Report for DG JRC in the Context of Contract JRC/PTT/2015/F.3/0027/NC “Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources”

European Unconventional Oil and Gas Assessment (EUOGA)

Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources

Appendix Volume

Deliverable T6b

mmmll

Overview of shale layers characteristics in Europe

Table of Contents

Table of Contents ...... 31 Appendix A Shale layer overview ...... 33 Appendix B Shale layer characteristics for EUOGA shales ...... 46 Appendix C Shale layer characteristics for reference shales ...... 131 Appendix D Bibliography of European shale layer relevant literature ...... 151

Delivery T6b. Appendix Volume A-D February 2017 31

Overview of shale layers characteristics in Europe

This report is prepared by Niels H. Schovsbo with contributions from Karen L. Anthonsen, Christian B. Pedersen, and Lisbeth Tougaard, all from the Geological Survey of Denmark and Greenland (GEUS), as part of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET.

The analyses, interpretations and opinions expressed in this report represent the best judgments of the Geological Survey of Denmark and Greenland (GEUS). This report assumes no responsibility and makes no warranty or representations as to the productivity of any oil, gas or other mineral well. All analyses, interpretations, conclusions and opinions are based on observations made on material supplied by the European National Geological Surveys (NGS’s) in 2016. The information and views set out in this study are those of the authors and do not necessarily reflect the official opinion of the Commission. The Commission does not guarantee the accuracy of the data included in this study. Neither the Commission nor any person acting on the Commission’s behalf may be held responsible for the use which may be made of the information contained therein.

No third-party textual or artistic material is included in the publication without the copyright holder’s prior consent to further dissemination and reuse by other third parties. Reproduction is authorised provided the source is acknowledged.

All will presented in here will be available through an interactive Web-GIS application hosted at the European Commission's science and knowledge service, the Joint Research Centre (JRC-IET).

Citation to this report is: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix Volume.

The report is the final version (revision 0) issued in February 2017 and replaces previous issued T6a reports.

Delivery T6b. Appendix Volume A-D February 2017 32

Overview of shale layers characteristics in Europe

Appendix A Shale layer overview

Delivery T6b. Appendix Volume A-D February 2017 33 Appendix A Shale layer overview Overview of shale layers characteristics in Europe

CP index Shale Name Age

1001 Zebrus Lower

1002 Raikiula‐Adavere Llandovery (Early )

1003 Fjäcka‐Mossen (Oandu‐Vormsi) Late Ordovician (Katian)

1004 Lemeš Late (Kimmeridgian ‐Tithonian) 1005 Meride Fm (Besano Fm and Perledo mob) Ladinian 1006 Riva di solto shales (lower lithozone) Norian 1007 Marne di Bruntino Aptian‐Albian 1008 Emma limestones Upper ‐Lower Jurassic 1009 Marne di Monte Serrone Jurassic (Toarcian) 1010 Marne a Fucoidi (Aptian‐Albian)

1011 Argille Lignitifere Tortonian‐Messinian 1012 Noto Shale Rhaetian 1013 Streppenosa Shale Norian‐Rhaetian‐Hettangian

1014 Alum Shale Formation M. ‐E. Ordovician 1015 Alum Shale Formation M. Cambrian‐E. Ordovician

1016 Alum Shale Formation M. Cambrian‐E. Ordovician 1017 Alum Shale Formation M. Cambrian‐E. Ordovician 1018 Mikulov Marl Malmian (Upper Jurassic) 1019 Alum Shale Formation M. Cambrian‐L Ordovician 1020 Catalonian Chain Carboniferous 2021 Iberian Lower Cretaceous Lower Cretaceous 1022 Iberian Carboniferous Carboniferous 1023 Duero Carboniferous Carboniferous 1024 Ebro Carboniferous Carboniferous 1025 Ebro Eocene Eocene 1026 Guadalquivir Carboniferous Carboniferous 1027 Basque‐Cantabrian Liassic Lower Jurassic (Liassic) 1028 Basque‐Cantabrian Lower Cretaceous Lower Cretaceous 1029 Basque‐Cantabrian Upper Cretaceous Upper Cretaceous 1030 Basque‐Cantabrian Carboniferous Carboniferous 1031 Cantabrian Massif Carboniferous Carboniferous 1032 Pyrenees Liassic Lower Jurassic (Liassic) 1033 Cantabrian Massif Silurian Silurian 1034 Pyrenees Lower Cretaceous Lower Cretaceous 1035 Pyrenees Eocene Eocene 1038 Tandarei graptolitic black shales U Ordovician U Silurian L 1039 Calarasi bituminous limestones U Devonian‐ L Carboniferous 1040 Vlasin black shale Formation U Carboniferous 1041 Biogenic shale U Badenian 1042 Biogenic shale L Sarmatian

1043 East Ukraine shales Carboniferous to 1045 Westphalian A and B Formations Westphalian A and B (Early‐Pennsylvanian) 1046 Chokier shales Namurian (U‐Mississippian) 1047 Chokier alum shales Namurian (U‐Mississippian) 1048 Chokier & Souvré hot shales Namurian (U Mississippian) 1049 Kössen Marl Upper Triassic, Late Norian to Rhaetian 1050 Tard Clay Oligocene 1051 Lower Palaeozoic shales Upper Cambrian to Llandovery 1052 Lower Palaeozoic shales Upper Cambrian to Llandovery

1053 Lower Palaeozoic shales Silurian (Llandovery to Wenlock)

1054 Lower Palaeozoic shales Silurian (Llandovery to Wenlock) 1055 Upper Palaeozoic shales Carboniferous

1056 Lower Paleozoic shales Silurian to Lower Devonian

Delivery T6b. Appendix Volume February 2017 34 Appendix A Shale layer overview Overview of shale layers characteristics in Europe

CP index Shale Name Age

Upper Paleozoic shale & coal succession Trigorska Lower carboniferous (Middle Mississippian, Upper 1057 & Konarska Fms Visean) J1 shale & clay limestones Ozirovo Fm (Bucorovo 1058 & Dolnilucovt Mbs) Jurassic (Sinemurian ‐ Toarcian) 1059 J2 shale Etropole Fm (Stefanets Mb) Aalenian Lower Bajocian Oligocene shale Ruslar Fm (equivalent of Maykop 1060 Fm) Oligocene

1061 Upper Ordovician‐Llandovery Shales Late Ordovician – Silurian (Llandovery) 1062 Black shale Lower Silurian 1063 Mikulov Marl Malmian (Upper Jurassic)

1064 Geverik Shale Member Namurian A 1065 Formation Toarcian (Jurassic)

1066 ‐Špilje Fm. Shale Neogene: Karpatian and Badenian

1067 Haloze‐Špilje Fm. Shale Neogene: Karpatian and Badenian

1068 Haloze‐Špilje Fm. Sandstone Neogene: Karpatian and Badenian

1069 Haloze‐Špilje Fm. Sandstone Neogene: Karpatian and Badenian

1070 Kimmeridge Clay U. Jurassic 1071 Limestone Coal Formation Carboniferous (Pendleian) 1072 West Lothian Oil Shale unit Carboniferous 1073 Lower Limestone Formation Carboniferous

1074 Mid Lias Clay Jurassic

1075 Oxford Clay U. Jurassic (Oxfordian)

1076 Upper Lias Clay Jurassic 1077 Bowland ‐Hodder unit Carboniferous

1078 Corallian Clay Jurassic (Oxfordian) 1079 Gullane Unit Carboniferous 1080 Permo‐carboniferous shales Westphalian to Autunian 1081 Autunian shales Permian 1082 Promicroceras Shales Jurassic, Sinemurian 1083 Amaltheus Shales Jurassic, Pliensbachian 1084 Schistes Cartons Fm Jurassic, Toarcian 1085 Sainte Suzanne Marls Bedoulian' = Aptian

1086 Myslejovice Fm. (Culm) L. Carboniferous (Visean) 1087 Lias shales Jurassic 2012 Posidonia Lower Jurassic 2013 Alaunschiefer Carboniferous

2001 Alum Shale Formation M. Cambrian‐L Ordovician 2002 Marcellus Devonian 2003 Haynesville Late Jurassic 2004 Bossier Late Jurassic 2005 Barnett Mississippian 2006 Fayetteville Mississippian 2007 Muskwa Devonian 2008 Woodford Devonian 2009 Eagle Ford Cretaceous 2010 Utica Ordovician 2011 Montney Triassic 2014 Mean EUOGA 2016 Mean L. Palaeozoic EUOGA shale 2017 Mean Carboniferous EUOGA shale 2018 Mean Jurassic EUOGA shale 2015 Mean N. American Shales 2019 Antrim Devonian

Delivery T6b. Appendix Volume February 2017 35 Appendix A Shale layer overview Overview of shale layers characteristics in Europe

CP index Basin Structural setting

1001 Baltic Foreland basin setting. Structural setting simple

1002 Baltic Foreland basin setting. Structural setting simple

1003 Baltic Foreland basin setting. Structural setting simple

1004 Dinaric Mts. Outer Dinarides, Intraplatform shallow through 1005 Lombardy Passive margin; synrift extensional tectonic 1006 Lombardy Passive margin; synrift extensional tectonic 1007 Lombardy Passive margin; synrift extensional tectonic 1008 Emma Basin Passive margin; synrift extensional tectonic 1009 Umbria‐Marche Basin Passive margin; synrift extensional tectonic 1010 Umbria‐Marche Basin Passive margin; synrift extensional tectonic extensional tectonic; opening of the Tyrrhenian 1011 Ribolla Basin basin 1012 Ragusa Foreland basin 1013 Ragusa Foreland basin

1014 Baltic gently dipping succession to the south‐south‐east 1015 Sorgenfrei Tornquist Zone complex. Inversion in L. Cretaceous Foreland basin, Complex Variscan and Alpine wrench 1016 Danish Basin, Höllviken Half graben faulting 1017 Fennoscandian Shield Shield platform 1018 Vienna Basin Passive margin 1019 Norwegian‐Danish Passive margin; synrift extensional tectonic 1020 Catalonian Chain High complexity 2021 Iberian Medium complexity 1022 Iberian High complexity 1023 Duero High complexity 1024 Ebro High complexity 1025 Ebro Low complexity 1026 Guadalquivir High complexity 1027 Basque‐Cantabrian Medium complexity 1028 Basque‐Cantabrian Medium complexity 1029 Basque‐Cantabrian Medium complexity 1030 Basque‐Cantabrian High complexity 1031 Cantabrian Massif High complexity 1032 Pyrenees Medium complexity 1033 Cantabrian Massif High complexity 1034 Pyrenees Medium complexity 1035 Pyrenees Low complexity 1038 Moesian Platform foreland basin 1039 Moesian Platform foreland basin 1040 Moesian Platform foreland basin 1041 Transilvanian back‐arc basin 1042 Transilvanian back‐arc basin Dniprovsko‐Donetska Depression, south ‐eastern south‐eastern part of Dniprovsko‐Donetska 1043 part Depression 1045 Campine Basin Foreland basin 1046 Mons Basin Foreland basin 1047 Liège Basin Variscan orogenic front and foreland 1048 Campine Basin low to moderate 1049 Zala Basin 1050 Hungarian Paleogene 1051 Baltic Basin (assessment area 1) simple 1052 Płock‐Warsaw zone (assessment area 2) simple Podlasie Basin and North Lublin Basin (assessment 1053 area 3) simple to complex South Lublin Basin and Narol Basin (assessment 1054 area 4) complex 1055 Fore‐Sudetic Monocline (assessment area 5) complex Moesian Platform, Structural unit: North 1056 Bulgarian Uplift extensional ‐ passive margin

Delivery T6b. Appendix Volume February 2017 36 Appendix A Shale layer overview Overview of shale layers characteristics in Europe

CP index Basin Structural setting

Moesian Platform‐North Bulgarian Uplift, 1057 Alexandria depression, Southern Dobudja extension (orogeny collapse) Moesian Platform ‐ Moesian Platform & Fore 1058 Balkan extension (Passive margin) 1059 Moesian Platform and fore Balkan extension (Passive margin)

1060 Kamchia basin (part of Black Sea basin) compression (Fore deep)

1061 Baltic foreland basin setting; structural complexity low 1062 Lviv‐Volyn 1063 Vienna Basin; SE Bohemian Massif Passive margin

1064 Northwest European Carboniferousn Basi 1065 West Netherlands Basin/Broad 14s Basin Large amounts of faults, some inverse tectonics Gas mature part Mura‐Zala Basin (NW part of the 1066 Pannonian basin System Sub‐basins (depressions) and inverse antiforms Oil mature part of Mura‐Zala Basin (NW part of 1067 the Pannonian basin System Sub‐basins (depressions) and inverse antiforms Gas mature part Mura‐Zala Basin (NW part of the 1068 Pannonian basin System Sub‐basins (depressions) and inverse antiforms Oil mature part of Mura‐Zala Basin (NW part of 1069 the Pannonian basin System Sub‐basins (depressions) and inverse antiforms

1070 Weald Basin, SE England 1071 Midland Valley, Scotland 1072 Midland Valley, Scotland 1073 Midland Valley, Scotland

1074 Weald Basin, SE England

1075 Weald Basin, SE England

1076 Weald Basin, SE England 1077 Northern England

1078 Weald Basin, SE England 1079 Midland Valley, Scotland 1080 Paris Basin, Lorraine, Alsace, South‐East Basin Post‐orogenic distensive basins 1081 Autun Post‐orogenic distensive basins 1082 Paris Basin Sag basin 1083 Paris Basin Sag basin 1084 Paris Basin, Jura, South‐East sag & syn‐rift 1085 Aquitaine Basin post‐rift series Variscan syntectonic foreland basin ‐ compressional setting during and shortly after 1086 Culm Basin; SE Bohemian Massif deposition 1087 Lusitanian 2012 2013 Germany

2001 Norwegian‐Danish Passive margin; synrift extensional tectonic 2002 Appalachian 2003 East Texas ‐ North Louisiana 2004 East Texas ‐ North Louisiana 2005 Forth Worth 2006 Arkoma 2007 Horn River 2008 Arkoma 2009 Eagle Ford 2010 St Lawrence 2011 Western Canada 2014 2016 2017 2018 2015 2019 Michigan‐Biogenic

Delivery T6b. Appendix Volume February 2017 37 Appendix A Shale layer overview Overview of shale layers characteristics in Europe

CP index Facies variability Country 1. Area Offshore Onshore extend

1001 High Lateral continuity; facies variability moderate Latvia 3100 100 3000

1002 High Lateral continuity; facies variability moderate PL, LT, LV, EE, DK 16000 5000 11000

1003 High Lateral continuity; facies variability moderate LT, LV, PL, DK 15300 5000 10500

1004 Moderate lateral continuity and facies variability. 39 39 1005 High lateral and vertical variability. IT, SW 7743 0 7743 1006 High lateral and vertical variability. Italy 5500 0 5500 1007 High lateral and vertical variability. Italy 4069 0 4069 1008 High lateral and vertical variability. Italy 9365 5977 3388 1009 High lateral and vertical variability. Italy 20792 11813 8979 1010 High lateral and vertical variability. Italy 20791 11810 8981

1011 High lateral and vertical variability. Italy 5564 0 5564 1012 Medium facies variability Italy 5090 1190 3900 1013 Medium facies variability Italy 12600 8535 4065

1014 Inner and outer shelf black shale with anthraconite and limestone interbeds Sweden 10227 10121 106 1015 Outer shelf black shale with some limestone and antraconite interbeds Sweden 2835 450 2385

