The Surface of Mars 1. Cratered Terrains

Total Page:16

File Type:pdf, Size:1020Kb

The Surface of Mars 1. Cratered Terrains VOL. 76, NO. 2 JOURNAL OF GEOPHYSICAL RESEARCH JANUARY 10, 1971 The Surface of Mars i. Cratered Terrains • BRUCEC. MURRAY,LAURENCE A. SODERBLOM, ROBERTP. SHARP,AND JAMESA. CUTTS Division of GeologicalSciences California Institute of Technology,Pasadena 91109 Mariner 6 and 7 pictures show that craters are the dominant landform on Mars and that their occurrenceis not correlated uniquely with latitude, elevation, or albedo markings. Two distinct morphological classesare recognized: small bowl-shaped and large flat-bottomed. The former showlittle evidenceof modifications,whereas the latter appear generally more modified than hmar upland cratersof comparablesize. A regionalmaria/uplands dichotomylike the moon has not yet been recognized on Mars. Crater modification on Mars has involved much greater horizontal redistribution of material than in the lunar uplands. It is possiblethat there are erosionalprocesses only infrequently active. Analysisof the natures and fluxesof bodiesthat have probably impacted the moon and Mars leads to the likelihood that most of the large flat-bottomed craters on Mars have survived from the final phasesof planetary accretion. Significant crater modification, how- ever, has taken place more recently on Mars. Inasmuch as the present small bowl-shaped craters evidence little modification, the postaccretion crater-modification processon Mars may have been primarily episodic rather than continuous. The size-frequency distribution of impacting bodiesthat produced the present small Martian bowl-shapedcraters differs from that responsible for post-mare primary impacts on the moon by a marked deficiency of large bodies. Survival of crater topography from the end of planetary accretion would make any hypothetical earthlike phasewith primitive oceansthere unlikely. The traditional view of Mars as an earthlike planetary neighbor in terms of its surface history is not supported by the picture data. Perhapsthe most excitingresult of the Mariner Mariner 6 and 7 television pictures as they bear 4 television experiment in 1965 was the discovery on the nature of the Martian surface.The present of cratered terrains on Mars, a generally unex- paper deals with the nature and significanceof pected addition to the annual development of cratered terrains. The second is concerned with the frost caps, seasonaldarkenings, and other uncratered terrains [Sharp et al., 1971a]. The presumed earthlike phenomena.The television third paper discussesphotographic observations pictures returned by Mariners 6 and 7 in 1969 relevant to the nature of light and dark markings greatly extended knowledgeof Martian cratered [Cutts et al., 1971], and the fourth describes terrains and showed two new uncratered terrains observationsand implications of surface features as well. Close-up pictures were obtained of the of the south polar cap [Sharp et al., 1971b]. We south polar cap and also of certain prominent shall refer to them as papers 1, 2, 3, and 4, light-dark boundaries. These and other results respectively. of the television experimentswere first discussed The picture data used are principally the in three preliminary reports published shortly 'maximum-discriminability' versions displayed after receipt of the picture data [Leightonet al., in the accompanying papers by Dunne et al. 1969a, b, c]. The objectiveof this paper and of the [1971] in this issue, supplemented by other three companionpapers is to describethe results versions of the near- and far-encounter photog- of subsequentanalysis and interpretation of the raphy. Image-processing techniques are dis- cussedin a separate paper in this issue [Rind- fieis& et al., 1971]. Picture location and notation i Contribution 1891, Division of Geological are summarized in the preceding article in this Sciences, California Institute of Technology, Pasadena. issueby Leighton and Murray. Craters are visible in 52 of the 55 near-en- Copyright • 1971 by the American Geophysical lJnion. counter frames (best resolution 0.3 km) and 313 314 M•URRAY ET AL. constitute the principal landform observed. At surface processesand history of Mars inferred this early stageof Martian exploration we define from the evidence of the terrains