROI Mosaic -CompBelkLoB seemingly fresh craters, but not all fresh craters • Blocky areas have weakest absorptions in region 500m What is the origin of the 3µm feature at Compton-Belkovich? • Data artifact, the result of thermal correction in the M3 L2 data • Not an artifact: Is there a property of the regolith at C-B relative to its surroundings? Is it due to composition and preferential trapping of OH/H2O? Endogenic? OH/H2O in Direct Association with C-B • Compton-Belkovich is enhanced in OH/H2O relative to its surroundings – C-B is indistinct from its surroundings in temperature, 750 nm ~3µm Band Ratio rock abundance, and upper regolith thickness (Diviner) – C-B does have a distinct radar signature, is rock-free, consistent with large pyroclastic deposits • OH concentration is conservatively ~100-150 ppm above than the surroundings • LAMP also sees something in the FUV associated with C-B (Hendrix et al., 2013) Dufay Albdeo Anomaly • Bright diffuse region north of main Thorium enhancement (Dewar) • Appears to be thin deposit with some small craters excavating through Mandel'shtam F 30 km DufayDiviner Albdeo CF Map Anomaly • Bright diffuse region north of main Thorium enhancement • Appears to be thin deposit with some small craters excavating through ~3µm Band Ratio Dufay Albdeo Anomaly • Bright diffuse region north of main Thorium enhancement • Appears to be thin deposit with some small craters excavating through ~3µm Band Ratio m3g20081227t090105 Hansteen Alpha • Identified in Earth-based spectra as a “red spot” • Glotch et al. (2010) showed that it is silicic • Lawrence et al. M3G20090418T190900 (2005) modeled a Lat: -12.3 Th abundance of Lon: -50.2 ~25 ppm M3 View of Hansteen Alpha A ratio of two bands (2616µm and 2816 µm, B74/B79) M3G20090418T190900_V01_RFL What is at and around 3µm? • Pieters et al. 2009 - Model near-infrared reflectance spectra of H2O and OH applicable for lunar comparisons. A model of a thin layer of H2O water (red) and ice (blue) on a 10% reflective surface equivalent to ~1000-ppm abundance is distinct from anorthite (green) and a lunar glass analog (black). The shaded area extends beyond the spectral range of M3. Is This Feature a Result of the Level 2 Processing? Is This Feature a Result of the Level 2 Processing? • No • Feature is there in Level 1B data, pre thermal removal (I/F or Apparent Reflectance) • Appears in multiple Optical Periods What’s going on? • I’m misinterpreting something (as is Klima et al.) • We’re seeing OH/H2O in direct association with silicic volcanic (possibly pyroclastics) at two similar features (C-B and Hansteeen Alpha) and the deposit (pyroclastic?) near Dufay – Not all silicic volcanoes (Lassell Massif, Marian Domes) or Th hotspots (SPA) have such features – Perhaps a slight enhancement at the Gruithuisen Domes Dufay C-B Hansteen Alpha .
Recommended publications
  • Flynn Creek Crater, Tennessee: Final Report, by David J
    1967010060 ASTROGEOLOGIC STUDIES / ANNUAL PROGRESS REPORT " July 1, 1965 to July 1, 1966 ° 'i t PART B - h . CRATERINVESTIGATIONS N 67_1_389 N 57-" .]9400 (ACCEC_ION [4U _" EiER! (THRU} .2_ / PP (PAGLS) (CO_ w ) _5 (NASA GR OR I"MX OR AD NUMBER) (_ATEGORY) DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOQICAL SURVEY • iri i i i i iiii i i 1967010060-002 ASTROGEOLOGIC STUDIES ANNUAL PROGRESS REPORT July i, 1965 to July I, 1966 PART B: CRATER INVESTIGATIONS November 1966 This preliminary report is distributed without editorial and technical review for conformity with official standards and nomenclature. It should not be quoted without permission. This report concerns work done on behalf of the National Aeronautics and Space Administration. DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY 1967010060-003 • #' C OING PAGE ,BLANK NO/" FILMED. CONTENTS PART B--CRATER INVESTIGATIONS Page Introduction ........................ vii History and origin of the Flynn Creek crater, Tennessee: final report, by David J. Roddy .............. 1 Introductien ..................... 1 Geologic history of the Flynn Creek crater ....... 5 Origin of the Flynn Creek crater ............ ii Conc lusions ...................... 32 References cited .................... 35 Geology of the Sierra Madera structure, Texas: progress report, by H. G. Wilshire ............ 41_ Introduction ...................... 41 Stratigraphy ...................... 41 Petrography and chemical composition .......... 49 S truc ture ....................... 62 References cited ............. ...... 69 Some aspects of the Manicouagan Lake structure in Quebec, Canada, by Stephen H. Wolfe ................ 71 f Craters produced by missile impacts, by H. J. Moore ..... 79 Introduction ...................... 79 Experimental procedure ................. 80 Experimental results .................. 81 Summary ........................ 103 References cited .................... 103 Hypervelocity impact craters in pumice, by H. J. Moore and / F.
