Atoll Research Bulletin
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Country of Citizenship Active Exchange Visitors in 2017
Total Number of Active Exchange Visitors by Country of Citizenship in Calendar Year 2017 Active Exchange Visitors Country of Citizenship in 2017 AFGHANISTAN 418 ALBANIA 460 ALGERIA 316 ANDORRA 16 ANGOLA 70 ANTIGUA AND BARBUDA 29 ARGENTINA 8,428 ARMENIA 325 ARUBA 1 ASHMORE AND CARTIER ISLANDS 1 AUSTRALIA 7,133 AUSTRIA 3,278 AZERBAIJAN 434 BAHAMAS, THE 87 BAHRAIN 135 BANGLADESH 514 BARBADOS 58 BASSAS DA INDIA 1 BELARUS 776 BELGIUM 1,938 BELIZE 55 BENIN 61 BERMUDA 14 BHUTAN 63 BOLIVIA 535 BOSNIA AND HERZEGOVINA 728 BOTSWANA 158 BRAZIL 19,231 BRITISH VIRGIN ISLANDS 3 BRUNEI 44 BULGARIA 4,996 BURKINA FASO 79 BURMA 348 BURUNDI 32 CAMBODIA 258 CAMEROON 263 CANADA 9,638 CAPE VERDE 16 CAYMAN ISLANDS 1 CENTRAL AFRICAN REPUBLIC 27 CHAD 32 Total Number of Active Exchange Visitors by Country of Citizenship in Calendar Year 2017 CHILE 3,284 CHINA 70,240 CHRISTMAS ISLAND 2 CLIPPERTON ISLAND 1 COCOS (KEELING) ISLANDS 3 COLOMBIA 9,749 COMOROS 7 CONGO (BRAZZAVILLE) 37 CONGO (KINSHASA) 95 COSTA RICA 1,424 COTE D'IVOIRE 142 CROATIA 1,119 CUBA 140 CYPRUS 175 CZECH REPUBLIC 4,048 DENMARK 3,707 DJIBOUTI 28 DOMINICA 23 DOMINICAN REPUBLIC 4,170 ECUADOR 2,803 EGYPT 2,593 EL SALVADOR 463 EQUATORIAL GUINEA 9 ERITREA 10 ESTONIA 601 ETHIOPIA 395 FIJI 88 FINLAND 1,814 FRANCE 21,242 FRENCH GUIANA 1 FRENCH POLYNESIA 25 GABON 19 GAMBIA, THE 32 GAZA STRIP 104 GEORGIA 555 GERMANY 32,636 GHANA 686 GIBRALTAR 25 GREECE 1,295 GREENLAND 1 GRENADA 60 GUATEMALA 361 GUINEA 40 Total Number of Active Exchange Visitors by Country of Citizenship in Calendar Year 2017 GUINEA‐BISSAU -
MARS an Overview of the 1985–2006 Mars Orbiter Camera Science
MARS MARS INFORMATICS The International Journal of Mars Science and Exploration Open Access Journals Science An overview of the 1985–2006 Mars Orbiter Camera science investigation Michael C. Malin1, Kenneth S. Edgett1, Bruce A. Cantor1, Michael A. Caplinger1, G. Edward Danielson2, Elsa H. Jensen1, Michael A. Ravine1, Jennifer L. Sandoval1, and Kimberley D. Supulver1 1Malin Space Science Systems, P.O. Box 910148, San Diego, CA, 92191-0148, USA; 2Deceased, 10 December 2005 Citation: Mars 5, 1-60, 2010; doi:10.1555/mars.2010.0001 History: Submitted: August 5, 2009; Reviewed: October 18, 2009; Accepted: November 15, 2009; Published: January 6, 2010 Editor: Jeffrey B. Plescia, Applied Physics Laboratory, Johns Hopkins University Reviewers: Jeffrey B. Plescia, Applied Physics Laboratory, Johns Hopkins University; R. Aileen Yingst, University of Wisconsin Green Bay Open Access: Copyright 2010 Malin Space Science Systems. This is an open-access paper distributed under the terms of a Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: NASA selected the Mars Orbiter Camera (MOC) investigation in 1986 for the Mars Observer mission. The MOC consisted of three elements which shared a common package: a narrow angle camera designed to obtain images with a spatial resolution as high as 1.4 m per pixel from orbit, and two wide angle cameras (one with a red filter, the other blue) for daily global imaging to observe meteorological events, geodesy, and provide context for the narrow angle images. Following the loss of Mars Observer in August 1993, a second MOC was built from flight spare hardware and launched aboard Mars Global Surveyor (MGS) in November 1996. -
Martian Crater Morphology
ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter. -
1 ITALY Europe 2 USA North America 3 BRASIL South America 4