already recog- cratered terrains to be regions of the surface nized will provide a useful framework for more in which craters are the dominant, often the detailed information and knowledge to be ac- only, topographic forms recognizable at the quired by future spacemissions. resolution of the Mariner 6 and 7 pictures. In the following, the geographic distribution Intercrater areas are included in this definition. of cratered terrain is reviewed and possible As better pictures become available, more correlations,with elevation, latitude, and albedo sophisticatedcriteria may haveto be developed are considered.Morphology of local features and to categorizewhat may well be a variety of crater abundances is then treated. Martian }Martian terrains. We feel, nevertheless,that the observations are compared with those of the 4N14 Fig. la. Positions of Mariner 4 photographs4N7 through 4N14 plotted on Mariner 7 far- encounterphotograph 7F76 with a sub-spacecraftlongitude of 199øE.The ringed structure,Nix Olympica, is visible in the northern hemisphere. SURFACEOF MARs--CRATERED TERRAINS 315 4N9 Fig. lb. Crateredterrain displayedin Mariner 4 frames4N7 through4N14, taken across Zephyria,Mare Sirenurn,Mare Cimmerium,and Phaethontis.(See paper 3 for identification of namedfeatures.) Frames 4N8 and 4N13 containprominent light/dark boundaries.Individual frames are about 250 km on a side. Longitude, latitude, and solar elevation angle range from 186øE,13øS, 61 ø for 4N7 through209øE, 42øS, 29 ø for 4N14. Detailsare availablein Leighton ct al. [1967]. lunar-crateredterrains, leading to the conclusion or dark areas or with any particular elevation that many largeMartian craters,like thoseof the range, and it contains two distinct types of lunar uplands,have survivedsince the last phases craters: large fiat-bottomed and small bowl- of planetary accretion. The later history of shaped. In this section we summarize the Mars, however,appears to differ significantly characteristics of Martian cratered terrain and from that of the moon. Finally, the traditional compareit with the crateredterrain of the moon. view of Mars as once having experiencedearth- Geographicdistribution. Craters ranging in like conditions is recvaluated in light of the diameter from a few hundred meters to a few similarities of the Martian cratered terrain to the hundred kilometers are visible in the Mariner 6 lunar uplands. and 7 photographs.If this sampleis representa- tive, cratered terrain (including intercrater OBSERVATIONS OF MARTIAN CRATERED TERRAINS areas) constitutesat least 90% of the Martian Cratered terrain on Mars was first revealed surface. in televisionpictures returned by Mariner 4 in Somevery largecraters are recognizablein 1965. Mariners 6 and 7 extended the observations the far-encounter frames of Mariner 6 and 7, of cratered terrain sufiqciently to demonstrate especiallyin the dark area Syrtis Major (frame that it is the dominant Martian landscape;it is 7F87) and Mare Cimmerium(frame 7F82). The not uniquelycorrelated in occurrencewith light featureNix Olympica,long recognized as a bright 316 MURRAY ET AL. patch from earth-basedobservations, is seenat Figures3 and 4 of paper2 and Figures1 and 2 of higherresolution (frame 7F77) to be a multiple- paper 4). ring structureof maximumdimension exceeding Figureslb, 2, and 3 in this paperand Figure3 500 kms. Presumablythis is at least the remnant in paper4 are mosaicscomposed of the bestnear- of a very large crater. Circular features almost encounterphotography from Mariners4, 6, and 7. as large are faintly visiblein bright areaswithin They all show predominatelycratered terrain. frames 7F83 and 7F84. The polar cap edge Each of thesemosaics is discussedbriefly in the observed in the late far-encounter frames of both context of the regional associationsof Martian Mariner6 andMariner 7 is partlydelineated by cratered terrain. largec•aters up to 110 km in diameter(see Craters from 4 to 350 km in diameter are Fig. 2. Area of mosaicof frames6N9 through6N23, shownin outlineon the far-encounter frame7F67, i•mluding the dark areasMeridiani Sinus and SabaeusSinus and the light area l)eucalionisRegio. (Geographic names are locatedin paper3.) Solarelevation angles, which rangefrom 52ø downto 3 ø are shownat the lowerright-hand corner of the B frames.The outline of