    [Show full text]
  • Time Travelers Camporee a Compilation of Resources
    1 Time Travelers Camporee A Compilation of Resources Scouts, Ventures, Leaders & Parents…. This is a rather large file (over 80 pages). We have included a “Table of Contents” page to let you know the page numbers of each topic for quick reference. The purpose of this resources to aid the patrols, crews (& adults) in their selection of “Patrol Time Period” Themes. There are numerous amounts of valuable information that can be used to pinpoint a period of time or a specific theme /subject matter (or individual).Of course, ideas are endless, but we just hope that your unit can benefit from the resources below…… This file also goes along with the “Time Traveler” theme as it gives you all a look into a wide variety of subjects, people throughout history. The Scouts & Ventures could possibly use some of this information while working on some of their Think Tank entries. There are more events/topics that are not covered than covered in this file. However, due to time constraints & well, we had to get busy on the actual Camporee planning itself, we weren’t able to cover every event during time. Who knows ? You might just learn a thing or two ! 2 TIME TRAVELERS CAMPOREE PATROL & VENTURE CREW TIME PERIOD SELECTION “RESOURCES” Page Contents 4 Chronological Timeline of A Short History of Earth 5-17 World Timeline (1492- Present) 18 Pre-Historic Times 18 Fall of the Roman Empire/ Fall of Rome 18 Middle Ages (5th-15th Century) 19 The Renaissance (14-17th Century) 19 Industrial Revolution (1760-1820/1840) 19 The American Revolutionary War (1775-1783) 19 Rocky Mountain Rendezvous (1825-1840) 20 American Civil War (1861-1865) 20 The Great Depression (1929-1939) 20 History of Scouting Timeline 20-23 World Scouting (Feb.
    [Show full text]
  • Florida Atlantic University
    FLORIDA ATLANTIC UNIVERSITY Commencement Classes d196S -1969 Sunday, June 8, 1969 Two o'Clock THE CAMPUS Boca Raton, Florida !fJrogram Prelude Prelude and Fugue in C. Major- ]. S. Bach Processional Pomp and Circumstance- Edward Elgar B. Graham Ellerbee, Organist Introductions Dr. Clyde R. Burnett University Marshal Invocation The Rev. Donald Barrus United Campus Ministries National Anthem - Key- Sousa Richard Wright Instructor in Music Presiding Dr. Kenneth R. Williams President Florida Atlantic University Address "The Generation of City Builders" Dr. Robert C. Wood Director Joint Center for Urban Studies Massachusetts Institute of Technology Presentation of Baccalaureate Degrees Dr. S. E. Wimberly Vice President for Academic Affairs For the College of Business and Public Administration Dean Robert L. Froemke For the College of Education Dean Robert R. Wiegman For the College of Humanities Dean Jack Suberman For the Department of Ocean Engineering Professor Charles R. Stephan For the College of Science Dean Kenneth M. Michels For the College of Social Science Dean John M. DeGrove Presentation of the Master of Education, Master of Public Administration, Master of Science and Master of Arts Degrees Deans of the Respective Colleges Benediction The Reverend Barrus Recessional Recessional - Martin Shaw The Audience will please remain in their places until the Faculty and Graduates have left the area. 1 THE ORDER OF THE PROCE SS IO N The Marshal of the Colleges The Marshals and Candidates of the College of Business and Public Administration
    [Show full text]
  • LRO and the ESMD/SMD Partnership Lessons Learned
    LRO and the ESMD/SMD Partnership Lessons Learned John Keller LRO Project Scientist LRO and the ESMD/SMD Partnership • LRO is a highly successful mission of both exploration and science • ESMD (Exploration Systems Mission Directorate, now part of HEOMD) and SMD cooperated closely for the mission’s success – Joint selection of the measurement teams through a joint A.O. – SMD added participating scientist – LEAG established for community participation, modeled after MEPAG • LRO Mission benefited from the strong leadership of Mike Wargo, the ESMD Chief Lunar Scientist – Advocate in ESMD for science and exploration as co-enablers – Ambassador to lunar science and exploration communities. • Buy-in at the AA and Division Levels was critical. 2 LRO Mission Objectives Safe Landing Sites Space Environment Locate Potential Resources High resolution imagery Energetic particles Hydrogen/water at the lunar poles Global geodetic grid Neutrons Continuous solar energy Topography Mineralogy Rock abundances LRO was initiated as a high-priority Discovery-class mission to enable astronaut return to the Moon Slide - 3 HISTORY I • Jan. 2004: President’s “Visions for Space Exploraon” Speech (men7ons “LRO” as 1st step) • Late Jan. 2004: ESMD and SMD agree to charter an ORDT to define LRO (D. Cooke was key official at ESMD with C. Scolese, SMD) • March 2004: ORDT face-to-face with consensus on priori7es for LRO measurements – Specified 8 cri+cal measurement sets for LRO to achieve (if possible) • June 2004: AO release for LRO payload (jointly by SMD and ESMD) • Dec.