1016 Outer shelf black shale with some limestone and antraconite interbeds Sweden 1610 1106 504 1017 Inner black shale with limestone and antraconite interbeds Sweden 1497 1497 1018 Low lateral variability A, CZ 729 729 1019 Lateral continuity high and facies variability low. Denmark 29695 15902 13793 1020 Spain 500 500 2021 Spain 675 675 1022 Spain 750 750 1023 Spain 800 800 1024 Spain 750 750 1025 High laterally variability Spain 75 75 1026 High vertically. Lateral continuity high. Spain 650 650 1027 Laterally continuous Spain 2350 2350 1028 Spain 1800 1800 1029 Spain 1050 1050 1030 Spain 375 375 1031 High vertically variability Spain 1500 1500 1032 Laterally continuous Spain 500 500 1033 Spain 500 500 1034 Spain 200 200 1035 High laterally variability Spain 575 575 1038 Lateral variability Romania, Bulgaria 1039 Romania, Bulgaria 1040 Lateral variability Romania, Bulgaria 1041 Lateral variability Romania 20000 1042 Lateral variability Romania 20000

1043 Moderate lateral consistence and facial variability Ukraine 10500 10500 1045 Low to moderate variability Belgium, Netherland 708 708 1046 Complex Belgium 1047 Moderate Belgium (Wallonia) 16 16 1048 Belgium, Netherland 1812 1812 1049 720 1050 Hungary 7800 1051 Lateral continuity Poland 17821 17821 1052 Lateral continuity Poland 4599 4599

1053 Lateral continuity Poland 8703 8703

1054 Lateral continuity Poland 8465 8465 1055 High lateral and vertical variability. Poland 13179 13179

1056 Lateral continuity Bulgaria and Romania 1100 1100

Delivery T6b. Appendix Volume February 2017 38 Appendix A Shale layer overview Overview of shale layers characteristics in Europe

CP index Facies variability Country 1. Area Offshore Onshore extend

1057 Lateral continuity Bulgaria and Romania 12500 12500

1058 lateral and vertical continuity Bulgaria 10000 10000 1059 lateral and vertical continuity Bulgaria 11000 11000

1060 Lateral continuity Bulgaria 2110 210 1900 lateral continuity high and facies variability low; vertical variability 1061 moderate Lithuania 14800 5000 10000 1062 Marine ‐deep marine Ukraine 30669 0 30669 1063 low (basinal facies) CZ 1600 0 1600 Mudstones with sandstone intercalations, recurring cycles of delta 1064 progradation. Reasonable correlatability Netherlands 21232 12703 8529 1065 Low; correlatable over entire Dutch on‐ and offshore Netherlands 12400 6240 6160 , , 1066 Vertical and lateral; moderate to high Hungary, Croatia 914 914 Slovenia, Austria, 1067 Vertical and lateral; moderate to high Hungary, Croatia 1230 1230 Slovenia, Austria, 1068 Vertical and lateral; moderate to high Hungary, Croatia 914 914 Slovenia, Austria, 1069 Vertical and lateral; moderate to high Hungary, Croatia 1230 1230

1070 UK 1071 UK 1072 UK 1073 UK

1074 UK

1075 UK

1076 UK 1077 UK

1078 UK 1079 UK 1080 High lateral variability (fluvio‐lacustrine settings) France 0 35000 1081 High lateral variability (fluvio‐lacustrine settings) France 0 250 1082 Facies variability very low France 0 47000 1083 Facies variability very low France 0 21000 1084 Facies variability: Lateral continuety high and facies variability low. France, Germany 0 105000 1085 Facies variability: Lateral continuety high and facies variability low. France 0 2800

1086 moderate to low Cz 1000 1087 Pt 2012 Germany 2013 Germany Summary of 1014, 1016, 2001 Lateral continuity high and facies variability low. 1019 2002 North America 246049 246049 2003 North America 23310 23310 2004 North America 23310 23310 2005 North America 12950 12950 2006 North America 23310 23310 2007 North America 38850 38850 2008 North America 28490 28490 2009 North America 19425 19425 2010 North America 6475 6475 2011 North America 64750 64750 2014 Europe 6490 4489 5200 2016 Europe 9773 4668 7439 2017 Europe 4662 12703 3755 2018 Europe 6025 4513 3446 2015 North America 48692 0 48692 2019 North America

Delivery T6b. Appendix Volume February 2017 39 Appendix A Shale layer overview Overview of shale layers characteristics in Europe

CP index 2. Gros 2a. Net 2b. % 3. Avg. 4. Density 5. TOC 6. 7. Maturity 8. Res. Pres. 9. Res. thickness thickness Net/Gross Depth Porosity Temp.

1001 37 1572 1,9 41

1002 50 25 45 1700 2,47 4,2 5,7 0,87 1668 72

1003 16 8 45 1800 2,53 3,2 5,7 0,80 1668 71

1004 350 37 9 465 2,65 6,0 4,2 0,60 1005 250 25 10 5726 0,9 1,28 1006 200 5000 1,3 4,00 1007 80 10 13 2500 1,0 1008 250 15 6 6000 4,7 1009 13 5000 1,0 1010 20 4500 1,8

1011 40 8 20 1000 20,0 1,10 1012 275 20 7 2900 4,0 1013 1510 20 1 3500 0,8

1014 25 20 80 300 11,0 0,61 435 15 1015 80 76 95 800 2,54 7,5 6,1 2,29 28

1016 40 40 100 2300 3,00 1017 20 16 80 30 11,0 0,60 1018 525 5500 2,24 2 5,0 1,20 13900 150 1019 55 50 95 4250 2,45 9,0 7,0 1,60 7106 135 1020 75 1500 2,40 2021 105 600 2,10 0,5 1,05 1022 75 1500 2,35 1023 75 1700 2,30 1024 75 2825 2,35 1,0 1,50 1025 38 2400 2,15 1026 75 1500 2,45 3,7 1,60 1027 120 63 52 2200 2,15 2,5 1028 2000 125 6 1700 2,25 1,0 1029 125 2000 2,15 1030 38 1200 2,35 1031 275 3000 2,35 1032 185 115 62 3000 2,35 0,6 1,09 1033 70 2500 2,15 1034 85 1000 2,15 1035 60 2000 2,15 1,3 1038 625 2,1 1039 1250 1,2 1040 500 1041 1100 1042 1400

1043 2800 400 14 4500 2,67 1,8 3,0 1,50 6527 119 1045 515 30 6 1869 5,5 2,35 2786 62 1046 75 1750 1047 105 1650 1048 70 70 100 1838 2,38 8,2 1,6 3,09 1420 84 1049 200 200 100 2500 2,5 3,9 2 0,34 3225 165 1050 68 27 40 2150 2,50 2.21 10,0 0,48 3480 130 1051 65 40 62 2800 2,60 3,0 4,5 1,30 4100 74 1052 50 50 100 4430 2,60 2,8 4,5 3,00 6500 129

1053 130 40 31 2025 2,60 2,8 4,5 1,30 3000 68

1054 120 30 23 2995 2,60 2,5 4,5 2,00 4400 80 1055 430 55 12 2500 2,60 2,6 3,6 1,50 4000 85

1056 1350 540 40 2200 2,40 1,8 2,0 1,60 4200 100

Delivery T6b. Appendix Volume February 2017 40 Appendix A Shale layer overview Overview of shale layers characteristics in Europe

CP index 2. Gros 2a. Net 2b. % 3. Avg. 4. Density 5. TOC 6. 7. Maturity 8. Res. Pres. 9. Res. thickness thickness Net/Gross Depth Porosity Temp.

1057 1100 495 45 2250 2,35 1,8 2,8 1,10 4750 110

1058 150 68 45 3500 2,40 1,2 3,0 0,80 5200 122 1059 100 60 60 3350 2,30 1,4 2,8 0,75 4800 110

1060 600 355 60 250 2,30 2,1 3,3 0,40 350 18

1061 50 20 40 1800 2,49 4,1 5,7 0,85 1668 71 1062 2296 1504 65 2821 2,70 1,1 4,4 2,50 1063 650 650 100 5500 2,52 1,9 4,4 0,70 4786 150

1064 50 50 100 3700 2,71 2,0 1,5 2,50 370 125 1065 30 27 90 2000 5,7 7,0 0,80 5880 78

1066 685 685 100 2900 2,30 1,0 2,0 1,29 4500 130

1067 660 660 100 2800 2,30 1,0 2,0 0,86 4500 130

1068 365 365 100 2900 2,30 1,0 9,5 1,29 5000 147

1069 355 355 100 2800 2,30 1,0 9,5 0,86 5000 147

1070 2,60 10,9 0,60 1071 1151 2,60 4,1 1,10 1072 1050 2,60 2,7 1,10 1073 1016 2,60 3,1 1,10

1074 20 2,60 1,2 0,60

1075 30 2,60 6,4 0,60

1076 20 2,60 3,0 0,60 1077 2,60 1,8 3263

1078 27 2,60 0,60 1079 1570 2,60 2,2 1,10 1080 200 1000 1,0 440,00 1081 1000 45 5 300 1082 25 0,7 1083 20 3,0 1084 40 13 0 800 4,0 440,00 1085 600 1,5

1086 1250 250 20 7000 2,68 11,3 13,0 2,20 10287 210 1087 4,1 10,0 1,15 2012 60 2,40 4,3 11,8 1,17 2013 260 2,70 3,0 10,1 2,21

2001 90 90 95 4250 2,45 9,0 7,0 2,00 7106 135 2002 58 46 79 3810 4,0 6,2 1,50 2003 79 79 100 3658 3,0 8,3 1,50 2004 85 75 88 3551 1,6 7,5 1,50 2005 244 91 38 2286 3,7 5,0 1,60 2006 55 41 75 1737 3,8 6,0 2,50 2007 128 122 95 2438 2,2 4,0 2,00 2008 152 50 33 2896 5,3 5,0 1,50 2009 70 69 98 2134 2,8 10,0 1,20 2010 229 152 67 1311 1,3 2,00 2011 366 107 29 1829 2,0 5,0 1,60 2014 481 148 49 2696 2,44 3,5 4,4 1,34 4093 94 2016 356 195 68 2171 2,51 4,7 4,8 1,71 3926 74 2017 627 146 46 2128 2,50 3,1 3,8 1,67 3302 97 2018 268 181 39 3244 2,50 5,5 4,7 0,78 8189 126 2015 147 83 70 2565 3,0 6,3 1,69 2019 37 458 10,0 8,5 0,65 400 24

Delivery T6b. Appendix Volume February 2017 41 Appendix A Shale layer overview Overview of shale layers characteristics in Europe

CP index 10. Gas 11. Oil 12. HI 13. Ker. type 14. Sorption 15. Matrix saturation Saturation capacity @ permeability Vr 1,9 % 1001 II

1002 302 II, II‐III 100

1003 262 II, II‐III

1004 556 IIS 1005 610 II‐III 1006 251 II‐III 1007 54 II‐III 1008 47 I, IIS 1009 6II‐III 1010 17 II‐III

1011 1012 412 II 1013 125 III

1014 358 II 1015 21 4 II

1016 II 1017 513 II 1018 300 II‐III 5,1 1019 50 0 470 I , II 0,2 40 1020 257 II, III 2021 2II 1022 1023 1024 1025 1026 1027 II, III 1028 II‐III 1029 1030 257 II, III 1031 1032 14 IV 1033 1034 1035 313 1038 55 I 1039 658 1040 III 1041 1042

1043 20 30 ІІ, ІІІ 0,15 0,01 1045 II‐III 1046 1047 1048 II 1049 70 516 II S 1050 252 II, III 1051 67 6 100 II 1052 67 6 100 II

1053 67 6 200 II

1054 67 6 200 II 1055 55 III, II‐III 90

1056 II, III

Delivery T6b. Appendix Volume February 2017 42 Appendix A Shale layer overview Overview of shale layers characteristics in Europe

CP index 10. Gas 11. Oil 12. HI 13. Ker. type 14. Sorption 15. Matrix saturation Saturation capacity @ permeability Vr 1,9 %

1057 II, II‐III, III

1058 5I, I‐II 1059 4I‐II

1060 4II

1061 297 II, II‐III 0,0001 1062 1063 50 570 II

1064 20 II 340 1065 23 II

1066 210 III, II 50

1067 210 III, II 50

1068 50 210 III, II 1000

1069 50 210 III, II 1000 I with minor II, 1070 III 1071 3 117,5 I, III, minor II 1072 3 346 I, III, minor II 1073 3 73,5 I, III, minor II I with minor II, 1074 III I with minor II, 1075 III I with minor II, 1076 III 1077 3 74,2 II, III I with minor II, 1078 III 1079 3 265 I, III, minor II 1080 I 1081 70 I 1082 II 1083 II 1084 625 II 1085 II

1086 20 350 III‐II 1087 II 2012 179 II 2013 58 III‐II

2001 50 0 10 II 0,2 40 2002 55 1 20 II 20 2003 75 1 14 II 350 2004 45 1 15 II 10 2005 45 10 45 II 50 2006 60 1 15 II 50 2007 80 1 10 II 20 2008 40 5 60 II 25 2009 75 15 80 II 1000 2010 60 5 27 II 10 2011 90 1 17 II 30 2014 29 5 240 II 0,175 89 2016 56 5 255 II 0,2 70 2017 14 164 II‐II/III 0,15 143 2018 37 322 II 5 2015 63 4 30 II 157 2019 44

Delivery T6b. Appendix Volume February 2017 43 Appendix A Shale layer overview Overview of shale layers characteristics in Europe

CP index 16. Adsorbed gas 17. Compressibility 18. Bg Gas 19. Langmuir 20. Langmuir Total clay Total quartz‐ Total storage capacity factor (z) formation Pressure Volume feldspars carbonate volume factor 1001

1002 1,01 435 36 56 33 11

1003 56 33 11

1004 04 96 1005 1006 1007 1008 1009 1010

1011 1012 71 23 6 1013

1014 1015 54 37 8

1016 1017 53 46 1 1018 31 16 53 1019 50 1,01 0,0133 435 36 51 38 10 1020 2021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 66 31 3 1033 1034 1035 1038 1039 1040 1041 1042

1043 45 0,85 0,0150 395 30 80 15 5 1045 73 20 7 1046 1047 1048 24 61 15 1049 31 11 58 1050 48 14 38 1051 44 1,00 0,0043 51 41 8 1052 44 1,00 0,0032

1053 44 1,00 0,0058

1054 44 1,00 0,0041 1055 44 1,00 0,0046 49 46 5

1056

Delivery T6b. Appendix Volume February 2017 44 Appendix A Shale layer overview Overview of shale layers characteristics in Europe

CP index 16. Adsorbed gas 17. Compressibility 18. Bg Gas 19. Langmuir 20. Langmuir Total clay Total quartz‐ Total storage capacity factor (z) formation Pressure Volume feldspars carbonate volume factor

1057

1058 1059

1060

1061 1,01 435 36 56 33 11 1062 1063 49 10 42

1064 33 0,0212 5 69 26 1065 81 0,0195

1066 51 23 26

1067 51 23 26

1068 16 77 7

1069 16 77 7

1070 34 43 23 1071 44,5 59 32 9 1072 44,5 59 32 9 1073 44,5 59 32 9

1074 34 43 23

1075

1076 34 43 23 1077 44,5 0,0211 906,25 44,5

1078 34 43 23 1079 44,5 59 32 9 1080 1081 1082 1083 1084 1085

1086 1087 2012 1290 169,5 53 19 28 2013 3916 98 33 46 21

2001 50 1,01 0,0130 435 36 51 38 10 2002 36 38 26 2003 38 38 25 2004 51 32 18 2005 29 53 18 2006 45 41 14 2007 22 67 11 2008 25 69 6 2009 17 17 67 2010 27 41 32 2011 18 47 35 2014 47 0,98 0,0112 1230 69 47 32 21 2016 45 1,00 0,0061 435 36 53 39 8 2017 43 0,93 0,0155 1739 58 50 39 11 2018 81 0,0195 1290 170 34 28 39 2015 31 44 25 2019 40 40 20