thesenarrow-angle frames is shownin whiteon the mosaic of A frames,along with latitude and lo•gitudegrid li•tes. Individual A framesare of the orderof 1000km in the longdirection; B framesare l/10 scaleof A frames.One degreeof latitude on Mars is 59 km. Maximum discrim- inability versionshave beenused that greatlyaccentuate topographic detail but distortand suppresssome albedo marking, especially the outlines of Meridiani Sinus. The crater counts usedi•t Figre'es4, 5, and6 arederived from frames 6N16 to 6N23and refer principally to the I)eucalionis Regio area. SURFACEOF •/•ARS--CRATEREDTERRAINS 317 318 M•RR^¾ ET AL. visible in Mariner 4 frames 4N5 through 4N14, By way of comparison, on the moon two distinct as is shown in Figures l a and lb. A prominent kinds of cratered terrain are evident that bear a- light/dark boundary,the northernboundary of simple relationship to height and light and dark Mare Sirenurn, is included in the pair of frames markings. On the moon, large, highly-modified 4N?/4NS. Crateredtopography does
Recommended publications
  • Planetary Geologic Mappers Annual Meeting
    Program Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 Planetary Geologic Mappers Annual Meeting June 12–14, 2018 • Knoxville, Tennessee Institutional Support Lunar and Planetary Institute Universities Space Research Association Convener Devon Burr Earth and Planetary Sciences Department, University of Tennessee Knoxville Science Organizing Committee David Williams, Chair Arizona State University Devon Burr Earth and Planetary Sciences Department, University of Tennessee Knoxville Robert Jacobsen Earth and Planetary Sciences Department, University of Tennessee Knoxville Bradley Thomson Earth and Planetary Sciences Department, University of Tennessee Knoxville Abstracts for this meeting are available via the meeting website at https://www.hou.usra.edu/meetings/pgm2018/ Abstracts can be cited as Author A. B. and Author C. D. (2018) Title of abstract. In Planetary Geologic Mappers Annual Meeting, Abstract #XXXX. LPI Contribution No. 2066, Lunar and Planetary Institute, Houston. Guide to Sessions Tuesday, June 12, 2018 9:00 a.m. Strong Hall Meeting Room Introduction and Mercury and Venus Maps 1:00 p.m. Strong Hall Meeting Room Mars Maps 5:30 p.m. Strong Hall Poster Area Poster Session: 2018 Planetary Geologic Mappers Meeting Wednesday, June 13, 2018 8:30 a.m. Strong Hall Meeting Room GIS and Planetary Mapping Techniques and Lunar Maps 1:15 p.m. Strong Hall Meeting Room Asteroid, Dwarf Planet, and Outer Planet Satellite Maps Thursday, June 14, 2018 8:30 a.m. Strong Hall Optional Field Trip to Appalachian Mountains Program Tuesday, June 12, 2018 INTRODUCTION AND MERCURY AND VENUS MAPS 9:00 a.m. Strong Hall Meeting Room Chairs: David Williams Devon Burr 9:00 a.m.
    [Show full text]
  • Back Matter (PDF)
    Index Page numbers in italics refer to Tables or Figures Acasta gneiss 137, 138 Chladni, Ernst 94, 97 Adam, Robert 8, 11 chlorite 70, 71 agriculture, Hutton on 177 chloritoid stability 70 Albritton, Claude C. 100 Clerk Jnr, John 3 alumina (A1203), reaction in metamorphism 67-71 Clerk of Odin, John 5, 6, 7, 10, 11 andalusite stability 67 Clerk-Maxwell, George 10 anthropic principle 79-80 climate change 142 Apex basalt 140 Lyell on 97-8 Archean cratons (archons) 28, 31-2 coal as Earth heat source 176 Arizona Crater 98-9 coesite stability 65 Arran, Isle of 170 Columbia River basalts 32 asthenosphere 22 comets 89-90, 147-8 astrobleme 101 short v. long period 92 atmospheric composition 83-6 as source of life 148-9 Austral Volcanic Chain 24 continental flood basalt (CFB) 20, 23, 32 cordierite stability 67 craters, impact Bacon, Francis 21 Chixulub 109, 110, 143 Baldwin, Ralph 102 early ideas on 90, 98 Banks, Sir Joseph 96 modern occurrences 91, 98-101 Barringer, Daniel Moreau 99 Morokweng 142 Barringer Crater 99, 102, 103 modern research 102-3 basalt periodicity of 111-12 described by Hall 40-1 creation, Hutton's views on 76 mid-ocean ridge (MORB) 16-17, 20-1, 22, 23, 30-1 Creech, William 5 modern experiments on 44-7 Cretaceous-Tertiary impacts 141 ocean island (OIB) 20, 23 crust formation 17 see also flood basalt cryptoexplosion structures 101 Benares (India) meteorite shower 96 cryptovolcanic structures 100-1 Biot, Jean-Baptiste 97 Black, Joseph 4, 9, 10, 11, 42, 171 Boon, John D.