    [Show full text]
  • The Widespread Distribution of Swirls in Lunar Reconnaissance Orbiter Camera Images
    EPSC Abstracts Vol. 10, EPSC2015-854, 2015 European Planetary Science Congress 2015 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2015 The Widespread Distribution of Swirls in Lunar Reconnaissance Orbiter Camera Images Brett W. Denevi (1), Mark S. Robinson (2), Aaron K. Boyd (2), and David T. Blewett (1) (1) The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA, (2) School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA. Email: [email protected]. 1. Introduction fresh plagioclase-rich materials from their shocked or glassy equivalent in the highlands. Lunar swirls are Lunar swirls, the sinuous high- and low-reflectance characterized by this steep UV slope [11], such that a features that cannot be mentioned without the WAC color composite (415 nm, 321/415 nm, and associated adjective “enigmatic,” are of interest 321/360 nm in red, green, and blue, respectively) because of their link to crustal magnetic anomalies reveals their locations (e.g., Fig. 1). We used this [1,2]. These localized magnetic anomalies create WAC composite sampled at 400 m/pixel as the basis mini-magnetospheres [3,4] and may alter the typical for our mapping, noting the locations and margins of surface modification processes or result in altogether the high-reflectance portions of swirls based on their distinct processes that form the swirls. One UV ratios and 415 nm reflectance values. hypothesis is that magnetic anomalies may provide some degree of shielding from the solar wind [1,2], 3. Distribution of Swirls which could impede space weathering due to solar The WAC-based map (Fig.
    [Show full text]
  • EVA Planetary Science
    National Aeronautics and Space Administration Planetary Science Context for EVA EVA Exploration Workshop Kelsey Young, Exploration Scientist | Trevor Graff, Exploration Scientist February 2020 Scientific Drivers for Planetary Exploration LRO: NASA GSFC Conceptual Images Lab MSL: NASA/JPL-Caltech/MSSS OSIRIS-REX: NASA/Univ. AZ/Lockheed Martin • Massive advancements made since Apollo surface missions, but there are still a number of outstanding science questions across all potential targets of interest for human exploration • Areas of interest include geology, geophysics, geochemistry, atmospheres, life-related chemistry, etc. – Varying levels of human interaction – Astrobiology: Planetary Protection Lunar Reconnaissance Orbiter (LRO) Image 400m across Apollo 17 Landing Site Apollo 16 S-IVB Impact Crater LRO Traverse Planning NASA/GSFC/ASU NASA/GSFC/ASU Speyerer et al., 2016 • Jointly funded by ESMD/SMD • Initially operated to select landing sites for future crewed missions before being transferred for science operations • LRO Instrumentation: – CRaTER (Cosmic Ray Telescope for the Effects of Radiation) – DLRE (Diviner Lunar Radiometer Experiment) – LAMP (Lyman-Alpha Mapping Project) – LEND (Lunar Exploration Neutron Detector) – LROC (Lunar Reconnaissance Orbiter Camera) – LOLA (Lunar Orbiter Laser Altimeter) Launched: 18 JUNE 2009 – Mini-RF (Miniature Radio Frequency) Science Enabling Exploration • LRO entering 4th extended mission and 10th year in lunar orbit • Fuel for 7 more years • Global topography at 60 m/pixel • Global coverage at 100 m/pixel • Localized topography at 2.5m/px for 4% of Moon • Global temperature data • Illumination maps of entire surface Dewar Cryptomaria Lunar Interior, Farside Volcanism New Advances in Lunar Science LRO Tour of the Moon in 4K • 5-minute animation that takes the viewer on a virtual tour of our nearest neighbor in space.