Delivery T6b. Appendix Volume February 2017 45

Overview of shale layers characteristics in Europe

Appendix B Shale layer characteristics for EUOGA shales

Delivery T6b. Appendix Volume A-D February 2017 46 Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter Source REFERENCE LIST : (Screening criteria) Min Max Mean Distribution (Ref.list) Comments 1 . Kanev S.V. 1995. Geochemical Studies.Hydrocarbon Sector Shale Name: No name (local Support Project, Phase IIa lithostratigraphical unit - Zebrus 1001 (HSSP/IIa). Formation) 2. Kanev S., Margulis L., Bojesen- Age: Lower Ordovician Tremadocian Koefoed J.A., Weil W.A., Merta H., Stage Zdanaviciute O. 1994. Oil and Basin: Baltic Basin hydrocarbon source rocks of the Structural setting Baltic Syneclise. Oil & Gas Journal, July 11, 1994. Facies variability no data Available:http://mapx.map.vgd.g Country: Latvia ov.lv/geo3/VGD_OIL_PAGE/_priv 1. Area extend (km2) ate/article_1994.pdf Offshore 100 aproximate Onshore 3000 triangular aproximate

2. Thickness (gross, m) 26 48 37 triangular 2a. Thickness (net, m) not calculated 2b. Net/Gross (%) no data

measured depth, top of the 3. Depth (m) 1474 1670 1571,8 triangular Formation

4. Density (g/cm3) no data

5. TOC (%) 1,91 1,91 1,91 triangular 1

6. Porosity (%) no data

7. Maturity (%VR) or graptolite equivalent no data

8. Reservoir pressure (psi) no data

9. Reservoir Temperature (°C) 23 58 40,5 triangular obtained from log data

10. Gas saturation (%)(Sg) no data

11. Oil Saturation (%) So) no data

12. Gas generation mgHC/g TOC (Hydrogen index) no data

13. Kerogen type II 2

14. Sorption capacity VReq. - 1,9 % (mmol/g) no data

15. Matrix permeability (nDarcy) no data

16. Adsorbed gas storage capacity (scf/ton) no data

17. Compressibility factor (z) no data

18. Bg - Gas formation volume factor no data

19. Langmuir Pressure (pL, psi) no data

20. Langmuir Volume (nL, scf/ton) no data Compiled by Baiba Brikmane, Inga Piese. Supervised by Daiga Pipira

Bulk mineral constituents XRD % Source

Average clay content (%)

Average quartz-feldspars content (%)

Average carbonate content (%) Mineralogy

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 47 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter Source REFERENCE LIST : (Screening criteria) Min Max Mean Distribution (Ref.list) Comments 1 . Investigations of structure and composition of shaley Lower 1002 Paleozoic succession in Lithuanian Shale Name: Raikiula-Adavere part of the Baltic Sedimentary Age: Llandovery (Early Silurian) Basin. Report of Lithuanian Geological Survey, Lazauskiene et Basin: Baltic Sedimentary Basin al., 2014, 132 pp (in Lithuanian). 2. Lazauskiene, J., Bitinas, J., ĞēLJƐ͕͘ĞƚĂů͘;/ŶƚĞƌŶĂůͿ- Excel Structural setting: Foreland basin sheet with parameters for data setting. Structural setting - simple distribution. 3. Genesis of Shale Geological Facies variability: Lateral continuity Formations and Hydrocarbon high and facies variability Extraction: Impact on homogenouse. Horizontal (vertikal) environment and human health. variability - moderate. 2014-12-02, 56 pp. http://skalunudujos.lt/wp- content/uploads/2014-12- Country: PL, LT, LV, EE, DK 02_Genesis_of_shale_geological- formations_LMA-website.pdf. 1. Area extend (km2) 10254 21823 16000 Lognorm 1 4. Petersen, H.I., Schovsbo, N.H., Nielsen, A.T., 2013. Reflectance Offshore area comprises maximal area of the measurements of zooclasts and Lithuanian Baltic sea territory where the shale is solid bitumen in Lower Palaeozoic widspread. Minumum area has been considerd shales, southern Scandinavia: as half of total offshore area. correlation to vitrinite Offshore 3206 6413 5000 Lognorm 2 reflectance. International Journal Onshore 7613 15410 11000 Lognorm 1 of Coal Petrology 114, 1–18. http://www.sciencedirect.com/sc Thickness is for net thickness of Llandovery ience/article/pii/S016651621300 2. Thickness (gross, m) 15 80 50 Lognorm 1, 9, 10 shale 1080 2a. Thickness (net, m) 74525Lognorm2 5͘ĚĂŶĂǀŝēŝƻƚĦK͕͘>ĂnjĂƵƐŬŝĞŶĦ:͘ 2b. Net/Gross (%) 35 55 45 Lognorm 2009.Organic matter of Early Silurian succession – the potential source of unconventional gas in 3a. Depth (m), top 1500 2045 1600 1, 9, 10 Lithuania. Baltica. Vol. 22, No. 2. Depth grid is of the depth of the bottom of 89-98.. 3b. Depth (m), bottom 1500 2120 1800 Lognorm 1, 9, 10 Llandovery (Early Silurian) shale 6͘K͘ĚĂŶĂǀŝēŝƻƚĦ͕:͘>ĂnjĂƵƐŬŝĞŶĦ͘ 2007. The Petroleum potential of Grain density values based on measurements. the Silurian succession in Wt % from QuantaETC (QXRD) and TOC Lithuania. Journal of Petroleum obtained from RockEval and converted into the Geology. 325-337. volume percent (vol.%) of the solid matrix 7. EIA/ARI World Shale Gas and constituents. Number of measurements - 91. Shale Oil Resource Assessment, 4. Density (g/cm3) 2,17 2,85 2,47 Lognorm 1, 2 Uncertainty - 20%. Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale 5. TOC (%) 2 19,2 4,2 Lognorm 1, 2, 5,6,10 TOC values based on 332 RockEval Formations in 41 Countries measurements. Uncertainty - 5%. Porosity Outside the United States 6. Porosity (%) 1,2 14,1 5,7 Lognorm 1,2 valuse based on 37 mesurements: 7- GRI- http://www.eia.gov/analysis/stud ies/worldshalegas/pdf/fullreport. 7. Maturity (%VR) or graptolite Vitrinite-like particles + graptolites+ bitumines pdf equivalent 0,48 1,94 0,87 Lognorm 1, 2, 4, 5,6 calibrated to Vitrinite reflectance 8. Matus Gasparik, Pieter Bertier, Yves Gensterblum, Amin Sparse mesurement data converted from MPa. Ghanizadeh, Bernhard M. Krooss, Mean pressure gradient (Baltic region) 0.453 Ralf Littke, Geological controls on 8. Reservoir pressure (psi) 1450 1886 1668 triangular 2,7 psi/ft. No overpressure indications. the methane storage capacity in organic-rich shales - April 2013 Temperature mesurements at certain depth 9. Lapinskas P. 2000. Structure and petroleum potential of the data. Mean present day geothermal gradient in Silurian in Lithuania. Vilnius, 203 Lithuania 25 °C/km. Present day geothermal p.(in Lithuanian). gradient in geothermal anomaly in Western 10. ĚĂŶĂǀŝēŝƻƚĦK͕͘^ĂŬĂůĂƵƐŬĂƐ 9. Reservoir Temperature (°C) 32 90,2 71,7 triangular 2 Lithuania - 40-45 °C/km. K. (reds.). 2001. Petroleum Geology of Lithuania and No production data available. Polish Silurian Southeastern Baltic. Vilnius. 204 10. Gas saturation (%)(Sg) n/a n/a shales would be the best analogue. p.

No production data available. Test Llandovery oil obtained in 2 wells. Polish Silurian shales would 11. Oil Saturation (%) So) n/a n/a be the best analogue.

12. Gas generation mgHC/g TOC Values based on 332 RockEval and Leco (Hydrogen index) 89 720 302 triangular 1, 5,6 measurements. Uncertainty - 15%.

Kerogen type values based on 290 RockEval 13. Kerogen type II, II-III 1,5,6,10 measurements. Uncertainty - 15%.

No measurement data. Analogue numbers could 14. Sorption capacity VReq. - 1,9 be form Furongian unit of Alum Shale or Polish % (mmol/g) n/a n/a Silurian shales.

Matrix permeability values based on 7 GRI- derived absolute Kg determined from pressure decay results and 27 helium permeameter 15 Matrix permeability measurements (Soviet uncertificated ( nDarcy ) 85 400 100 Lognorm 1,2 equipment). Uncertainity - 70%

No measurement data. Analogue numbers could 16. Adsorbed gas storage capacity be form Furongian unit of Alum Shale or Polish (scf/ton) n/a n/a Silurian shales.

No measurement data. Analogue numbers are form Furongian unit of Alum Shale, or could be 17. Compressibility factor (z) 0.76 1,1 1,01 from Polish Silurian shales.

18. Bg - Gas formation volume factor n/a n/a No data available. Polish Silurian shales would Bo - Oil formation volume factor n/a n/a be the best analogue.

No data available. Analogue numbers are form Furongian unit of Alum Shale, or could be from Polish 19. Langmuir Pressure (pL, psi) 432 700 435 8 Silurian shales.

No data available. Analogue numbers are form Furongian unit of Alum Shale, or could be from Polish 20. Langmuir Volume (nL, scf/ton) 20 63 36 8 Silurian shales.

Bulk mineral constituents XRD % Source 1,2 Average clay content (%) 49 Average quartz-feldspars content (%) 29 Average carbonate content (%) 10 Mineralogy

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 48 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

REFERENCE LIST : EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution Source (Ref.list) Comments 1 . Investigations of structure and composition of shaley Lower 1003 Paleozoic succession in Lithuanian Shale Name: Fjacka-Mossen (Oandu-Vormsi) part of the Baltic Sedimentary Age: Late Orodovician (Katian) Basin. Report of Lithuanian Basin: Baltic Sedimentary Basin Geological Survey, Lazauskiene et al., 2014, 132 pp (in Lithuanian). Structural setting: Foreland basin setting. Structural 2. Lazauskiene, J., Bitinas, J., setting - simple ĞēLJƐ͕͕͘ĞƚĂů͘;/ŶƚĞƌŶĂůͿ- Excel sheet with parameters for data distribution. 3. Petersen, H.I., Schovsbo, N.H., Facies variability: Lateral continuity high and facies Nielsen, A.T., 2013. Reflectance variability homogenous. Vertical variability - moderate. measurements of zooclasts and Country: LT, LV, PL, DK solid bitumen in Lower Palaeozoic 1. Area extend (km2) 9376 21263 15300 Lognorm 1 shales, southern Scandinavia: Offshore 3206 6413 5000 Lognorm 2 Offshore area comprises maximal area of the correlation to vitrinite Onshore 6170 14850 10500 Lognorm 1 Lithuanian Baltic sea territory where the shale is reflectance. International Journal of Coal Petrology 114, 1–18. 2. Thickness (gross, m) 9 20 16 Lognorm 1, 2 http://www.sciencedirect.com/sc ience/article/pii/S016651621300 2a. Thickness (net, m) 4,5 10 8 Lognorm 2 1080 2b. Net/Gross (%) 405045Lognorm 4. EIA/ARI World Shale Gas and Shale Oil Resource Assessment, 3. Depth (m) top 1500 2130 1800 1, 2 Technically Recoverable Shale Oil Depth is of the bottom of Late Orodovician and Shale Gas Resources: An (Katian) shale. Assessment of 137 Shale 3. Depth (m) bottom 1500 2150 1825 Lognorm 1, 2 Formations in 41 Countries Outside the United States http://www.eia.gov/analysis/stud Grain density values based on measurements. Wt ies/worldshalegas/pdf/fullreport. % from QuantaETC (QXRD) and TOC obtained from pdf RockEval or chemical analysis and converted into 5. Matus Gasparik, Pieter Bertier, the volume percent (vol.%) of the solid matrix Yves Gensterblum, Amin constituents. Number of measurements - 35. Ghanizadeh, Bernhard M. Krooss, Ralf Littke, Geological controls on 4. Density (g/cm3) 2,11 2,76 2,53 Lognorm 1, 2 Uncertainty - 50%. the methane storage capacity in organic-rich shales - April 2013 5. TOC (%) 2 7 3,2 Lognorm 1, 2, 4,6 TOC values based on 33 RockEval measurements. 6͘ĚĂŶĂǀŝēŝƻƚĦK͕͘^ĂŬĂůĂƵƐŬĂƐ<͘ Uncertainty - 85%. Porosity valuse based on 10 (reds.). 2001. Petroleum Geology 6. Porosity (%) 0,35 14,1 5,7 Lognorm 1,2 measurements: 2- GRI-derived absolute Kg-matrix of Lithuania and Southeastern Baltic. Vilnius. 204 p.

Vitrinite-like particles + graptolites+ bitumines 7. Maturity (%VR) or graptolite equivalent 0,7 1,1 0,8 Lognorm 1, 2, 3 calibrated to Vitrnite reflectance

Based on ananlogue with Lithuanian Silurian 8. Reservoir pressure (psi) 1450 1886 1668 2 Shales

Temperature mesurements at certain depth data. Mean present day geothermal gradient in Lithuania 25 °C/km. Present day geothermal gradient in geothermal anomaly in Western 9. Reservoir Temperature (°C) 35,98 91,7 71,1 2 Lithuania - 40-45 °C/km.

No production data available. Polish Late 10. Gas saturation (%)(Sg) Ordovician shales would be the best analogue.

No production data available. Test Llandovery oil obtained in 2 wells. Polish Late Ordovician shales 11. Oil Saturation (%) So) would be the best analogue.

Values based on 32 RockEval and Leco 12. Gas generation mgHC/g TOC (Hydrogen index) 86 551 262 1, 2, 6 measurements. Uncertainty - 85%

Kerogen type values based on 32 RockEval 13. Kerogen type II, II-III 1, 2, 6 measurements. Uncertainty - 45%.

No measurement data. Analogue numbers could be form Furongian unit of Alum Shale or Polish 14. Sorption capacity VReq. - 1,9 % (mmol/g) Silurian shales.

Matrix permeability values based on 70 GRI- derived absolute Kg determined from pressure 15. Matrix permeability (mDarcy) 1,2 decay results. Uncertainity - 70%

No measurement data. Analogue numbers could be form Furongian unit of Alum Shale or Polish 16. Adsorbed gas storage capacity (scf/ton) Late Ordovician shales.

No measurement data. Analogue numbers are form Furongian unit of Alum Shale, or could be 17. Compressibility factor (z) from Polish Silurian shales.