    [Show full text]
  • Minutes of the January 25, 2010, Meeting of the Board of Regents
    MINUTES OF THE JANUARY 25, 2010, MEETING OF THE BOARD OF REGENTS ATTENDANCE This scheduled meeting of the Board of Regents was held on Monday, January 25, 2010, in the Regents’ Room of the Smithsonian Institution Castle. The meeting included morning, afternoon, and executive sessions. Board Chair Patricia Q. Stonesifer called the meeting to order at 8:31 a.m. Also present were: The Chief Justice 1 Sam Johnson 4 John W. McCarter Jr. Christopher J. Dodd Shirley Ann Jackson David M. Rubenstein France Córdova 2 Robert P. Kogod Roger W. Sant Phillip Frost 3 Doris Matsui Alan G. Spoon 1 Paul Neely, Smithsonian National Board Chair David Silfen, Regents’ Investment Committee Chair 2 Vice President Joseph R. Biden, Senators Thad Cochran and Patrick J. Leahy, and Representative Xavier Becerra were unable to attend the meeting. Also present were: G. Wayne Clough, Secretary John Yahner, Speechwriter to the Secretary Patricia L. Bartlett, Chief of Staff to the Jeffrey P. Minear, Counselor to the Chief Justice Secretary T.A. Hawks, Assistant to Senator Cochran Amy Chen, Chief Investment Officer Colin McGinnis, Assistant to Senator Dodd Virginia B. Clark, Director of External Affairs Kevin McDonald, Assistant to Senator Leahy Barbara Feininger, Senior Writer‐Editor for the Melody Gonzales, Assistant to Congressman Office of the Regents Becerra Grace L. Jaeger, Program Officer for the Office David Heil, Assistant to Congressman Johnson of the Regents Julie Eddy, Assistant to Congresswoman Matsui Richard Kurin, Under Secretary for History, Francisco Dallmeier, Head of the National Art, and Culture Zoological Park’s Center for Conservation John K.
    [Show full text]
  • Exploring Comets and Modeling for Mission Success
    Exploring Comets and Modeling for Mission Success National Science Education Standards Alignment Created for Deep Impact, A NASA Discovery mission Maura Rountree-Brown and Art Hammon Educator-Enrichment Grades 5 – 8 Science as Inquiry Abilities necessary to do scientific inquiry − Identify questions that can be answered through scientific investigations. • Exploring Comets: Reflections on comets, missions and modeling − Develop descriptions, explanations, predictions, and models using evidence. • Make a Comet and Eat It!, Chemistry and Thermodynamics of Ice Cream, Comet on a Stick, Paper Comet with a Deep Impact, and Comet Models Based on the Deep Impact Mission − Think critically and logically to make the relationships between evidence and explanations. • Make a Comet and Eat It!, Comet on a Stick, Paper Comet with a Deep Impact, and Comet Models Based on the Deep Impact Mission − Communicate scientific procedures and explanations. • Make a Comet and Eat It! Understandings about scientific inquiry − Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, or events; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models. • Make a Comet and Eat It!, Chemistry and Thermodynamics of Ice Cream, Comet on a Stick, Paper Comet with a Deep Impact, Comet Models Based on the Deep Impact Mission, and Deep Impact Comet Modeling − Current scientific knowledge and understanding guide scientific investigations. Different scientific domains employ different methods, core theories, and standards to advance scientific knowledge and understanding. • A Comet’s Place in the Solar System, Exploring Comets: Reflections on comets, missions and modeling, Deep Impact Comet Modeling, Deep Impact: Interesting Comet Facts, and Small Bodies Missions − Scientific explanations emphasize evidence, have logically consistent arguments, and use scientific principles, models, and theories.