    [Show full text]
  • (Preprint) AAS 08-XXX CRATER IDENTIFICATION ALGORITHM
    (Preprint) AAS 08-XXX CRATER IDENTIFICATION ALGORITHM FOR THE LOST IN LOW LUNAR ORBIT SCENARIO Dr. Chad Hanak; Dr. Tim Crain; and Dr. Robert Bishop! Recent emphasis by NASA on returning astronauts to the Moon has placed atten- tion on the subject of lunar surface feature tracking. Although many algorithms have been proposed for lunar surface feature tracking navigation, much less atten- tion has been paid to the issue of navigational state initialization from lunar craters in a lost in low lunar orbit (LLO) scenario. That is, a scenario in which lunar sur- face feature tracking must begin, but current navigation state knowledge is either unavailable or too poor to initiate a tracking algorithm. The situation is analogous to the lost in space scenario for star trackers. A new crater identification algorithm is developed herein that allows for navigation state initialization from as few as one image of the lunar surface with no a priori state knowledge. The algorithm takes as inputs the locations and diameters of craters that have been detected in an image, and uses the information to match the craters to entries in the USGS lunar crater catalog via non-dimensional crater triangle parameters. Due to the large number of uncataloged craters that exist on the lunar surface, a probability-based check was developed to reject false identifications. The algorithm was tested on craters detected in four revolutions of Apollo 16 LLO images, and shown to perform well. INTRODUCTION With a renewed interest in returning astronauts to the Moon, attention is returning to the subject of on-board lunar surface feature tracking.
    [Show full text]
  • Lunar Magnetic Field Models from Lunar Prospector and SELENE/Kaguya Along-Track Magnetic Field Gradients
    Downloaded from orbit.dtu.dk on: Oct 08, 2021 Lunar magnetic field models from Lunar Prospector and SELENE/Kaguya along-track magnetic field gradients Ravat, D.; Purucker, M.E.; Olsen, N. Published in: Journal of Geophysical Research: Planets Link to article, DOI: 10.1029/2019JE006187 Publication date: 2020 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Ravat, D., Purucker, M. E., & Olsen, N. (2020). Lunar magnetic field models from Lunar Prospector and SELENE/Kaguya along-track magnetic field gradients. Journal of Geophysical Research: Planets, 125(7), [e2019JE006187]. https://doi.org/10.1029/2019JE006187 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. RESEARCH ARTICLE Lunar Magnetic Field Models From Lunar Prospector and 10.1029/2019JE006187 SELENE/Kaguya Along‐Track
    [Show full text]
  • The Surface of Mars 1. Cratered Terrains
    VOL. 76, NO. 2 JOURNAL OF GEOPHYSICAL RESEARCH JANUARY 10, 1971 The Surface of Mars i. Cratered Terrains • BRUCEC. MURRAY,LAURENCE A. SODERBLOM, ROBERTP. SHARP,AND JAMESA. CUTTS Division of GeologicalSciences California Institute of Technology,Pasadena 91109 Mariner 6 and 7 pictures show that craters are the dominant landform on Mars and that their occurrenceis not correlated uniquely with latitude, elevation, or albedo markings. Two distinct morphological classesare recognized: small bowl-shaped and large flat-bottomed. The former showlittle evidenceof modifications,whereas the latter appear generally more modified than hmar upland cratersof comparablesize. A regionalmaria/uplands dichotomylike the moon has not yet been recognized on Mars. Crater modification on Mars has involved much greater horizontal redistribution of material than in the lunar uplands. It is possiblethat there are erosionalprocesses only infrequently active. Analysisof the natures and fluxesof bodiesthat have probably impacted the moon and Mars leads to the likelihood that most of the large flat-bottomed craters on Mars have survived from the final phasesof planetary accretion. Significant crater modification, how- ever, has taken place more recently on Mars. Inasmuch as the present small bowl-shaped craters evidence little modification, the postaccretion crater-modification processon Mars may have been primarily episodic rather than continuous. The size-frequency distribution of impacting bodiesthat produced the present small Martian bowl-shapedcraters differs from that responsible for post-mare primary impacts on the moon by a marked deficiency of large bodies. Survival of crater topography from the end of planetary accretion would make any hypothetical earthlike phasewith primitive oceansthere unlikely. The traditional view of Mars as an earthlike planetary neighbor in terms of its surface history is not supported by the picture data.