18. Bg - Gas formation volume factor No data available. Polish Late Ordovician shales would be the best analogue.

No data available. Analogue numbers are form Furongian unit of Alum Shale, or could be from Polish Late Ordovician shales. 19. Langmuir Pressure (pL, psi) 5

No data available. Analogue numbers are form Furongian unit of Alum Shale, or could be from 20. Langmuir Volume (nL, scf/ton) 5 Polish Late Ordovician shales. y

Bulk mineral constituents XRD %Source 1,2 Average clay content (%) 49 Average quartz-feldspars content (%) 29

Average carbonate content (%) 10 Mineralog

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 49 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter (Screening Source REFERENCE LIST : criteria) Min Max Mean Distribution (Ref.list) Comments 1 . >Ks/͕:͕͘/͕ 1004 :͕͘dZhd/E͕D͕͘KZa:'͕͘Θs^>/͕s͘ (2009): Age: Late Jurassic (Kimmeridgian- Source potential and palynofacies Tithonian) 1 ŽĨ>ĂƚĞ:ƵƌƌĂƐŝĐΗ>ĞŵĞƓĨĂĐŝĞƐΗ͕ ƌŽĂƚŝĂ͘- KƌŐĂŶŝĐ'ĞŽĐŚĞŵŝƐƚƌLJ͕ Basin: Dinaric Mts. 40, 833-845. Structural setting: Outer Dinarides, 2. >

9. Reservoir Temperature (°C)

10. Gas saturation (%)(Sg) 00 0 Surface

11. Oil Saturation (%) So) 00 0 Surface

12. Gas generation mgHC/g TOC (Hydrogen index) 509 602 555,5 1

13. Kerogen type II-S

14. Sorption capacity VReq. - 1,9 % (mmol/g) 00 0 Surface

These organic rich limestones and calcareous shales (micritic limestones with clay particles) are 15. Matrix permeability (nDarcy) classified as biopelmicrites.

16. Adsorbed gas storage capacity (scf/ton) 00 0 Surface

17. Compressibility factor (z) 00 0 Surface

18. Bg - Gas formation volume factor 00 0 Surface

19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton)

Bulk mineral constituents XRD %Source

Average clay content (%) 0

Average quartz-feldspars content (%) 4

Average carbonate content (%) 96 Mineralogy

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 50 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter Source REFERENCE LIST : (Screening criteria) Min Max Mean Distribution (Ref.list) Comments 1. Lindquist, S.J. (1999). Petroleum Systems of the Po Basin Province of Northern Italy Shale Name: Meride fm (Besano fm 1005 and Northern Adriatic Sea: Porto and Perledo mb) Garibaldi (Biogenic), Meride/Riva Age: Ladinian (Triassic) di solto (Thermal), and Marnoso Basin: Lombardy Basin Arenacea (Thermal). USGS Open- File Report 99-50-M. Structural setting: Passive margin; 2. Riva, A., Salvatori, T., Cavaliere, synrift extentional tectonic R., Ricchiuto, T., and Novelli, L. (1986). Origin of oils in Po Basin, Facies variability: High lateral and Northern Italy. Org. Geochem., 10, 391-400. vertical variability. 3. Bongiorni, D. (1987). The Country: IT, SW (cf. hydrocarbon exploration in the Grenzbitumenzone) Mesozoic structural highs of the 1. Area extend (km2) 7743 1, 2 Po Valley: the example of Offshore 0 Gaggiano. Atti Tic. Sc. Terra, 31, Onshore 7743 1, 2 125-141. 4. Gaetani, M., Gnaccolini, M., 2. Thickness (gross, m) 100 400 250 3, 4, 5 Poliani, G., Grignani, D., Gorza, 2a. Thickness (net, m) 10 40 25 3, 4, 5 M., and Martellini, L. (1992). An 2b. Net/Gross (%) 10 10 10 3, 4, 5 anoxic intraplatform basin in the Middle Triassic of Lombardy (southern Alps, Italy): anatomy of a Hydrocarbon source. Riv. It. Mean depth of top and bottom Paleont. Strat., 97 (3-4), 329-354. is referred to the Meride 5. Jadoul, F., and Tintori, A. formation in the Gaggiano 1 (2012). The Middle-Late Triassic well log published in a very of Lombardy (I) and Canton Ticino simplified form and is (CH). In “Pan-European considered also the min. The Correlation of the Triassic - 9th International Field Workshop”. max depths can be inferred September 1-5, 2012. from published regional cross 6. Katz, B.J., Dittmar, E.I., and 3. Depth (m) top 4452 7000 5726 3 sections Ehret, G.E. (2000). Geochemical 3. Depth (m) bottom 4829 7000 5914,5 3 review of carbonate source rocks in Italy. Journal of Petroleum 4. Density (g/cm3) No data available. Geology, vol.23(4), 399-424. 7. Pieri, M., and Mattavelli, L. (1986). Geologic framework of intraformational variability in Italian petroleum resources. the Besano fm, mean value AAPG Bull., 70, 2, 103-130. from regional study (1) 5. TOC (%) < 1 35 0,9 1, 6

6. Porosity (%) No data available.

7. Maturity (%VR) or graptolite equivalent 0,39 2,17 1,28 6, 4

8. Reservoir pressure (psi) No data available.

9. Reservoir Temperature (°C) No data available.

10. Gas saturation (%)(Sg) No data available.

11. Oil Saturation (%) So) No data available.

values are desumed from the plot reported in (6); min/max 12. Gas generation mgHC/g TOC values for kerogen type III are 0- (Hydrogen index) 420 800 610 6 100

13. Kerogen type II-III 6, 7

14. Sorption capacity VReq. - 1,9 % (mmol/g) No data available.

15. Matrix permeability (mDarcy) No data available.

16. Adsorbed gas storage capacity (scf/ton) No data available.

17. Compressibility factor (z) No data available.

18. Bg - Gas formation volume factor No data available. 19. Langmuir Pressure (pL, psi) No data available.

20. Langmuir Volume (nL, scf/ton) No data available. 20. Langmuir Volume (nL, scf/ton) no data

Bulk mineral constituents XRD % Source

Average clay content (%) Average quartz-feldspars content (%)

Average carbonate content (%) Mineralogy

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 51 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter (Screening Source REFERENCE LIST : criteria) Min Max Mean Distribution (Ref.list) Comments 1. Riva, A., Salvatori, T., Cavaliere, R., Ricchiuto, T., and Novelli, L. (1986). Origin of oils in Po Basin, Shale Name: Riva di solto shales (lower 1006 Northern Italy. Org. Geochem., lithozone) 10, 391-400. Age: Norian 2, . Lindquist, S.J. (1999). Basin: Lombardy Basin Petroleum Systems of the Po Structural setting: Passive margin; synrift Basin Province of Northern Italy and Northern Adriatic Sea: Porto extentional tectonic Garibaldi (Biogenic), Meride/Riva di solto (Thermal), and Marnoso Facies variability: High lateral and vertical Arenacea (Thermal). USGS Open- variability. File Report 99-50-M. 5. proposes correlation with 3, Stefani, M., and Burchell, M. Country: IT Kossen formation (1990). Upper Triassic (Rhaetic) 1. Area extend (km2) 5500 1 argillaceous sequences in Offshore 0 northern Italy: depositional Onshore 5500 1 dynamics and source potential, in Huc, A.Y., ed., Deposition of Organic Facies, AAPG Studies in thickness of the lower lithozone Geology, 30, American 2. Thickness (gross, m) 200 from outcrops Association of Petroleum 2a. Thickness (net, m) Geologists, p. 93-106. 2b. Net/Gross (%) 4. http://unmig.sviluppoeconomico. Min depth of top and bottom is gov.it/videpi/pozzi/consultabili.as referred to the whole Riva di p Solto fm in the Gerola 1 well 5. Veto I., Hetenyi M., Hamor- log; mean and max can be Vido M., Hufnagel H., Haas J. inferred from published (2000) - Anaerobic degradation of 3. Depth (m) top 2764 > 7000 5000 4 regional cross sections organic matter controlled by 3. Depth (m) bottom 2947 > 7000 5000 4 productivity variation in a restricted Late Triassic basin. Organic Geochemistry, 31, 439- 4. Density (g/cm3) No data available. 452.

5. TOC (%) 0,5 5 1,3 triangular 2

6. Porosity (%) No data available.

The literature reported only mean value and the type of 7. Maturity (%VR) or graptolite equivalent 43distribution is not indicated

8. Reservoir pressure (psi) No data available.

9. Reservoir Temperature (°C) No data available.

10. Gas saturation (%)(Sg) No data available.

11. Oil Saturation (%) So) No data available.

The literature reported only 12. Gas generation mgHC/g TOC mean value and the type of (Hydrogen index) 251 2 distribution is not indicated

13. Kerogen type II-III 3

14. Sorption capacity VReq. - 1,9 % (mmol/g) No data available.

15. Matrix permeability (mDarcy) No data available.

16. Adsorbed gas storage capacity (scf/ton) No data available.

17. Compressibility factor (z) No data available.

18. Bg - Gas formation volume factor No data available. 19. Langmuir Pressure (pL, psi) No data available.

20. Langmuir Volume (nL, scf/ton) No data available. 20. Langmuir Volume (nL, scf/ton) no data

Bulk mineral constituents XRD % Source

Average clay content (%) Average quartz-feldspars content (%)

Average carbonate content (%) Mineralogy

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 52 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter (Screening Source REFERENCE LIST : criteria) Min Max Mean Distribution (Ref.list) Comments 1. Katz, B.J., Dittmar, E.I., and Ehret, G.E. (2000). Geochemical 1007 review of carbonate source rocks Shale Name: Marne di Bruntino in Italy. Journal of Petroleum Age: Aptian-Albian Geology, vol.23(4), 399-424. Basin: Lombardy Basin 2. http://unmig.sviluppoeconomico. Structural setting: Passive margin; synrift gov.it/videpi/pozzi/consultabili.as extentional tectonic p

Facies variability: High lateral and vertical variability. Country: IT 1. Area extend (km2) 4069 constrained by well logs Offshore 0 Onshore 4069

thickness from well log stratigraphies (min) and 2. Thickness (gross, m) 30 140 80 triangular outcrops (max) thickness from well log 2a. Thickness (net, m) 10 50 10 triangular stratigraphies 2b. Net/Gross (%) 12,5

3. Depth (m) top 67 4911 2500 triangular 2 Top and bottom min depth 3. Depth (m) bottom 104 4945 2500 triangular 2

4. Density (g/cm3) No data available.

5. TOC (%) 0,03 15,5 1,01 triangular 1

6. Porosity (%) No data available.

7. Maturity (%VR) or graptolite equivalent No data available.

8. Reservoir pressure (psi) No data available.

9. Reservoir Temperature (°C) No data available.

10. Gas saturation (%)(Sg) No data available.

11. Oil Saturation (%) So) No data available.

12. Gas generation mgHC/g TOC (Hydrogen values for samples with at least index) 0,87 107,6 54 triangular 1 1% of organic content

13. Kerogen type II-III 1

14. Sorption capacity VReq. - 1,9 % (mmol/g) No data available.

15. Matrix permeability (mDarcy) No data available.

16. Adsorbed gas storage capacity (scf/ton) No data available.

17. Compressibility factor (z) No data available.

18. Bg - Gas formation volume factor No data available. 19. Langmuir Pressure (pL, psi) No data available.

20. Langmuir Volume (nL, scf/ton) No data available.

Bulk mineral constituents XRD %Source Average clay content (%) Average quartz-feldspars content (%)

Average carbonate content (%) Mineralogy

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 53 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter (Screening Source REFERENCE LIST : criteria) Min Max Mean Distribution (Ref.list) Comments 1. Katz, B.J., Dittmar, E.I., and Ehret, G.E. (2000). Geochemical 1008 review of carbonate source rocks in Italy. Journal of Petroleum Shale Name: Emma limestones Geology, vol.23(4), 399-424. Age: Upper Triassic-Lower Jurassic 2. Andrè, P., and Doulcet, A. Basin: Emma Basin (1991). Rospo Mare Field – Italy , Apulian Platform, Adriatic Sea. Structural setting: Passive margin; AAPG Treatise of Petroleum synrift extentional tectonic Geology, Atlas of Oil and Gas Fields A-06, 29-54. Facies variability: High lateral and 3. Mazzuca, N., Bruni, A., and vertical variability. Jopen, T. (2015). Exploring the potential of deep targets in the Country: IT South Adriatic Sea: insight from 2D basin modeling of the Croatian inferred from paleogeographic offshore. Geologia Croatica, 68/3, 1. Area extend (km2) 9365 regional studies 237–246. Offshore 5977 Onshore 3388

thickness from well log stratigraphies and outcrops, net 2. Thickness (gross, m) 50 200 250 thickness from (1) 2a. Thickness (net, m) 52415 1 2b. Net/Gross (%) 6

depth info are inferred from deep well logs (not public available) and published 3. Depth (m) top 4500 >7000 6000 geological cross sections 3. Depth (m) bottom >7000

4. Density (g/cm3) No data available.

5. TOC (%) 0,05 48,3 4,68 triangular 1

6. Porosity (%) No data available.

7. Maturity (%VR) or graptolite equivalent No data available.

8. Reservoir pressure (psi) No data available.

9. Reservoir Temperature (°C) No data available.

10. Gas saturation (%)(Sg) No data available.

11. Oil Saturation (%) So) No data available.

12. Gas generation mgHC/g TOC (Hydrogen index) 0,04 340,44 47 triangular 1

the variation of the kerogene type is related to the different 13. Kerogen type I, II (S) 1,2,3 lithotypes (see report)

14. Sorption capacity VReq. - 1,9 % (mmol/g) No data available.

15. Matrix permeability (mDarcy) No data available.

16. Adsorbed gas storage capacity (scf/ton) No data available.

17. Compressibility factor (z) No data available.

18. Bg - Gas formation volume factor No data available. 19. Langmuir Pressure (pL, psi) No data available.

20. Langmuir Volume (nL, scf/ton) No data available.

Bulk mineral constituents XRD %SourceMineralogy Average clay content (%)

Average quartz-feldspars content (%) Average carbonate content (%) Average carbonate content (%)

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 54 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter (Screening Source REFERENCE LIST : criteria) Min Max Mean Distribution (Ref.list) Comments 1. Katz, B.J., Dittmar, E.I., and Ehret, G.E. (2000). Geochemical 1009 review of carbonate source rocks Shale Name: Marne di Monte Serrone in Italy. Journal of Petroleum Age: Toarcian Geology, vol.23(4), 399-424. 2. Parisi, G., Ortega Huertas, M., Nocchi, M., Palomo, Monaco, P., Basin: Umbria-Marche Basin Martinez, F. (1996). Stratigraphy and geochemical anomalies of the Structural setting: Passive margin; early Toarcian oxygen-poor synrift extentional tectonic interval in the Umbria-Marche Apennines (Italy). GEOBIOS, 29 Facies variability: High lateral and (4), 469-484. vertical variability. Country: IT

inferred from paleogeographic 1. Area extend (km2) 20792 regional studies Offshore 11813 Onshore 8979

2. Thickness (gross, m) 2a. Thickness (net, m) 1 24 13 2 thickness from outcrops 2b. Net/Gross (%)

depth info are inferred from deep well logs (not public 3. Depth (m) top 4000 5000 5000 available) and seismic profiles 3. Depth (m) bottom

4. Density (g/cm3) No data available.

(2) proposed TOC values from 0,5 to 2,7 for black shale 5. TOC (%) 0,19 2,34 0,95 triangular 1,2

6. Porosity (%) No data available.

7. Maturity (%VR) or graptolite equivalent No data available.

8. Reservoir pressure (psi) No data available.

9. Reservoir Temperature (°C) No data available.

10. Gas saturation (%)(Sg) No data available.

11. Oil Saturation (%) So) No data available.

The literature reported only 12. Gas generation mgHC/g TOC mean value and the type of (Hydrogen index) 6,19 1 distribution is not indicated