1 ITALY Europe 2 USA North America 3 BRASIL South America 4 ARGENTINA South America 5 VENEZUELA South America 6 COLOMBIA South America 7 NETHERLANDS ANTILLES Deleted South America 8 PERU South America 9 CANADA North America 10 MEXICO North America 11 PUERTO RICO North America 12 URUGUAY South America 13 GERMANY Europe 14 FRANCE Europe 15 SWITZERLAND Europe 16 BELGIUM Europe 17 HAWAII Oceania 18 GREECE Europe 19 HOLLAND Europe 20 NORWAY Europe 21 SWEDEN Europe 22 FRENCH GUYANA South America 23 JAMAICA North America 24 PANAMA North America 25 JAPAN Asia 26 ENGLAND Europe 27 ICELAND Europe 28 HONDURAS North America 29 IRELAND Europe 30 SPAIN Europe 31 PORTUGAL Europe 32 CHILE South America 33 ALASKA North America 34 CANARY ISLANDS Africa 35 AUSTRIA Europe 36 SAN MARINO Europe 37 DOMINICAN REPUBLIC North America 38 GREENLAND North America 39 ANGOLA Africa 40 LIECHTENSTEIN Europe 41 NEW ZEALAND Oceania 42 LIBERIA Africa 43 AUSTRALIA Oceania 44 SOUTH AFRICA Africa 45 REPUBLIC OF SERBIA Europe 46 EAST GERMANY Deleted Europe 47 DENMARK Europe 48 SAUDI ARABIA Asia 49 BALEARIC ISLANDS Europe 50 RUSSIA Europe 51 ANDORA Europe 52 FAROER ISLANDS Europe 53 EL SALVADOR North America 54 LUXEMBOURG Europe 55 GIBRALTAR Europe 56 FINLAND Europe 57 INDIA Asia 58 EAST MALAYSIA Oceania 59 DODECANESE ISLANDS Europe 60 HONG KONG Asia 61 ECUADOR South America 62 GUAM ISLAND Oceania 63 ST HELENA ISLAND Africa 64 SENEGAL Africa 65 SIERRA LEONE Africa 66 MAURITANIA Africa 67 PARAGUAY South America 68 NORTHERN IRELAND Europe 69 COSTA RICA North America 70 AMERICAN -
Climatology, Variability, and Return Periods of Tropical Cyclone Strikes in the Northeastern and Central Pacific Ab Sins Nicholas S
Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School March 2019 Climatology, Variability, and Return Periods of Tropical Cyclone Strikes in the Northeastern and Central Pacific aB sins Nicholas S. Grondin Louisiana State University, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Climate Commons, Meteorology Commons, and the Physical and Environmental Geography Commons Recommended Citation Grondin, Nicholas S., "Climatology, Variability, and Return Periods of Tropical Cyclone Strikes in the Northeastern and Central Pacific asinB s" (2019). LSU Master's Theses. 4864. https://digitalcommons.lsu.edu/gradschool_theses/4864 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. CLIMATOLOGY, VARIABILITY, AND RETURN PERIODS OF TROPICAL CYCLONE STRIKES IN THE NORTHEASTERN AND CENTRAL PACIFIC BASINS A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The Department of Geography and Anthropology by Nicholas S. Grondin B.S. Meteorology, University of South Alabama, 2016 May 2019 Dedication This thesis is dedicated to my family, especially mom, Mim and Pop, for their love and encouragement every step of the way. This thesis is dedicated to my friends and fraternity brothers, especially Dillon, Sarah, Clay, and Courtney, for their friendship and support. This thesis is dedicated to all of my teachers and college professors, especially Mrs. -
CALIFORNIA STATE UNIVERSITY, NORTHRIDGE FORECASTING CALIFORNIA THUNDERSTORMS a Thesis Submitted in Partial Fulfillment of the Re
CALIFORNIA STATE UNIVERSITY, NORTHRIDGE FORECASTING CALIFORNIA THUNDERSTORMS A thesis submitted in partial fulfillment of the requirements For the degree of Master of Arts in Geography By Ilya Neyman May 2013 The thesis of Ilya Neyman is approved: _______________________ _________________ Dr. Steve LaDochy Date _______________________ _________________ Dr. Ron Davidson Date _______________________ _________________ Dr. James Hayes, Chair Date California State University, Northridge ii TABLE OF CONTENTS SIGNATURE PAGE ii ABSTRACT iv INTRODUCTION 1 THESIS STATEMENT 12 IMPORTANT TERMS AND DEFINITIONS 13 LITERATURE REVIEW 17 APPROACH AND METHODOLOGY 24 TRADITIONALLY RECOGNIZED TORNADIC PARAMETERS 28 CASE STUDY 1: SEPTEMBER 10, 2011 33 CASE STUDY 2: JULY 29, 2003 48 CASE STUDY 3: JANUARY 19, 2010 62 CASE STUDY 4: MAY 22, 2008 91 CONCLUSIONS 111 REFERENCES 116 iii ABSTRACT FORECASTING CALIFORNIA THUNDERSTORMS By Ilya Neyman Master of Arts in