    [Show full text]
  • LUNAR SURFACE REMOTE SENSING 7:00 P.M
    Lunar and Planetary Science XXXVI (2005) sess73.pdf Thursday, March 17, 2005 POSTER SESSION II: LUNAR SURFACE REMOTE SENSING 7:00 p.m. Fitness Center Okada T. Arai T. Hosono K. Shirai K. Yamamoto Y. Ogawa K. Kato M. First X-Ray Observation of Lunar Farside from Hayabusa X-Ray Spectrometer [#1175] The X-ray fluorescence spectrometer or XRS on-board Hayabusa has observed the first X-ray emission off the surface of lunar farside on May 17 in 2004, just before the Earth swing-by. The data indicates that the overall average composition of lunar farside is consistent with anorthositic crust. Garrick-Bethell I. Zuber M. T. An Indigenous Origin for the South Pole-Aitken Basin Thorium Anomaly [#2372] Based on analysis of a combination of datasets we propose that the thorium anomaly in the northwest corner of the South Pole-Aitken basin most likely reflects an indigenous process. Thompson T. W. Campbell B. A. Unusual Radar Backscatter Properties Along the Northern Rim of Imbrium Basin [#1535] The terra along the northern rim of Imbrium has unusually low radar backscatter, which is 2–4 times lower than other terra. This may be attributed to a mantle of pyroclastics in this area. Campbell B. A. Campbell D. B. Chandler J. New 70-cm Radar Mapping of the Moon [#1385] We are collecting a new high-resolution 70-cm radar map of the lunar nearside. Saito M. Takata T. Matsushita M. Chishima T. Ikeda Y. Hirao N. Iijima Y. Ground-based Observation of Lunar Surface by Lunar VIS/NIR Spectral Imager [#1513] Ground-based Lunar VIS/NIR Spectral Imager is developed in order to obtain 3 dimensional spectral and spatial images of the nearside of the moon.
    [Show full text]
  • Constraining the Evolutionary History of the Moon and the Inner Solar System: a Case for New Returned Lunar Samples
    Constraining the Evolutionary History of the Moon and the Inner Solar System: A Case for New Returned Lunar Samples The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Tartèse, Romain, et al. "Constraining the Evolutionary History of the Moon and the Inner Solar System: A Case for New Returned Lunar Samples." Space Science Reviews, 215 (December 2019): 54. © 2019, The Author(s). As Published http://dx.doi.org/10.1007/s11214-019-0622-x Publisher Springer Science and Business Media LLC Version Final published version Citable link https://hdl.handle.net/1721.1/125329 Terms of Use Creative Commons Attribution 4.0 International license Detailed Terms https://creativecommons.org/licenses/by/4.0/ Space Sci Rev (2019) 215:54 https://doi.org/10.1007/s11214-019-0622-x Constraining the Evolutionary History of the Moon and the Inner Solar System: A Case for New Returned Lunar Samples Romain Tartèse1 · Mahesh Anand2,3 · Jérôme Gattacceca4 · Katherine H. Joy1 · James I. Mortimer2 · John F. Pernet-Fisher1 · Sara Russell3 · Joshua F. Snape5 · Benjamin P. Weiss6 Received: 23 August 2019 / Accepted: 25 November 2019 / Published online: 2 December 2019 © The Author(s) 2019 Abstract The Moon is the only planetary body other than the Earth for which samples have been collected in situ by humans and robotic missions and returned to Earth. Scien- tific investigations of the first lunar samples returned by the Apollo 11 astronauts 50 years ago transformed the way we think most planetary bodies form and evolve. Identification of anorthositic clasts in Apollo 11 samples led to the formulation of the magma ocean concept, and by extension the idea that the Moon experienced large-scale melting and differentiation.
    [Show full text]
  • The Messenger
    THE MESSENGER ( , New Meteorite Finds At Imilac No. 47 - March 1987 H. PEDERSEN, ESO, and F. GARe/A, elo ESO Introduction hand, depend more on the preserving some 7,500 meteorites were recovered Stones falling from the sky have been conditions of the terrain, and the extent by Japanese and American expeditions. collected since prehistoric times. They to which it allows meteorites to be spot­ They come from a smaller, but yet un­ were, until recently, the only source of ted. Most meteorites are found by known number of independent falls. The extraterrestrial material available for chance. Active searching is, in general, meteorites appear where glaciers are laboratory studies and they remain, too time consuming to be of interest. pressed up towards a mountain range, even in our space age, a valuable However, the blue-ice fields of Antarctis allowing the ice to evaporate. Some source for investigation of the solar sys­ have proven to be a happy hunting have been Iying in the ice for as much as tem's early history. ground. During the last two decades 700,000 years. It is estimated that, on the average, each square kilometre of the Earth's surface is hit once every million years by a meteorite heavier than 500 grammes. Most are lost in the oceans, or fall in sparsely populated regions. As a result, museums around the world receive as few as about 6 meteorites annually from witnessed falls. Others are due to acci­ dental finds. These have most often fallen in prehistoric times. Each of the two groups, 'falls' and 'finds', consists of material from about one thousand catalogued, individual meteorites.
    [Show full text]