13. Kerogen type II-III 1

14. Sorption capacity VReq. - 1,9 % (mmol/g) No data available.

15. Matrix permeability (mDarcy) No data available.

16. Adsorbed gas storage capacity (scf/ton) No data available.

17. Compressibility factor (z) No data available.

18. Bg - Gas formation volume factor No data available. 19. Langmuir Pressure (pL, psi) No data available.

20. Langmuir Volume (nL, scf/ton) No data available.

Bulk mineral constituents XRD %Source Average clay content (%) Average quartz-feldspars content (%) Average carbonate content (%) Average carbonate content (%) Mineralogy

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 55 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter Source REFERENCE LIST : (Screening criteria) Min Max Mean Distribution (Ref.list) Comments 1. Coccioni, R., Jovane, L., Bancalà, G., Bucci, C., Fauth, G., 1010 Frontalini, F., Janikian, L., Savian, Shale Name: Marne a Fucoidi J., Paes de Almeida, R., Mathias, Age: Aptian-Albian G. L., and Ferreira da Trindade, R. I. (2012). Umbria-Marche Basin, Central Italy: A Reference Section Basin: Umbria-Marche Basin for the Aptian-Albian Interval at Structural setting: Passive Low Latitudes. Sci. Dril., 13, 42- margin; synrift extentional 46. doi:10.5194/sd-13-42-2012. tectonic 2. Katz, B.J., Dittmar, E.I., and Ehret, G.E. (2000). Geochemical review of carbonate source rocks Facies variability: High lateral in Italy. Journal of Petroleum and vertical variability. Geology, vol.23(4), 399-424. Country: IT 3. Arthur, M., and Silva, I.P. (1982). Development of inferred from paleogeographic widespread organic carbon-rich strata in the Mediterranean 1. Area extend (km2) 20791 regional studies Tethys. In: Schlanger, S. 0. and Offshore 11810 Cita, M. B. (Eds), Nature and Onshore 8981 Origin of Cretaceous Carbon-Rich Facies. Academic Press (London), max thickness from reference 7-54. 2. Thickness (gross, m) 82,53 1 section (1) 4. Fiet N. (1998). Les black shales, max thickness from (4), min un outil chronostratigraphique thickness from (2), mean from haute resolution. Exemple del' 2a. Thickness (net, m) 8 < 42 20 2, 3, 4 (3) Albien du bassin de Marches- 2b. Net/Gross (%) Ombrie (ltalie centrale). Bull. Soc. Geol. France, 169, 221-231. depth info are inferred from 5. Hu X., Jansa L., Sarti M., 2006. Mid-Cretaceous oceanic red beds deep published maps and in the Umbria–Marche Basin, 3. Depth (m) top 2000 5000 4500 geological cross section central Italy: Constraints on 3. Depth (m) bottom paleoceanography and paleoclimate. Palaeogeography, 4. Density (g/cm3) No data available. Palaeoclimatology, Palaeoecology 233 (3), 163-186 5. TOC (%) 0,05 25,01 1,82 triangular 2 6. Tornaghi, M.E., Premoli Silva, I., and Ripepe, M., 1989. 6. Porosity (%) No data available. Lithostratigraphy and planktonic foraminiferal biostratigraphy of 7. Maturity (%VR) or graptolite the Aptian-Albian ‘‘Scisti a equivalent No data available. Fucoidi’’ in the Piobbico core, Marche, Italy: Background for cyclostratigraphy. Riv.Ital. 8. Reservoir pressure (psi) No data available. Paleont. Strat., 95:223–264.

9. Reservoir Temperature (°C) No data available.

10. Gas saturation (%)(Sg) No data available.

11. Oil Saturation (%) So) No data available.

12. Gas generation mgHC/g TOC (Hydrogen index) 0,35 103,1 17,12 triangular 2

13. Kerogen type II-III 2

14. Sorption capacity VReq. - 1,9 % (mmol/g) No data available.

15. Matrix permeability (mDarcy) No data available.

16. Adsorbed gas storage capacity (scf/ton) No data available.

17. Compressibility factor (z) No data available.

18. Bg - Gas formation volume factor No data available. 19. Langmuir Pressure (pL, psi) No data available.

20. Langmuir Volume (nL, scf/ton) No data available.

Bulk mineral constituents XRD %Source Average clay content (%) Average quartz-feldspars content (%) Average carbonate content (%) Average carbonate content (%) Mineralogy

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 56 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter Source REFERENCE LIST : (Screening criteria) Min Max Mean Distribution (Ref.list) Comments 1. Bencini, R., Bianchi, E., De Mattia, R., Martinuzzi, A., Rodorigo, S. and Vico, G. (2012). 1011 Unconventional Gas in Italy: the Ribolla Basin. AAPG, Search and Shale Name: Argille Lignitifere Discovery Article #80203. Age: Tortonian-Messinian Basin: Ribolla Basin

Structural setting: extentional tectonic; opening of the Tyrrhenian basin

Facies variability: High lateral and vertical variability. Country: IT 1. Area extend (km2) 5564 1 Offshore Onshore 5564 1

2. Thickness (gross, m) 08040 1 2a. Thickness (net, m) 08 8 1 2b. Net/Gross (%) 01020

3. Depth (m) top 1000 1 3. Depth (m) bottom

4. Density (g/cm3) No data available.

5. TOC (%) 1,38 56,14 20 triangular 1

6. Porosity (%) No data available.

7. Maturity (%VR) or graptolite equivalent 0,825 1,302 1,1 1

8. Reservoir pressure (psi) No data available.

9. Reservoir Temperature (°C) No data available.

10. Gas saturation (%)(Sg)

11. Oil Saturation (%) So) No data available.

12. Gas generation mgHC/g TOC (Hydrogen index)

13. Kerogen type

14. Sorption capacity VReq. - 1,9 % (mmol/g) No data available.

15. Matrix permeability (mDarcy) No data available.

16. Adsorbed gas storage capacity (scf/ton) No data available.

17. Compressibility factor (z) No data available.

18. Bg - Gas formation volume factor No data available.

19. Langmuir Pressure (pL, psi) No data available.

20. Langmuir Volume (nL, scf/ton) No data available.

Bulk mineral constituents XRD % Source

Average clay content (%) Average quartz-feldspars content (%) Mineralogy Average carbonate content (%)

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 57 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter Source REFERENCE LIST : (Screening criteria) Min Max Mean Distribution (Ref.list) Comments 1 . Pieri, M., and Mattavelli, L. (1986). Geologic framework of Italian petroleum resources. 1012 AAPG Bull., 70, 2, 103-130 2. Brosse, E., Loreau, J.P., Huc, Shale Name: Noto Shale A.Y., Frixa, A., Martellini, L., Riva, Age: Rhaetian A., 1988. The organic matter of interlayered carbonates and clays Basin: Ragusa sediments — Trias/Lias, Sicily. Org. Geochem. 13, 433–443 3. Frixa, A., Bertamoni, M., Structural setting: foreland Catrullo, D., Trinicianti, E., Miuccio, G., 2000. Late Norian — Hettangian palaeogeography in Facies variability: medium the area between wells Noto 1 and Polpo 1 (S-E Sicily). Mem. Country: Italy Soc. Geol. Ital. 55, 279–284. 1. Area extend (km2) 5090 4. Offshore 1190 http://unmig.sviluppoeconomico. Onshore 3900 gov.it/videpi/pozzi/consultabili.as p 2. Thickness (gross, m) 250 300 275 triangular 2, 4 5. Novelli, L., Welte, D.H., 2a. Thickness (net, m) 20 4 Mattavelli, L., Yalçin, M.N., Cinelli, 2b. Net/Gross (%) 7 D., and Schmitt, K.J. (1988). Hydrocarbon generation in 3. Depth (m) 2800 3100 2900 triangular 2,3,4 southern Sicily. A three dimensional computer aided basin modeling study. Organic 4. Density (g/cm3) Geochemistry, 13 (1-3), 153–164.

5. TOC (%) 0,2 10 4 triangular 1,2

6. Porosity (%)

7. Maturity (%VR) or graptolite equivalent

8. Reservoir pressure (psi)

9. Reservoir Temperature (°C)

10. Gas saturation (%)(Sg)

11. Oil Saturation (%) So)

12. Gas generation mgHC/g TOC (Hydrogen index) 300 550 412 5

13. Kerogen type II 1,2

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy)

16. Adsorbed gas storage capacity (scf/ton)

17. Compressibility factor (z)

18. Bg - Gas formation volume factor

19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton)

Bulk mineral constituents XRD % Source

Average clay content (%) 71 2 Average quartz-feldspars content (%) 23 Mineralogy Average carbonate content (%) 6

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 58 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter Source REFERENCE LIST : (Screening criteria) Min Max Mean Distribution (Ref.list) Comments 1 . Pieri, M., and Mattavelli, L. (1986). Geologic framework of Shale Name: Streppenosa 1013 Italian petroleum resources. Shale AAPG Bull., 70, 2, 103-130 2. Brosse, E., Loreau, J.P., Huc, Age: Norian - Rhaetian - A.Y., Frixa, A., Martellini, L., Riva, Hettangian A., 1988. The organic matter of Basin: Ragusa interlayered carbonates and clays sediments — Trias/Lias, Sicily. Structural setting: foreland Org. Geochem. 13, 433–443 3. Frixa, A., Bertamoni, M., Catrullo, D., Trinicianti, E., Facies variability: medium Miuccio, G., 2000. Late Norian — Country: Italy Hettangian palaeogeography in 1. Area extend (km2) the area between wells Noto 1 Offshore 8535 and Polpo 1 (S-E Sicily). Mem. Onshore 4065 Soc. Geol. Ital. 55, 279–284. 4. 2. Thickness (gross, m) 20 3000 1510 1,2,3,4 http://unmig.sviluppoeconomico. 2a. Thickness (net, m) <20 4 gov.it/videpi/pozzi/consultabili.as p 2b. Net/Gross (%) 1,3 5. Novelli, L., Welte, D.H., Mattavelli, L., Yalçin, M.N., Cinelli, 3. Depth (m) 2000 5000 3500 2,3,4 D., and Schmitt, K.J. (1988). Hydrocarbon generation in 4. Density (g/cm3) southern Sicily. A three dimensional computer aided 5. TOC (%) 0,8 0,8 1 basin modeling study. Organic Geochemistry, 13 (1-3), 153–164. 6. Porosity (%)

7. Maturity (%VR) or graptolite equivalent

8. Reservoir pressure (psi)

9. Reservoir Temperature (°C)

10. Gas saturation (%)(Sg)

11. Oil Saturation (%) So)

12. Gas generation mgHC/g TOC (Hydrogen index) 50 200 125 5

13. Kerogen type III 1,2

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy)

16. Adsorbed gas storage capacity (scf/ton)

17. Compressibility factor (z)

18. Bg - Gas formation volume factor

19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton)

Bulk mineral constituents XRD % Source

Average clay content (%) Average quartz-feldspars content (%)

Average carbonate content (%)

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 59 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter (Screening Source REFERENCE LIST : criteria) Min Max Mean Distribution (Ref.list) Comments 1 . Dahlman, B., 1977: Öands Alunskiffer. Sveriges geologiska undersökning rapport DOCNO 1014 31188. Shale Name: Alum Shale Formation 2. Schovsbo, N., 2002: Uranium enrichment shorewards in balck shales: A case study from the Age: M. Cambrian-E. Ordovician Scandinavian Alum Shale. GFF Basin: Baltic Basin 124, 107-115. Northeast marings of the Baltic 3. Completion report Yodia-1, Structural setting: gently dipping Basin also commonly known as OPAB. 1988. succession to the south-south-east the baltic Syneclise 4.Andersson, A., Dahlman, B., Gee, D.G. & Snäll, S., 1985: The Facies variability: Inner and outer shelf Scandinavian Alum Shales. black shale with anthracontie and Sveriges geologiska undersökning limestone interbeds Ca 56, 50 pp. 5. Wrang, P., 1984: Organic Country: Sweden Geochemical Investiation of 1. Area extend (km2) Selected Palaeozoic Samples from Offshore 10121 Sweden. GEUS report 43. Onshore 106 6.Pedersen, J.H., Karlsen, D.A., Lie, J.E., Brunstad, H. & di Primio, Only south Öland, where the R., 2006: Maturity and source- 2. Thickness (gross, m) 20 35 25 1 thickness exceeds 20 m rock potential of Palaeozoic sediments in the NE European 2a. Thickness (net, m) 15 25 20 Norhtern Permian Basin. 2b. Net/Gross (%) 75 83 80 Petroleum Geoscience 12, 13-28.

Outcrops on south Öland, deepest in offshore areas, estimated mean. 728-758,5 m 3. Depth (m) 0 800 300 1, 3 in the Yoldia-1 well

4. Density (g/cm3) n.d. n.d. n.d.

5. TOC (%) 71411normal 4

6. Porosity (%) n.d. n.d. n.d.

7. Maturity (%VR) or graptolite equivalent 0,4 0,77 0,61 2

Hydrostatic pressure calculated 8. Reservoir pressure (psi) 14,5 1160 435 from depth data (3)

* mean annual surface grouns 9. Reservoir Temperature (°C) 8* 35** 15 temperature **Based on BHT in Yoldia-1 10. Gas saturation (%)(Sg) n.d. n.d. n.d.

11. Oil Saturation (%) So) n.d. n.d. n.d.

12. Gas generation mgHC/g TOC (Hydrogen index) 282 458 358 5,6

13. Kerogen type II II II 2,5

14. Sorption capacity VReq. - 1,9 % (mmol/g) n.d. n.d. n.d.

15. Matrix permeability (nDarcy) n.d. n.d. n.d.

16. Adsorbed gas storage capacity (scf/ton) n.d. n.d. n.d.

17. Compressibility factor (z) n.d. n.d. n.d.

18. Bg - Gas formation volume factor n.d. n.d. n.d.

19. Langmuir Pressure (pL, psi) n.d. n.d. n.d.

20. Langmuir Volume (nL, scf/ton) n.d. n.d. n.d.

Bulk mineral constituents XRD % Source

Average clay content (%) n.d. y Average quartz-feldspars content (%) n.d.