Geography Thunderstorms are a significant forecasting concern for southern California. Even though convection across this region is less frequent than in many other parts of the country significant thunderstorm events and occasional severe weather does occur. It has been found that a further challenge in convective forecasting across southern California is due to the variety of sub-regions that exist including coastal plains, inland valleys, mountains and deserts, each of which is associated with different weather conditions and sometimes drastically different convective parameters. In this paper four recent thunderstorm case studies were conducted, with each one representative of a different category of seasonal and synoptic patterns that are known to affect southern California. In addition to supporting points made in prior literature there were numerous new and unique findings that were discovered during the scope of this research and these are discussed as they are investigated in their respective case study as applicable. -
The Political, Security, and Climate Landscape in Oceania
The Political, Security, and Climate Landscape in Oceania Prepared for the US Department of Defense’s Center for Excellence in Disaster Management and Humanitarian Assistance May 2020 Written by: Jonah Bhide Grace Frazor Charlotte Gorman Claire Huitt Christopher Zimmer Under the supervision of Dr. Joshua Busby 2 Table of Contents Executive Summary 3 United States 8 Oceania 22 China 30 Australia 41 New Zealand 48 France 53 Japan 61 Policy Recommendations for US Government 66 3 Executive Summary Research Question The current strategic landscape in Oceania comprises a variety of complex and cross-cutting themes. The most salient of which is climate change and its impact on multilateral political networks, the security and resilience of governments, sustainable development, and geopolitical competition. These challenges pose both opportunities and threats to each regionally-invested government, including the United States — a power present in the region since the Second World War. This report sets out to answer the following questions: what are the current state of international affairs, complexities, risks, and potential opportunities regarding climate security issues and geostrategic competition in Oceania? And, what policy recommendations and approaches should the US government explore to improve its regional standing and secure its national interests? The report serves as a primer to explain and analyze the region’s state of affairs, and to discuss possible ways forward for the US government. Given that we conducted research from August 2019 through May 2020, the global health crisis caused by the novel coronavirus added additional challenges like cancelling fieldwork travel. However, the pandemic has factored into some of the analysis in this report to offer a first look at what new opportunities and perils the United States will face in this space. -
Tinamiformes – Falconiformes
LIST OF THE 2,008 BIRD SPECIES (WITH SCIENTIFIC AND ENGLISH NAMES) KNOWN FROM THE A.O.U. CHECK-LIST AREA. Notes: "(A)" = accidental/casualin A.O.U. area; "(H)" -- recordedin A.O.U. area only from Hawaii; "(I)" = introducedinto A.O.U. area; "(N)" = has not bred in A.O.U. area but occursregularly as nonbreedingvisitor; "?" precedingname = extinct. TINAMIFORMES TINAMIDAE Tinamus major Great Tinamou. Nothocercusbonapartei Highland Tinamou. Crypturellus soui Little Tinamou. Crypturelluscinnamomeus Thicket Tinamou. Crypturellusboucardi Slaty-breastedTinamou. Crypturellus kerriae Choco Tinamou. GAVIIFORMES GAVIIDAE Gavia stellata Red-throated Loon. Gavia arctica Arctic Loon. Gavia pacifica Pacific Loon. Gavia immer Common Loon. Gavia adamsii Yellow-billed Loon. PODICIPEDIFORMES PODICIPEDIDAE Tachybaptusdominicus Least Grebe. Podilymbuspodiceps Pied-billed Grebe. ?Podilymbusgigas Atitlan Grebe. Podicepsauritus Horned Grebe. Podicepsgrisegena Red-neckedGrebe. Podicepsnigricollis Eared Grebe. Aechmophorusoccidentalis Western Grebe. Aechmophorusclarkii Clark's Grebe. PROCELLARIIFORMES DIOMEDEIDAE Thalassarchechlororhynchos Yellow-nosed Albatross. (A) Thalassarchecauta Shy Albatross.