    [Show full text]
  • MARS an Overview of the 1985–2006 Mars Orbiter Camera Science
    MARS MARS INFORMATICS The International Journal of Mars Science and Exploration Open Access Journals Science An overview of the 1985–2006 Mars Orbiter Camera science investigation Michael C. Malin1, Kenneth S. Edgett1, Bruce A. Cantor1, Michael A. Caplinger1, G. Edward Danielson2, Elsa H. Jensen1, Michael A. Ravine1, Jennifer L. Sandoval1, and Kimberley D. Supulver1 1Malin Space Science Systems, P.O. Box 910148, San Diego, CA, 92191-0148, USA; 2Deceased, 10 December 2005 Citation: Mars 5, 1-60, 2010; doi:10.1555/mars.2010.0001 History: Submitted: August 5, 2009; Reviewed: October 18, 2009; Accepted: November 15, 2009; Published: January 6, 2010 Editor: Jeffrey B. Plescia, Applied Physics Laboratory, Johns Hopkins University Reviewers: Jeffrey B. Plescia, Applied Physics Laboratory, Johns Hopkins University; R. Aileen Yingst, University of Wisconsin Green Bay Open Access: Copyright 2010 Malin Space Science Systems. This is an open-access paper distributed under the terms of a Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: NASA selected the Mars Orbiter Camera (MOC) investigation in 1986 for the Mars Observer mission. The MOC consisted of three elements which shared a common package: a narrow angle camera designed to obtain images with a spatial resolution as high as 1.4 m per pixel from orbit, and two wide angle cameras (one with a red filter, the other blue) for daily global imaging to observe meteorological events, geodesy, and provide context for the narrow angle images. Following the loss of Mars Observer in August 1993, a second MOC was built from flight spare hardware and launched aboard Mars Global Surveyor (MGS) in November 1996.
    [Show full text]
  • Martian Crater Morphology
    ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter.
    [Show full text]
  • An Impacting Descent Probe for Europa and the Other Galilean Moons of Jupiter
    An Impacting Descent Probe for Europa and the other Galilean Moons of Jupiter P. Wurz1,*, D. Lasi1, N. Thomas1, D. Piazza1, A. Galli1, M. Jutzi1, S. Barabash2, M. Wieser2, W. Magnes3, H. Lammer3, U. Auster4, L.I. Gurvits5,6, and W. Hajdas7 1) Physikalisches Institut, University of Bern, Bern, Switzerland, 2) Swedish Institute of Space Physics, Kiruna, Sweden, 3) Space Research Institute, Austrian Academy of Sciences, Graz, Austria, 4) Institut f. Geophysik u. Extraterrestrische Physik, Technische Universität, Braunschweig, Germany, 5) Joint Institute for VLBI ERIC, Dwingelo, The Netherlands, 6) Department of Astrodynamics and Space Missions, Delft University of Technology, The Netherlands 7) Paul Scherrer Institute, Villigen, Switzerland. *) Corresponding author, [email protected], Tel.: +41 31 631 44 26, FAX: +41 31 631 44 05 1 Abstract We present a study of an impacting descent probe that increases the science return of spacecraft orbiting or passing an atmosphere-less planetary bodies of the solar system, such as the Galilean moons of Jupiter. The descent probe is a carry-on small spacecraft (< 100 kg), to be deployed by the mother spacecraft, that brings itself onto a collisional trajectory with the targeted planetary body in a simple manner. A possible science payload includes instruments for surface imaging, characterisation of the neutral exosphere, and magnetic field and plasma measurement near the target body down to very low-altitudes (~1 km), during the probe’s fast (~km/s) descent to the surface until impact. The science goals and the concept of operation are discussed with particular reference to Europa, including options for flying through water plumes and after-impact retrieval of very-low altitude science data.