Average carbonate content (%) n.d. Mineralog

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 60 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter (Screening Source REFERENCE LIST : criteria) Min Max Mean Distribution (Ref.list) Comments 1. Calner, M., Erlström, M., Eriksson, M., Ahlberg, P. & Shale Name: Alum Shale Formation 1015 Lehnert, O., 2013: Regional Age: M. Cambrian-E. Ordovician geology of the Skåne province, Sweden. In M. Calner, P. Ahlberg, Basin: Sorgenfrei Tornquist Zone O. Lehnert & M. Erlström (eds.) The Lower Palaeozoic of southern Central Scania including both deep Sweden and the Oslo Region, Structural setting: complex strucural occurrences of Alums Shale as well Norway. Filed Guide for the 3rd setting with several local and regional as shallow occurrences on the Annual Meeting of the IGCP fault bounded rock blocks being Linderödsåsen ridge flanking the project 591. SGU, Rapporter och meddelanden 133, 3739. uplifted during L. Cretaceous inversion 1,2 Colonus Shale Trough to the NE 2 . Erlström, M., Sivhed, U. ,Wikman, H. &Kornfält, K.-A., Facies variability: Outer shelf black 2004: Beskrivning till shale with some limestone and berggrundskartorna 2D Tomelilla antraconite interbeds NV, NO, SV, SO, 2E Simrishamn Country: Sweden NV, SV, 1D Ystad NV, NO och 1E 1. Area extend (km2) 2835 Örnahusen NV. Sveriges geologiska undersökning, Af 212- Offshore 450 214. 141 s. Onshore 2385 3. Sivhed, U. ,Wikman, H. & Erlström, M., 1999: Beskrivning 2. Thickness (gross, m) 61 98,5 80 2, 3, 4 till berggrundskartorna 1C 2a. Thickness (net, m) 76 Trelleborg NV och NO samt 2C 2b. Net/Gross (%) 95 Assessed Malmö SV, SO, NV och NO. Sveriges geologiska undersökning, Assessed maximum depth. Mean Af 191-196, 198. 143 s depth is representative for the 4. Shell exploration. 3. Depth (m) 0 1000* 800 Colonus Shale Trough Documentation from exploration activites in Skåne 2008-2011. Density values taken from Shell Sveriges geologiska undersökning. Dnr 212-924-2011. exploration wells (depth range 685- 5. Buchardt, B. & Cederberg, T. 4. Density (g/cm3) 2,33 2,81 2,54 4 950 m) 1987: Stabil isotop geokemi i moderbjergarter, olie og gas i TOC also from Shell deep exploration Danmark. Afsluttende rapport, 5. TOC (%) 0,5 13,7 7,5 normal 4 wells EFP-83 projekt, Kobenhavn, 33 p. (In Danish) Dry helium porosity % of bulk 6. Buchardt, B., Nielsen, A.T., volume. Data from Shell deep Schovsbo, N. & Wilken, U. G., 6. Porosity (%) 1 10,2 6,1 4 exploration wells 1994: Source rock potential and thermal maturity of Lower 7. Maturity (%VR) or graptolite Paleozoic black shales in equivalent 2,12 2,5 2,29 4 Baltoscandia. PREWSOR-Project 1,8 4,91 2,65 5,6 Group, Geological Institute, University of Copenhagen, 8. Reservoir pressure (psi) Copenhagen, 58 pp.

* average surface annual temp. Max temp calculated using a gradient of 3.3 deg/100 m, based on temp data 9. Reservoir Temperature (°C) 10* 33 28 4 from logs in deep wells

10. Gas saturation (%)(Sg) 7,5 53,2 20,6 4 % of pore volume

11. Oil Saturation (%) So) 0 27,9 3,56 4 % of pore volume

12. Gas generation mgHC/g TOC (Hydrogen index)

13. Kerogen type II II II

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy) n.d. n.d. n.d.

16. Adsorbed gas storage capacity (scf/ton) n.d. n.d. n.d.

17. Compressibility factor (z) n.d. n.d. n.d.

18. Bg - Gas formation volume factor n.d. n.d. n.d.

19. Langmuir Pressure (pL, psi) n.d. n.d. n.d.

20. Langmuir Volume (nL, scf/ton) n.d. n.d. n.d.

Bulk mineral constituents XRD % Source

Average clay content (%) 48 4 y Average quartz-feldspars content (%) 33

Average carbonate content (%) 7,5 Mineralog

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 61 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter (Screening Source REFERENCE LIST : criteria) Min Max Mean Distribution (Ref.list) Comments 1. Calner, M., Erlström, M., Eriksson, M., Ahlberg, P. & 1016 Lehnert, O., 2013: Regional Shale Name: Alum Shale Formation geology of the Skåne province, Sweden. In M. Calner, P. Ahlberg, Age: M. Cambrian-E. Ordovician O. Lehnert & M. Erlström (eds.) The Lower Palaeozoic of southern Sweden and the Oslo Region, Norway. Filed Guide for the 3rd Basin: Danish Basin, Höllviken Halfgraben Annual Meeting of the IGCP project 591. SGU, Rapporter och Structural setting: Foreland basin, meddelanden 133, 3739. affected by Variscan and Alpine wrench 2 . Sivhed, U. ,Wikman, H. & faulting coupled with extension 1 Erlström, M., 1999: Beskrivning till berggrundskartorna 1C Facies variability: Outer shelf black shale Trelleborg NV och NO samt 2C with some limestone and antraconite Malmö SV, SO, NV och NO. interbeds Sveriges geologiska undersökning, Af 191-196, 198. 143 s. Country: Sweden 3. Buchardt, B., Nilesen, A.T. & 1. Area extend (km2) Schovsbo, N.H., 1997: Alun Offshore 1106 Skiferen i Skandinavien. Geologisk Onshore 504 Tidskrift 3, 1-30.

2. Thickness (gross, m) 35 44 40 2 2a. Thickness (net, m) 35 44 40 2b. Net/Gross (%) 100

3. Depth (m) 1370 2500 2300 2

4. Density (g/cm3)

5. TOC (%)

6. Porosity (%)

7. Maturity (%VR) or graptolite equivalent 2,9 3,2* 3 3 From Håslöv-1

8. Reservoir pressure (psi)

9. Reservoir Temperature (°C)

10. Gas saturation (%)(Sg)

11. Oil Saturation (%) So)

12. Gas generation mgHC/g TOC (Hydrogen index)

13. Kerogen type

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy)

16. Adsorbed gas storage capacity (scf/ton)

17. Compressibility factor (z)

18. Bg - Gas formation volume factor

19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton) y

Bulk mineral constituents XRD % Source

Average clay content (%) Average quartz-feldspars content (%)

Average carbonate content (%) Mineralog

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 62 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter (Screening Source REFERENCE LIST : criteria) Min Max Mean Distribution (Ref.list) Comments 1. Calner, M., Erlström, M., Eriksson, M., Ahlberg, P. & 1017 Lehnert, O., 2013: The Lower Shale Name: Alum Shale Formation Palaeozoic of southern Sweden and the Oslo Region, Norway. Filed Guide for the 3rd Annual Age: M. Cambrian-E. Ordovician Meeting of the IGCP project 591. Basin: Fennoscandian Shield 1, 2, 3 Västergötland, Östergötland SGU, Rapporter och meddelanden 133, 96 pp. Structural setting: Shield platform 2. Andersson, A., Dahlman, B., Gee, D.G. & Snäll, S., 1985: The Facies variability: Inner black shale with Scandinavian Alum Shales. Sveriges geologiska undersökning limestone and antraconite interbeds Ca 56, 50 pp. Country: Sweden 3. Schovsbo, N., 2002: Uranium 1. Area extend (km2) enrichment shorewards in balck Offshore shales: A case study from the Onshore 1497 Scandinavian Alum Shale. GFF 124, 107-115. 22-24 m in Västergötland, 11-20 4. Dahl, J., Hallberg, R. & Kaplan, in Östergötland, 13-19 m in I.R., 1988: The effects of 2. Thickness (gross, m) 11 24 20 9 Närke radioactive decay of uranium on 2a. Thickness (net, m) 91916 elemental and isotope ratios of 2b. Net/Gross (%) 0,8 Assessed Alum Shale kerogen. Applied Geochemistry 3, 583-589. 5. Pedersen, J.H., Karlsen, D.A., 0-170m in Östergötland, 0-30m Lie, J.E., Brunstad, H. & di Primio, in Närke, 0-150 m in R., 2006: Maturity and source- 3. Depth (m) 0 150 30 Västergötland (ref 9) rock potential of Palaeozoic sediments in the NE European 4. Density (g/cm3) Norhtern Permian Basin. Petroleum Geoscience 12, 13-28. 5. TOC (%) 0,5 22 11 normal 3, 4, 5, 6 6 . Krüger, M., van Berk, W., Arning, E.T., Jimenéz, N., 6. Porosity (%) Schovsbo, N.H., Straaten, N. & Schultz, H.M., , 2014: The High values related to thermal biogenic methane potential of European gas shale analogues: impact from Permian dolerite Results from incubation dykes(sills) in Västergötland( experiments and thermodynamic 7. Maturity (%VR) or graptolite equivalent 0.43 6,34 0,6 log normal 3, 4, 5, 6, 7, 8 Ref 9) modelling. International Journal of Coal Geology 136, 59-74. 8. Reservoir pressure (psi) n.d. n.d. n.d. 7. Thomsen, E., 1984: A coalification study of Lower 9. Reservoir Temperature (°C) n.d. n.d. n.d. Palaeozoic deposits from Denmark and Sweden. GEUS Data might be availble from report 36. Gripen Gas exploration in 8. Buchardt, B. & Lewan, M.D., 10. Gas saturation (%)(Sg) n.d. n.d. n.d. östergötland 1990: Reflectance of Vitrinite-Like Macerals as a Thermal Maturity 11. Oil Saturation (%) So) n.d. n.d. n.d. Index for Cambrian-Orodovician Alum Shale, Southern Scandinavia. The American 12. Gas generation mgHC/g TOC Association of Petroleum (Hydrogen index) 332 1000 513 5,6 Geologists Bulletin 74, 394-406. 9. Hessland, I. & Armands, G., 13. Kerogen type II 1978: Alunskiffer. Utredning från Statens industriverk, SIND PM 14. Sorption capacity VReq. - 1,9 % 1978:3, 1-94. (mmol/g) n.d. n.d. n.d. 10. Armands, G., 1972: Geochemical studies of uranium, 15. Matrix permeability (nDarcy) n.d. n.d. n.d. molybdenum and vanadium in Swedish alum shale. Stockholm 16. Adsorbed gas storage capacity Contributions in Geology 27, 1- (scf/ton) n.d. n.d. n.d. 148.

17. Compressibility factor (z) n.d. n.d. n.d.

18. Bg - Gas formation volume factor n.d. n.d. n.d.

19. Langmuir Pressure (pL, psi) n.d. n.d. n.d.

20. Langmuir Volume (nL, scf/ton) n.d. n.d. n.d.

Bulk mineral constituents XRD % Source

Average clay content (%) 40 9 Average quartz-feldspars content (%) 35

Average carbonate content (%) 1 Mineralogy

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 63 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter Source REFERENCE LIST : (Screening criteria) Min Max Mean Distribution (Ref.list) Comments 1 . Eva Geršlová, Vladimír Opletal, Ivana Sýkorová, Iva Sedláková, Milan Geršl, 2015, A geochemical and 1018 petrographical characterization of organic matter in the Jurassic Shale Name: Mikulov Marl Mikulov Marls from the Czech Republic, International Journal of Coal Geology 141–142 (2015) 42–50 Age: Malmian (Upper Jurassic) 2. Ladwein, H. W., F. Schmidt, P. Basin: Vienna Basin Seifert, and G. Wessely, 1991, Structural setting Geodynamics and generation of hydrocarbons in the region of the Facies variability: uniform Vienna basin, Austria, in A. M. Marls Spencer, ed., Generation, Country: A, CZ accumulation and production of 1. Area extend (km2) Europe’s hydrocarbons: European Offshore Association of Petroleum Geoscientists and Engineers Special Onshore 729 Publication 1, p. 289–305. 3. Francu, J., M. Radke, R. G. 2. Thickness (gross, m) Schaefer, H. S. Poelchau, J. 2a. Thickness (net, m) 150 900 525 10. Caslavsky, and Z. Bohacek, 1996, Oil- (Cross-Sections & Wells see Ref. oil and oil-source rock correlations 2b. Net/Gross (%) 10) in the northern Vienna basin and adjacent Carpathian Flysch zone 3. Depth (m) 4000 7000 5500 10. (Czech and Slovak area), in G. (Cross-Sections & Wells see Ref. Wessely and W. Liebl, eds., Oil and 10) gas in Alpidic thrust belts and basins 4. Density (g/cm3) 2,24 6. of Central and Eastern Europe: European Association of Petroleum 5. TOC (%) 1,5 10 2 1.,3.,4. Geoscientists and Engineers Special Publication 5, p. 343–353. 4. Ladwein, H. W.: Organic 6. Porosity (%) 095 5. Geochemistry of Vienna Basin: Model for Hydrocarbon Generation 7. Maturity (%VR) or graptolite 1,2% at "mean depth" of in Overthrust Belts. In: AAPG equivalent 0,7 2,2 1,2 2., 4. 5500m Bulletin ; 72.1-6 S.586-599, 1988. 5. Milan, G., and R. Sauer, 1996, 8. Reservoir pressure (psi) 5800 22000 13900 8. Ultra-deep drilling in the Vienna basin— A review of geological 9. Reservoir Temperature (°C) 70 230 150 5.,7., 8. results, in G. Wessely and W. Liebl, eds., Oil and gas in Alpidic thrust 10. Gas saturation (%)(Sg) no published data belts and basins of Central and Eastern Europe: European Association of Petroleum 11. Oil Saturation (%) So) no published data Geoscientists and Engineers Special Publication 5, p. 109-117. 12. Gas generation mgHC/g 6. Average density (marl); TOC (Hydrogen index) 150 400 300 1. http://www.aqua- calc.com/page/density-table 13. Kerogen type III II II-III 1. 7. Ringhofer, W.: Geological interpretation of drilling parameters 14. Sorption capacity VReq. - for ultra deep exploration in the 1,9 % (mmol/g) no published data Vienna Basin.- In:Erdöl, Erdgas, Kohle ; 102 (1986) S.116-122, Wien, 15. Matrix permeability 1986. (nDarcy) 0,2 10 5,1 5. 8. Cichini, H.: Drilling the Zistersdorf UET 2A – the Deepest in Austria – to 8553m.- In: Erdöl, Erdgas, Kohle; 101 16. Adsorbed gas storage (1985), S.118-126, Wien, 1985. capacity (scf/ton) no published data 9. Kiesl, W., Koeberl, Ch., Goetzinger, M.A.: Geochemistry and 17. Compressibility factor (z) no published data Mineralogy of a Marl Sample (Late Jurassic) from 8552,1 m Depth of 18. Bg - Gas formation volume Exploratory Well Zistersdorf ÜT 2A.- factor no published data In: Erdöl, Erdgas, Kohle; 106 (1990), S.193-196, Wien, 1990. 10. Wessely, G., mit Beitr. V. Draxler, I., Gangl, P., Gottschling, P., 19. Langmuir Pressure (pL, psi) no published data Heinrich, M., Hofmann, Th., Lenhardt, W., Matura, A., Pavuza, R., 20. Langmuir Volume (nL, Peresson, H. & Sauer, R.: scf/ton) no published data Niederösterreich. Geologie der österreichischen Bundesländer. – Complied by Piotr Lipiarski, Geol. Bundesanstalt, 416 S., ill., Reinhard Sachsenhofer & Wien, 2006. Godfrid Wessely

Bulk mineral constituents XRD % Source 9. Average clay content (%) 28 Average quartz-feldspars content (%) 14 Mineralogy Average carbonate content (%) 47