(A) Thalassarchemelanophris Black-browed Albatross. (A) Phoebetriapalpebrata Light-mantled Albatross. (A) Diomedea exulans WanderingAlbatross. (A) Phoebastriaimmutabilis Laysan Albatross. Phoebastrianigripes Black-lootedAlbatross. Phoebastriaalbatrus Short-tailedAlbatross. (N) PROCELLARIIDAE Fulmarus glacialis Northern Fulmar. Pterodroma neglecta KermadecPetrel. (A) Pterodroma -
GENERAL AGREEMENT on ^ TARIFFS and TRADE *> *****1958
GENERAL AGREEMENT ON ^ TARIFFS AND TRADE *> *****1958 Limited Distribution APPLICATION OF THE GENERAL AGREEMENT Territories to which the Agreement is applied Annexed hereto is a list of the contracting parties and of the territories (according to information available to the secretariat) in respect of which the application of the Agreement has been made effective. This list is a revision of that which appeared in document G/5 under date of 17 March 1952. If there are any inaccuracies in this list, the contracting parties concerned are requested to notify the Executive Secretary not later than 1 October 1958 so that a revised list can be issued, if necessary, before the opening of the Thirteenth Session* L/843 Paee 2 Contracting parties to GATT and territories In respeot ot which the application of the Agreement has been made affective AUSTRALIA (Including Tasmania) AUSTRIA BELGIUM BELGIAN CONGO RUANDA-URUNDI (Trust Territory) BRAZIL (Including islands: Fernando de Noronha (including Rocks of Sao Pedro, Sao Paolo, Atoll das Rocas) Trinidad and Martim Vas) BURMA CANADA CEYLON CHILE (Including the islands of: Juan Fernandez group, Easter Islands, Sala y Gomez, San Feliz, San Ambrosio and western part of Tierra del Fuego) CUBA (Including Isle of Pines and some smaller islands) CZECHOSLOVAKIA DENMARK (Including Greenland and the Island of Disko, Faroe Islands, Islands of Zeeland, Funen, Holland, Falster, Bornholm and some 1700 small islands) DOMINICAN REPUBLIC (Including islands: Saona, Catalina, Beata and some smaller ones) FINLAND FRANCE (Including Corsica and Islands off the French Coast, the Saar and the principality of Monaco)! ALGERIA CAMEROONS (Trust Territory) FRENCH EQUATORIAL AFRICA FRENCH GUIANA (Including islands of St. -
Mariner to Mercury, Venus and Mars
NASA Facts National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109 Mariner to Mercury, Venus and Mars Between 1962 and late 1973, NASA’s Jet carry a host of scientific instruments. Some of the Propulsion Laboratory designed and built 10 space- instruments, such as cameras, would need to be point- craft named Mariner to explore the inner solar system ed at the target body it was studying. Other instru- -- visiting the planets Venus, Mars and Mercury for ments were non-directional and studied phenomena the first time, and returning to Venus and Mars for such as magnetic fields and charged particles. JPL additional close observations. The final mission in the engineers proposed to make the Mariners “three-axis- series, Mariner 10, flew past Venus before going on to stabilized,” meaning that unlike other space probes encounter Mercury, after which it returned to Mercury they would not spin. for a total of three flybys. The next-to-last, Mariner Each of the Mariner projects was designed to have 9, became the first ever to orbit another planet when two spacecraft launched on separate rockets, in case it rached Mars for about a year of mapping and mea- of difficulties with the nearly untried launch vehicles. surement. Mariner 1, Mariner 3, and Mariner 8 were in fact lost The Mariners were all relatively small robotic during launch, but their backups were successful. No explorers, each launched on an Atlas rocket with Mariners were lost in later flight to their destination either an Agena or Centaur upper-stage booster, and planets or before completing their scientific missions. -