    [Show full text]
  • Mariner to Mercury, Venus and Mars
    NASA Facts National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109 Mariner to Mercury, Venus and Mars Between 1962 and late 1973, NASA’s Jet carry a host of scientific instruments. Some of the Propulsion Laboratory designed and built 10 space- instruments, such as cameras, would need to be point- craft named Mariner to explore the inner solar system ed at the target body it was studying. Other instru- -- visiting the planets Venus, Mars and Mercury for ments were non-directional and studied phenomena the first time, and returning to Venus and Mars for such as magnetic fields and charged particles. JPL additional close observations. The final mission in the engineers proposed to make the Mariners “three-axis- series, Mariner 10, flew past Venus before going on to stabilized,” meaning that unlike other space probes encounter Mercury, after which it returned to Mercury they would not spin. for a total of three flybys. The next-to-last, Mariner Each of the Mariner projects was designed to have 9, became the first ever to orbit another planet when two spacecraft launched on separate rockets, in case it rached Mars for about a year of mapping and mea- of difficulties with the nearly untried launch vehicles. surement. Mariner 1, Mariner 3, and Mariner 8 were in fact lost The Mariners were all relatively small robotic during launch, but their backups were successful. No explorers, each launched on an Atlas rocket with Mariners were lost in later flight to their destination either an Agena or Centaur upper-stage booster, and planets or before completing their scientific missions.
    [Show full text]
  • Martian Perched Craters and Large Ejecta Volume: Evidence for Episodes of Deflation in the Northern Lowlands
    Meteoritics & Planetary Science 41, Nr 10, 1647–1658 (2006) Abstract available online at http://meteoritics.org Martian perched craters and large ejecta volume: Evidence for episodes of deflation in the northern lowlands Sandrine MERESSE1*, François COSTARD1, Nicolas MANGOLD1, David BARATOUX2, and Joseph M. BOYCE3 1Laboratoire IDES-Orsay, Université Paris-Sud, UMR 8148, Bat 509, 91405 Orsay, France 2Observatoire Midi-Pyrénées, UMR 5562, 31400 Toulouse, France 3Hawai’i Institute of Geophysics and Planetology, University of Hawai’i at Manoa, Honolulu, Hawai’i, USA *Corresponding author. E-mail: [email protected] (Received 28 October 2005; revision accepted 30 June 2006) Abstract–The northern lowland plains, such as those found in Acidalia and Utopia Planitia, have high percentages of impact craters with fluidized ejecta. In both regions, the analysis of crater geometry from Mars Orbiter Laser Altimeter (MOLA) data has revealed large ejecta volumes, some exceeding the volume of excavation. Moreover, some of the crater cavities and fluidized ejecta blankets of these craters are topographically perched above the surrounding plains. These perched craters are concentrated between 40 and 70°N in the northern plains. The atypical high volumes of the ejecta and the perched craters suggest that the northern lowlands have experienced one or more episodes of resurfacing that involved deposition and erosion. The removal of material, most likely caused by the sublimation of ice in the materials and their subsequent erosion and transport by the wind, is more rapid on the plains than on the ejecta blankets. The thermal inertia difference between the ejecta and the surrounding plains suggests that ejecta, characterized by a lower thermal inertia, protect the underneath terrain from sublimation.
    [Show full text]
  • 16. Ice in the Martian Regolith
    16. ICE IN THE MARTIAN REGOLITH S. W. SQUYRES Cornell University S. M. CLIFFORD Lunar and Planetary Institute R. O. KUZMIN V.I. Vernadsky Institute J. R. ZIMBELMAN Smithsonian Institution and F. M. COSTARD Laboratoire de Geographie Physique Geologic evidence indicates that the Martian surface has been substantially modified by the action of liquid water, and that much of that water still resides beneath the surface as ground ice. The pore volume of the Martian regolith is substantial, and a large amount of this volume can be expected to be at tem- peratures cold enough for ice to be present. Calculations of the thermodynamic stability of ground ice on Mars suggest that it can exist very close to the surface at high latitudes, but can persist only at substantial depths near the equator. Impact craters with distinctive lobale ejecta deposits are common on Mars. These rampart craters apparently owe their morphology to fluidhation of sub- surface materials, perhaps by the melting of ground ice, during impact events. If this interpretation is correct, then the size frequency distribution of rampart 523 524 S. W. SQUYRES ET AL. craters is broadly consistent with the depth distribution of ice inferred from stability calculations. A variety of observed Martian landforms can be attrib- uted to creep of the Martian regolith abetted by deformation of ground ice. Global mapping of creep features also supports the idea that ice is present in near-surface materials at latitudes higher than ± 30°, and suggests that ice is largely absent from such materials at lower latitudes. Other morphologic fea- tures on Mars that may result from the present or former existence of ground ice include chaotic terrain, thermokarst and patterned ground.