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 64 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter (Screening Source (Ref. REFERENCE LIST : criteria) Min Max Mean Distribution list) Comments 1 . Pool, W., Geluk, M., Abels, J., Tiley, G., 2012, Assessment of an 1019 unusual European Shale Gas Shale Name: Alum Shale play—The Cambro-Ordovician Alum Shale, southern Sweden: Proceedings of the Society of Age: M. Cambrian-L Ordovician Petroleum Engineers/European Association of Geoscientists and Basin: Norwegian-Danish basin (Center Engineers Unconventional and rim of N. Permian basin) Resources Conference, Vienna, Austria, March 20–22, 2012, Countries: DK, S, N 152339. 2. EIA/ARI World Shale Gas and Facies variability: Lateral continuety high Shale Oil Resource Assessment, and facies variability low. Technically Recoverable Shale Oil 1. Area extend (km2) and Shale Gas Resources: An Assessment of 137 Shale Offshore 15133 20305 15902 Triangular 4 Formations in 41 Countries Onshore 12140 16187 13793 Triangular 4 Outside the United States http://www.eia.gov/analysis/stud Shallow marine shelf environment with a ies/worldshalegas/pdf/fullreport. 2. Thickness (net, m) 30 80 55 Triangular 9 structural complicated history pdf Shallow marine shelf environment with a 3. H.-M. Schulz, M. Krüger, N. 2a Thickness (net, m) 30 80 50 Triangular 9 structural complicated history Straaten, A. Bechtel, R. Wirth, S. 2b. Net/Gross (%) 90 100 95 Biermann, E. T. Arning, W. van Berk, N. H. Schovsbo, S. Crabtree, BGR Hannover, GEUS, Gripen Gas, Uncertain overpressure status of Alum Sweden Biogenic gas in the Cambrian-Ordovician Alum Shale 3. Depth (m) 1500 7000 4250 Triangular 6 with geological history risk` (Denmark and Sweden), April 2013 4. Density (g/cm3) 2,3 2,5 2,45 Triangular 10 4. Gautier, D.L., Charpentier, R.R., Gaswirth, S.B., Klett, T.R., Pitman, 5. TOC (%) 0179 Normal4 J.K., Schenk, C.J., Tennyson, M.E., and Whidden, K.J., 2013, 6. Porosity (%) 3 12 6 Triangular 7 Undiscovered Gas Resources in the Alum Shale, Denmark, 2013: U.S. Geological Survey Fact Sheet 7. Maturity (%VR) or Vitrnite equivalent Vitrinite-like particles calibrated to H/C 2013–3103, 4 p., (for graptolite) 0,5 2,4 1,6 Triangular 7, 8 index - graptolite %Ro http://dx.doi.org/10.3133/fs2013 3103 5. Matus Gasparik, Pieter Bertier, Mean Pressure gradient (Baltic region) Yves Gensterblum, Amin 0.453 psi/ft, but Alum is over pressured Ghanizadeh, Bernhard M. Krooss, 8. Reservoir pressure (psi) 2945 8300 7106 2, 7 0.510 psi/ft. Ralf Littke, Geological controls on the methane storage capacity in Mean Geothermal gradient in Denmark organic-rich shales - April 2013 9. Reservoir Temperature (°C) 64 202 135 2 26 °C / km 6. Schovsbo, N.H., Nielsen, A.T., Gautier, D.L., 2014. The Lower Both adsorbed and free gas in the pore Palaeozoic shale gas play in 10. Gas saturation (%)(Sg) 10 80 50 1 system Denmark. Geological Survey of Denmark and Greenland Bulletin 11. Oil saturation (%)(So) 00 0 2, 4 31, 19–22. 7. A., Gasparik, M., Amann- Hildenbrand, A., Gensterblum, Y., Immature Alum is H rich (Sweden) to 500 Krooss, B.M., Experimental study mgHC/g TOC; Bornholm`s overmature of fluid transport processes in the 12. Gas generation mgHC/g TOC section is 10 times lower (50 mg HC/g matrix system of the European (Hydrogen index) 360 560 470 3 TOC) organic-rich shales: I. Scandinavian Alum Shale, Marine 13. Kerogen type I , II 8 Oil precursor for gas and Petroleum Geology (2013), doi: Furongian unit of Alum with high TOC is 10.1016/j.marpetgeo.2013.10.01 14. Sorption capacity VReq. (mmol/g) 0,12 0,31 0,2 5 expected to have high gas volume 3. 8. Schovsbo, N.H., Nielsen, A.T., 15. Matrix permeability (nDarcy) 74540 7 - Gautier, D.L., 2014. The Lower Palaeozoic shale gas play in Denmark. Geological Survey of 16. Adsorbed gas storage capacity Average canister gas content - 30 scf/ton - Denmark and Greenland Bulletin (scf/ton) 30 75 50 1 20% free gas 31, 19–22. 9. Buchardt, B., Nielsen, A.T., 17. Compressibility factor (z) 0,76 1,1 1,01 Schovsbo, N.H., 1997. Alun Skiferen i Skandinavien. Geologisk PV = ZnRT - Calculating deviation factor Tidsskrift 3, 1-30. (Ideal Gas) Bg = 0.2829zT/P - FVF 10. Average solid shale density - 18. Bg - Gas formation volume factor 0,009 0,0183 0,0133 2 & 11 calculation http://www.aqua- calc.com/page/density- table/substance/shale-coma-and- Rate of adsorbed gas on the organics in blank-solid 11. EIA and online-calculating the shale matrix releasing as function of method for Bg - 3 factors for 19. Langmuir Pressure (pL, psi) 432 700 435 5 decrease of P different reservoir temperatures and pressures Langmuir volume is a function of organic http://petrowiki.org/Calculating_ richness and thermal maturity of shale gas gas_properties#.UzRf-s70fm5 20. Langmuir Volume (nL, scf/ton) 20 63 36 5 Complied by Kristiyan Valeriev Nikolov (KVN) AAUE; Corrected by NSC, GEUS *Not Mean - Gasparik et al., 2013 (actual Bulk mineral constituents XRD %Source value for mean resources) Average clay content (%) 40 Average quartz-feldspars content (%) 30

Average carbonate content (%) 8 Mineralogy

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 65 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter Source REFERENCE LIST : (Screening criteria) Min Max Mean Distribution (Ref.list) Comments 1 . ACIEP, GESSAL (2013): Evaluación preliminar de los recursos prospectivos de Shale Name: Catalonian Chain 1020 hidrocarburos convencionales y Carboniferous no convencionales en España. Age: Carboniferous 2 . San Leon Energy web page http://www.sanleonenergy.com/ operations-and-assets/spain- Basin: Catalonian Chain cantabarian-ebro.aspx Structural setting: High 3. IGME (1981). Estudio de las complexity Poorly known posibilidades de explotación de Facies variability energía geotérmica en almacenes profundos de baja y media Country: Spain entalpía del territorio nacional. 1. Area extend (km2) 200 800 500 4. IGME (2010). Selección y Offshore caracterización de áreas y Onshore 200 800 500 1 estructuras geológicas susceptibles de constituir 2. Thickness (gross, m) 600 2 emplazamientos de 2a. Thickness (net, m) 50 100 75 1 almacenamiento geológico de CO2 (ALGECO2). Volumen III-1- 2b. Net/Gross (%) Cadena Ibérica y Cuencas del Tajo y Almazán. Geología. 3. Depth (m) 0 2000 1500 4

4. Density (g/cm3) 2,1 2,6 2,4 1

5. TOC (%) 51 2

6. Porosity (%)

7. Maturity (%VR) or graptolite equivalent

8. Reservoir pressure (psi)

Geothermal gradient from wells, 9. Reservoir Temperature (°C) 3 between 27° - 62°C/km

1,8 - 4,5 m3/t (55-75% free; 45-25% 10. Gas saturation (%)(Sg) 1 adsorbed)

11. Oil Saturation (%) So)

12. Gas generation mgHC/g TOC (Hydrogen index) 257 2 S2 up to 130,4 mg/g

13. Kerogen type - - II, III 2

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy)

16. Adsorbed gas storage capacity (scf/ton)

17. Compressibility factor (z)

18. Bg - Gas formation volume factor

19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton)

Bulk mineral constituents XRD % Source

Average clay content (%) Average quartz-feldspars content (%) Mineralogy Average carbonate content (%)

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 66 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter Source REFERENCE LIST : (Screening criteria) Min Max Mean Distribution (Ref.list) Comments 1 . ACIEP, GESSAL (2013): Evaluación preliminar de los recursos prospectivos de 1021 hidrocarburos convencionales y Shale Name: Iberian Lower no convencionales en España. Cretaceous 2 . Ramos, A., Sopeña, A., Age: Lower Cretaceous Sanchez-Moya, Y. and Muñoz, A. (1996). Subsidence analysis, Basin: Iberian maturity modelling and Structural setting: Medium Synclinoriums associated to thrust hydrocarbon generation of the complexity faults Alpine sedimentary sequence in the NW of the Iberian Ranges Facies variability (Central Spain). Cuadernos de Country: Spain Geología Iberica, num. 21, pp. 23- 1. Area extend (km2) 300 1000 675 53. Servicio de Publicaciones. Offshore Universidad Complutense, Onshore 300 1000 675 1 Madrid, 1996. http://revistas.ucm.es/index.php/ 2. Thickness (gross, m) CGIB/article/view/CGIB96962200 2a. Thickness (net, m) 10 200 105 1 23A 3. IGME (1981). Estudio de las 2b. Net/Gross (%) posibilidades de explotación de energía geotérmica en almacenes 3. Depth (m) 0 1000 600 4 profundos de baja y media entalpía del territorio nacional. 4. Density (g/cm3) 1,9 2,4 2,1 1 4. IGME (2010). Selección y caracterización de áreas y 5. TOC (%) 0,5 2 estructuras geológicas susceptibles de constituir 6. Porosity (%) emplazamientos de almacenamiento geológico de 7. Maturity (%VR) or graptolite CO2 (ALGECO2). Volumen III-1- equivalent 0,83 1,32 1,05 2 Cadena Ibérica y Cuencas del Tajo y Almazán. Geología.

8. Reservoir pressure (psi)

Geothermal gradient from wells: 9. Reservoir Temperature (°C) 3 39°C/km

3,0 - 9,0 m3/t (55-75% free; 45-25% 10. Gas saturation (%)(Sg) 1 adsorbed)

11. Oil Saturation (%) So)

12. Gas generation mgHC/g TOC (Hydrogen index) 2,25 2

13. Kerogen type II 2

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy)

16. Adsorbed gas storage capacity (scf/ton)

17. Compressibility factor (z)

18. Bg - Gas formation volume factor

19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton)

Bulk mineral constituents XRD % Source

Average clay content (%) Average quartz-feldspars content (%) Mineralogy Average carbonate content (%)

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 67 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter Source REFERENCE LIST : (Screening criteria) Min Max Mean Distribution (Ref.list) Comments 1 . ACIEP, GESSAL (2013): Evaluación preliminar de los recursos prospectivos de 1022 hidrocarburos convencionales y Shale Name: Iberian no convencionales en España. Carboniferous 2. IGME (1981). Estudio de las Age: Carboniferous posibilidades de explotación de energía geotérmica en almacenes Basin: Iberian profundos de baja y media Structural setting: High entalpía del territorio nacional. complexity Poorly known 3. IGME (2010). Selección y Facies variability caracterización de áreas y estructuras geológicas Country: Spain susceptibles de constituir 1. Area extend (km2) 200 1500 750 emplazamientos de Offshore almacenamiento geológico de Onshore 200 1500 750 1 CO2 (ALGECO2). Volumen I-1 - Cadena Cantábrica y Cuenca del 2. Thickness (gross, m) Duero - Geología. 2a. Thickness (net, m) 50 100 75 1 2b. Net/Gross (%)

3. Depth (m) 0 2500 1500 3

4. Density (g/cm3) 2,1 2,6 2,35 1

5. TOC (%)

6. Porosity (%)

7. Maturity (%VR) or graptolite equivalent

8. Reservoir pressure (psi)

Geothermal gradient from wells 9. Reservoir Temperature (°C) 2 between 16 - 27°C/km

3,0 - 9,0 m3/t (55-75% free; 45-25% 10. Gas saturation (%)(Sg) 1 adsorbed)

11. Oil Saturation (%) So)

12. Gas generation mgHC/g TOC (Hydrogen index)

13. Kerogen type

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy)

16. Adsorbed gas storage capacity (scf/ton)

17. Compressibility factor (z)

18. Bg - Gas formation volume factor

19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton)

Bulk mineral constituents XRD % Source

Average clay content (%) Average quartz-feldspars content (%) Mineralogy Average carbonate content (%)

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 68 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter Source REFERENCE LIST : (Screening criteria) Min Max Mean Distribution (Ref.list) Comments 1 . ACIEP, GESSAL (2013): Evaluación preliminar de los recursos prospectivos de 1023 hidrocarburos convencionales y Shale Name: Duero no convencionales en España. Carboniferous 2. IGME (1981). Estudio de las Age: Carboniferous posibilidades de explotación de energía geotérmica en almacenes Basin: Duero profundos de baja y media Structural setting: High entalpía del territorio nacional. complexity Poorly known 3. IGME (1987). Contribucion de la exploracion petrolifera al Facies variability conocimiento de la geologia de Country: Spain España. 1. Area extend (km2) 600 1200 800 Offshore Onshore 600 1200 800 1

2. Thickness (gross, m) 2a. Thickness (net, m) 50 100 75 1 2b. Net/Gross (%)

3. Depth (m) 1000 2500 1700 3

4. Density (g/cm3) 2,1 2,6 2,3 1

5. TOC (%)

6. Porosity (%)

7. Maturity (%VR) or graptolite equivalent

8. Reservoir pressure (psi)

Geothermal gradient from wells 9. Reservoir Temperature (°C) 2 between 25 - 35°C/km

3,0 - 9,0 m3/t (55-75% free; 45-25% 10. Gas saturation (%)(Sg) 1 adsorbed)

11. Oil Saturation (%) So)

12. Gas generation mgHC/g TOC (Hydrogen index)

13. Kerogen type

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy)

16. Adsorbed gas storage capacity (scf/ton)

17. Compressibility factor (z)

18. Bg - Gas formation volume factor

19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton)

Bulk mineral constituents XRD % Source

Average clay content (%) Average quartz-feldspars content (%) Mineralogy Average carbonate content (%)

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 69 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter Source REFERENCE LIST : (Screening criteria) Min Max Mean Distribution (Ref.list) Comments 1 . ACIEP, GESSAL (2013): Evaluación preliminar de los recursos prospectivos de 1024 hidrocarburos convencionales y no convencionales en España. Shale Name: Ebro Carboniferous 2 . EIA/ARI World Shale Gas and Age: Carboniferous Shale Oil Resource Assessment, Technically Recoverable Shale Oil Basin: Ebro and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries Structural setting: High complexity Poorly known Outside the United States http://www.eia.gov/analysis/stud Facies variability ies/worldshalegas/pdf/fullreport. Country: Spain pdf 1. Area extend (km2) 500 1000 750 3. IGME (1981). Estudio de las Offshore posibilidades de explotación de Onshore 500 1000 750 1 energía geotérmica en almacenes profundos de baja y media 2. Thickness (gross, m) entalpía del territorio nacional. 2a. Thickness (net, m) 50 100 75 1 2b. Net/Gross (%)

3. Depth (m) 1650 4000 2825 2

4. Density (g/cm3) 2,1 2,6 2,35 1

5. TOC (%) 12

6. Porosity (%)

7. Maturity (%VR) or graptolite equivalent 121,5 2

8. Reservoir pressure (psi)

Geothermal gradient from wells: 9. Reservoir Temperature (°C) 3 21°C/km

1,8 - 4,5 m3/t (55-75% free; 45-25% 10. Gas saturation (%)(Sg) 1 adsorbed)

11. Oil Saturation (%) So)

12. Gas generation mgHC/g TOC (Hydrogen index)

13. Kerogen type

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy)

16. Adsorbed gas storage capacity (scf/ton)

17. Compressibility factor (z)

18. Bg - Gas formation volume factor

19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton)

Bulk mineral constituents XRD % Source

Average clay content (%)

Average quartz-feldspars content (%)