Martian Perched Craters and Large Ejecta Volume: Evidence for Episodes of Deflation in the Northern Lowlands
Meteoritics & Planetary Science 41, Nr 10, 1647–1658 (2006) Abstract available online at http://meteoritics.org Martian perched craters and large ejecta volume: Evidence for episodes of deflation in the northern lowlands Sandrine MERESSE1*, François COSTARD1, Nicolas MANGOLD1, David BARATOUX2, and Joseph M. BOYCE3 1Laboratoire IDES-Orsay, Université Paris-Sud, UMR 8148, Bat 509, 91405 Orsay, France 2Observatoire Midi-Pyrénées, UMR 5562, 31400 Toulouse, France 3Hawai’i Institute of Geophysics and Planetology, University of Hawai’i at Manoa, Honolulu, Hawai’i, USA *Corresponding author. E-mail: [email protected] (Received 28 October 2005; revision accepted 30 June 2006) Abstract–The northern lowland plains, such as those found in Acidalia and Utopia Planitia, have high percentages of impact craters with fluidized ejecta. In both regions, the analysis of crater geometry from Mars Orbiter Laser Altimeter (MOLA) data has revealed large ejecta volumes, some exceeding the volume of excavation. Moreover, some of the crater cavities and fluidized ejecta blankets of these craters are topographically perched above the surrounding plains. These perched craters are concentrated between 40 and 70°N in the northern plains. The atypical high volumes of the ejecta and the perched craters suggest that the northern lowlands have experienced one or more episodes of resurfacing that involved deposition and erosion. The removal of material, most likely caused by the sublimation of ice in the materials and their subsequent erosion and transport by the wind, is more rapid on the plains than on the ejecta blankets. The thermal inertia difference between the ejecta and the surrounding plains suggests that ejecta, characterized by a lower thermal inertia, protect the underneath terrain from sublimation. -
Tropical Cyclone Effects on California
/ i' NOAA Technical Memorandum NWS WR-~ 1s-? TROPICAL CYCLONE EFFECTS ON CALIFORNIA Salt Lake City, Utah October 1980 u.s. DEPARTMENT OF I National Oceanic and National Weather COMMERCE Atmospheric Administration I Service NOAA TECHNICAL ME~RANOA National Weather Service, Western R@(Jfon Suhseries The National Weather Service (NWS~ Western Rl!qion (WR) Sub5eries provide! an informal medium for the documentation and nUlck disseminuion of l"'eSUlts not appr-opriate. or nnt yet readY. for formal publication. The series is used to report an work in pronf"'!ss. to rie-tJ:cribe tl!1:hnical procedures and oractice'S, or to relate proqre5 s to a Hmitfd audience. The~J:e Technical ~ranc1i!l will report on investiqations rit'vot~ or'imaroi ly to rl!nionaJ and local orablems of interest mainly to personnel, "'"d • f,. nence wUl not hi! 'l!lidely distributed. Pacer<; I to Z5 are in the fanner series, ESSA Technical Hetooranda, Western Reqion Technical ~-··•nda (WRTMI· naoors 24 tn 59 are i·n the fanner series, ESSA Technical ~-rando, W.othel" Bureou Technical ~-randa (WSTMI. aeqinniM with "n. the oaoers are oa"t of the series. ltOAA Technical >4emoranda NWS. Out·of·print .....,rond1 are not listed. PanfiM ( tn 22, except for 5 {revised erlitinn), ar'l! availabll! froM tt'lt Nationm1 Weattuu• Service Wesurn Ret1inn. )cientific ~•,.,irr• Division, P.O. Box lllAA, Federal RuildiM, 125 South State Street, Salt La~• City, Utah R4147. Pacer 5 (revised •rlitinnl. and all nthei"S beqinninq ~ith 25 are available from the National rechnical Information Sel'"lice. II.S.