    [Show full text]
  • Photographs Written Historical and Descriptive
    CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY HAER FL-8-B BUILDING AE HAER FL-8-B (John F. Kennedy Space Center, Hanger AE) Cape Canaveral Brevard County Florida PHOTOGRAPHS WRITTEN HISTORICAL AND DESCRIPTIVE DATA HISTORIC AMERICAN ENGINEERING RECORD SOUTHEAST REGIONAL OFFICE National Park Service U.S. Department of the Interior 100 Alabama St. NW Atlanta, GA 30303 HISTORIC AMERICAN ENGINEERING RECORD CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY BUILDING AE (Hangar AE) HAER NO. FL-8-B Location: Hangar Road, Cape Canaveral Air Force Station (CCAFS), Industrial Area, Brevard County, Florida. USGS Cape Canaveral, Florida, Quadrangle. Universal Transverse Mercator Coordinates: E 540610 N 3151547, Zone 17, NAD 1983. Date of Construction: 1959 Present Owner: National Aeronautics and Space Administration (NASA) Present Use: Home to NASA’s Launch Services Program (LSP) and the Launch Vehicle Data Center (LVDC). The LVDC allows engineers to monitor telemetry data during unmanned rocket launches. Significance: Missile Assembly Building AE, commonly called Hangar AE, is nationally significant as the telemetry station for NASA KSC’s unmanned Expendable Launch Vehicle (ELV) program. Since 1961, the building has been the principal facility for monitoring telemetry communications data during ELV launches and until 1995 it processed scientifically significant ELV satellite payloads. Still in operation, Hangar AE is essential to the continuing mission and success of NASA’s unmanned rocket launch program at KSC. It is eligible for listing on the National Register of Historic Places (NRHP) under Criterion A in the area of Space Exploration as Kennedy Space Center’s (KSC) original Mission Control Center for its program of unmanned launch missions and under Criterion C as a contributing resource in the CCAFS Industrial Area Historic District.
    [Show full text]
  • Geophysical and Remote Sensing Study of Terrestrial Planets
    GEOPHYSICAL AND REMOTE SENSING STUDY OF TERRESTRIAL PLANETS A Dissertation Presented to The Academic Faculty By Lujendra Ojha In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy in Earth and Atmospheric Sciences Georgia Institute of Technology August, 2016 COPYRIGHT © 2016 BY LUJENDRA OJHA GEOPHYSICAL AND REMOTE SENSING STUDY OF TERRESTRIAL PLANETS Approved by: Dr. James Wray, Advisor Dr. Ken Ferrier School of Earth and Atmospheric School of Earth and Atmospheric Sciences Sciences Georgia Institute of Technology Georgia Institute of Technology Dr. Joseph Dufek Dr. Suzanne Smrekar School of Earth and Atmospheric Jet Propulsion laboratory Sciences California Institute of Technology Georgia Institute of Technology Dr. Britney Schmidt School of Earth and Atmospheric Sciences Georgia Institute of Technology Date Approved: June 27th, 2016. To Rama, Tank, Jaika, Manjesh, Reeyan, and Kali. ACKNOWLEDGEMENTS Thanks Mom, Dad and Jaika for putting up with me and always being there. Thank you Kali for being such an awesome girl and being there when I needed you. Kali, you are the most beautiful girl in the world. Never forget that! Thanks Midtown Tavern for the hangovers. Thanks Waffle House for curing my hangovers. Thanks Sarah Sutton for guiding me into planetary science. Thanks Alfred McEwen for the continued support and mentoring since 2008. Thanks Sue Smrekar for taking me under your wings and teaching me about planetary geodynamics. Thanks Dan Nunes for guiding me in the gravity world. Thanks Ken Ferrier for helping me study my favorite planet. Thanks Scott Murchie for helping me become a better scientist. Thanks Marion Masse for being such a good friend and a mentor.
    [Show full text]