Average carbonate content (%) Mineralogy

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 70 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter Source REFERENCE LIST : (Screening criteria) Min Max Mean Distribution (Ref.list) Comments 1 . ACIEP, GESSAL (2013): Evaluación preliminar de los recursos prospectivos de 1025 hidrocarburos convencionales y no convencionales en España. Shale Name: Ebro Eocene 2. IGME (1981). Estudio de las Age: Eocene posibilidades de explotación de energía geotérmica en almacenes Basin: Ebro profundos de baja y media Synclinoriums associated to thrust entalpía del territorio nacional. 3. IGME (2010). Selección y Structural setting: Low complexity faults caracterización de áreas y estructuras geológicas Facies variability: High laterally susceptibles de constituir Country: Spain emplazamientos de 1. Area extend (km2) 50 100 75 almacenamiento geológico de Offshore CO2 (ALGECO2). Volumen II-1- Onshore 50 100 75 1 Cadena Pirenaica y Cuenca del Ebro. Geología. 2. Thickness (gross, m) 2a. Thickness (net, m) 25 50 37,5 1 2b. Net/Gross (%)

3. Depth (m) 0 3800 2400 3

4. Density (g/cm3) 1,9 2,4 2,15 1

5. TOC (%)

6. Porosity (%)

7. Maturity (%VR) or graptolite equivalent

8. Reservoir pressure (psi)

Geothermal gradient from wells: 9. Reservoir Temperature (°C) 2 31°C/km

3,0 - 9,0 m3/t (55-75% free; 45-25% 10. Gas saturation (%)(Sg) 1 adsorbed)

11. Oil Saturation (%) So)

12. Gas generation mgHC/g TOC (Hydrogen index)

13. Kerogen type

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy)

16. Adsorbed gas storage capacity (scf/ton)

17. Compressibility factor (z)

18. Bg - Gas formation volume factor

19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton)

Bulk mineral constituents XRD % Source

Average clay content (%)

Average quartz-feldspars content (%)

Average carbonate content (%) Mineralogy

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 71 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter Source REFERENCE LIST : (Screening criteria) Min Max Mean Distribution (Ref.list) Comments 1 . ACIEP, GESSAL (2013): Evaluación preliminar de los recursos prospectivos de 1026 hidrocarburos convencionales y Shale Name: Guadalquivir no convencionales en España. Carboniferous 2 . J.L. García-Lobón, C. Rey- Age: Carboniferous Moral, C. Ayala, L.M. Martín- Parra, J. Matas, M.I. Reguera Basin: Guadalquivir (2014) Regional structure of the southern segment of Central Iberian Zone (Spanish Variscan Structural setting: High complexity Poorly known Belt) interpreted from potential Facies variability: High vertically. field images and 2.5 D modelling Lateral continuity high. of Alcudia gravity transect. Country: Spain Tectonophysics 614 (2014) 185– 1. Area extend (km2) 100 1200 650 202. Offshore 3 . Jarvie, D. M., 2012, Shale Onshore 100 1200 650 1 resource systems for oil and gas: Part 1—Shale-gas resource 2. Thickness (gross, m) 2 > 6000m systems, in J. A. Breyer, ed., Shale 2a. Thickness (net, m) 25 125 75 1 reservoirs—Giant resources for the 21st century: AAPG Memoir 2b. Net/Gross (%) 97, p. 69–87. http://www.ourenergypolicy.org/ 3. Depth (m) 0 4300 1500 5 wp- content/uploads/2012/08/CHAPT 4. Density (g/cm3) 2,36 2,54 2,45 2 ER1PART1.pdf 4. IGME (1981). Estudio de las 5. TOC (%) 3123,74 3 TOC values from Barnett Shale posibilidades de explotación de energía geotérmica en almacenes 6. Porosity (%) profundos de baja y media entalpía del territorio nacional. 7. Maturity (%VR) or graptolite 5. IGME (1987). Contribucion de equivalent 0,85 2,1 1,6 3 VR values from Barnett Shale la exploracion petrolifera al conocimiento de la geologia de España. 8. Reservoir pressure (psi)

Geothermal gradient from wells 9. Reservoir Temperature (°C) 4 between 17 - 43°C/km

3,0 - 9,0 m3/t (55-75% free; 45-25% 10. Gas saturation (%)(Sg) 1 adsorbed)

11. Oil Saturation (%) So)

12. Gas generation mgHC/g TOC (Hydrogen index)

13. Kerogen type

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy)

16. Adsorbed gas storage capacity (scf/ton)

17. Compressibility factor (z)

18. Bg - Gas formation volume factor

19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton)

Bulk mineral constituents XRD % Source

Average clay content (%)

Average quartz-feldspars content (%)

Average carbonate content (%) Mineralogy

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 72 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter Source REFERENCE LIST : (Screening criteria) Min Max Mean Distribution (Ref.list) Comments 1 . ACIEP, GESSAL (2013): Evaluación preliminar de los recursos prospectivos de Shale Name: Basque-Cantabrian 1027 hidrocarburos convencionales y Liassic no convencionales en España. 2 . EIA/ARI World Shale Gas and Age: Lower Jurassic (Liassic) Shale Oil Resource Assessment, Technically Recoverable Shale Oil and Shale Gas Resources: An Basin: Basque-Cantabrian Assessment of 137 Shale Formations in 41 Countries Structural setting: Medium Outside the United States complexity Well known http://www.eia.gov/analysis/stud Facies variability: Laterally ies/worldshalegas/pdf/fullreport. continuous pdf Country: Spain 3 . San Leon Energy web page http://www.sanleonenergy.com/ 1. Area extend (km2) 1200 3500 2350 operations-and-assets/spain- Offshore cantabarian-ebro.aspx Onshore 1200 3500 2350 1 4. Quesada, S., Robles, S. and Dorronsoro, C. (1996). 2. Thickness (gross, m) 50 190 120 4 Caracterización de la roca madre 2a. Thickness (net, m) 25 100 62,5 1 del Lías y su correlación con el 2b. Net/Gross (%) petróleo del Campo de Ayoluengo en base a análisis de 3. Depth (m) 0 7000 2200 7 cromatografía de gases e isótopos de carbono (Cuenca Vasco- 4. Density (g/cm3) 1,9 2,4 2,15 1 Cantábrica, España). Geogaceta, 20 (1) (1996), 176-179. http://www.sociedadgeologica.es 5. TOC (%) 142,5 5 Samples from outcrops /archivos/geogacetas/Geo20%20( 1)/Art45.pdf 6. Porosity (%) 5. Barnolas, A. and Pujalte, V. (2004): La Cordillera Pirenaica. In: 7. Maturity (%VR) or graptolite Geología de España (J. A. Vera, equivalent Ed.), SEG-IGME, Madrid, 282. 6. IGME (1981). Estudio de las 8. Reservoir pressure (psi) posibilidades de explotación de energía geotérmica en almacenes Geothermal gradient from wells profundos de baja y media 9. Reservoir Temperature (°C) 6 between 12 - 69°C/km entalpía del territorio nacional. 7. IGME (2010). Selección y 6,0 - 10,5 m3/t (55-75% free; 45-25% caracterización de áreas y 10. Gas saturation (%)(Sg) 1 adsorbed) estructuras geológicas susceptibles de constituir emplazamientos de 11. Oil Saturation (%) So) almacenamiento geológico de CO2 (ALGECO2). Volumen I-1 - 12. Gas generation mgHC/g TOC Cadena Cantábrica y Cuenca del (Hydrogen index) 760 3 S2 up to 56,5 mg/g. Ref. 3 Duero - Geología.

13. Kerogen type - - II, III 3

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy)

16. Adsorbed gas storage capacity (scf/ton)

17. Compressibility factor (z)

18. Bg - Gas formation volume factor

19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton)

Bulk mineral constituents XRD % Source

Average clay content (%)

Average quartz-feldspars content (%)

Average carbonate content (%) Mineralogy

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 73 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter Source REFERENCE LIST : (Screening criteria) Min Max Mean Distribution (Ref.list) Comments 1 . ACIEP, GESSAL (2013): Evaluación preliminar de los recursos prospectivos de 1028 hidrocarburos convencionales y Shale Name: Basque-Cantabrian no convencionales en España. Lower Cretaceous 2 . San Leon Energy web page Age: Lower Cretaceous http://www.sanleonenergy.com/ operations-and-assets/spain- cantabarian-ebro.aspx Basin: Basque-Cantabrian 3. IGME (1981). Estudio de las posibilidades de explotación de Structural setting: Medium Synclinoriums associated to thrust energía geotérmica en almacenes complexity faults profundos de baja y media entalpía del territorio nacional. Facies variability 4. IGME (2010). Selección y Country: Spain caracterización de áreas y 1. Area extend (km2) 600 3000 1800 estructuras geológicas Offshore susceptibles de constituir Onshore 600 3000 1800 1 emplazamientos de almacenamiento geológico de CO2 (ALGECO2). Volumen I-1 - 2. Thickness (gross, m) 2000 2 Cadena Cantábrica y Cuenca del 2a. Thickness (net, m) 50 200 125 1 Duero - Geología. 2b. Net/Gross (%)

3. Depth (m) 0 5500 1700 4

4. Density (g/cm3) 1,9 2,6 2,25 1

5. TOC (%) 3,6 1 2

6. Porosity (%)

7. Maturity (%VR) or graptolite equivalent

8. Reservoir pressure (psi)

Geothermal gradient from wells 9. Reservoir Temperature (°C) 3 between 15 - 50°C/km

9,0 - 10,5 m3/t (55-75% free; 45-25% 10. Gas saturation (%)(Sg) 1 adsorbed)

11. Oil Saturation (%) So)

12. Gas generation mgHC/g TOC (Hydrogen index) In ref. 1 HI is up to 13 (low?)

13. Kerogen type II-III 2

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy)

16. Adsorbed gas storage capacity (scf/ton)

17. Compressibility factor (z)

18. Bg - Gas formation volume factor

19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton)

Bulk mineral constituents XRD % Source

Average clay content (%)

Average quartz-feldspars content (%)

Average carbonate content (%) Mineralogy

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 74 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter Source REFERENCE LIST : (Screening criteria) Min Max Mean Distribution (Ref.list) Comments 1 . ACIEP, GESSAL (2013): Evaluación preliminar de los recursos prospectivos de 1029 hidrocarburos convencionales y Shale Name: Basque-Cantabrian no convencionales en España. Upper Cretaceous 2. IGME (1981). Estudio de las Age: Upper Cretaceous posibilidades de explotación de energía geotérmica en almacenes profundos de baja y media Basin: Basque-Cantabrian entalpía del territorio nacional. 3. IGME (2010). Selección y Structural setting: Medium caracterización de áreas y complexity Known estructuras geológicas susceptibles de constituir Facies variability emplazamientos de Country: Spain almacenamiento geológico de 1. Area extend (km2) 600 1500 1050 CO2 (ALGECO2). Volumen I-1 - Cadena Cantábrica y Cuenca del Offshore Duero - Geología. Onshore 600 1500 1050 1

2. Thickness (gross, m) 2a. Thickness (net, m) 50 200 125 1 2b. Net/Gross (%)

3. Depth (m) 0 3500 2000 3

4. Density (g/cm3) 1,9 2,4 2,15 1

5. TOC (%)

6. Porosity (%)

7. Maturity (%VR) or graptolite equivalent

8. Reservoir pressure (psi)

Geothermal gradient from wells 9. Reservoir Temperature (°C) 2 between 19 - 33°C/km

6,0 - 10,5 m3/t (55-75% free; 45-25% 10. Gas saturation (%)(Sg) 1 adsorbed)

11. Oil Saturation (%) So)

12. Gas generation mgHC/g TOC (Hydrogen index)

13. Kerogen type

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy)

16. Adsorbed gas storage capacity (scf/ton)

17. Compressibility factor (z)

18. Bg - Gas formation volume factor

19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton)

Bulk mineral constituents XRD % Source

Average clay content (%)

Average quartz-feldspars content (%)

Average carbonate content (%) Mineralogy

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 75 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter Source REFERENCE LIST : (Screening criteria) Min Max Mean Distribution (Ref.list) Comments 1 . ACIEP, GESSAL (2013): Evaluación preliminar de los recursos prospectivos de 1030 hidrocarburos convencionales y Shale Name: Basque-Cantabrian no convencionales en España. Carboniferous 2 . San Leon Energy web page Age: Carboniferous http://www.sanleonenergy.com/ operations-and-assets/spain- cantabarian-ebro.aspx Basin: Basque-Cantabrian 3. IGME (1981). Estudio de las posibilidades de explotación de energía geotérmica en almacenes Structural setting: High complexity Poorly known profundos de baja y media entalpía del territorio nacional. Facies variability 4. IGME (2010). Selección y Country: Spain caracterización de áreas y estructuras geológicas 1. Area extend (km2) 250 500 375 susceptibles de constituir Offshore emplazamientos de Onshore 250 500 375 1 almacenamiento geológico de CO2 (ALGECO2). Volumen I-1 - 2. Thickness (gross, m) Cadena Cantábrica y Cuenca del 2a. Thickness (net, m) 26 50 38 1 Duero - Geología. 2b. Net/Gross (%)

3. Depth (m) 0 2500 1200 4

4. Density (g/cm3) 2,1 2,6 2,35 1

5. TOC (%)

6. Porosity (%)

7. Maturity (%VR) or graptolite equivalent

8. Reservoir pressure (psi)

Geothermal gradient from wells 9. Reservoir Temperature (°C) 3 between 15 - 22°C/km

1,8 - 6,6 m3/t (55-75% free; 45-25% 10. Gas saturation (%)(Sg) 1 adsorbed)

11. Oil Saturation (%) So)

12. Gas generation mgHC/g TOC (Hydrogen index) 257 2 S2 up to 130,4 mg/g

13. Kerogen type II, III 2

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy)

16. Adsorbed gas storage capacity (scf/ton)

17. Compressibility factor (z)

18. Bg - Gas formation volume factor

19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton)

Bulk mineral constituents XRD % Source

Average clay content (%)

Average quartz-feldspars content (%)

Average carbonate content (%) Mineralogy

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 76 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter Source REFERENCE LIST : (Screening criteria) Min Max Mean Distribution (Ref.list) Comments 1 . ACIEP, GESSAL (2013): Evaluación preliminar de los recursos prospectivos de 1031 hidrocarburos convencionales y Shale Name: Cantabrian Massif no convencionales en España. Carboniferous 2 . Alvarez, R., Menendez, R., Age: Carboniferous Ordoñez, A. and Cienfuegos, P. (2012). Preliminary study of the Basin: Cantabrian Massif potential for natural-gas recovery and geological CO2-sequentration in lutite from de Cantabrian Structural setting: High complexity Poorly known Basin. Seguridad y Medio Ambiente. Year 32 N 128 Fourth Facies variability: High vertically Quarter 2012. Fundación Country: Spain MAPFRE. 1. Area extend (km2) 1000 2000 1500 https://www.fundacionmapfre.or Offshore g/documentacion/publico/en/cat alogo_imagenes/imagen.cmd?pat Onshore 1000 2000 1500 1 h=1072549&posicion=2 3. IGME (1981). Estudio de las 2. Thickness (gross, m) posibilidades de explotación de 2a. Thickness (net, m) 50 500 275 1 energía geotérmica en almacenes 2b. Net/Gross (%) profundos de baja y media entalpía del territorio nacional. 3. Depth (m) 0 6000 3000 4 4. Pérez-Estaún et al. (1988). A thin-skinned tectonic model for 4. Density (g/cm3) 2,1 2,6 2,35 1 an arcuate fold and thrust belt. The Cantabrian Zone (Variscan Ibero-Armorican Arc). Tectonics, TOC values: Fresnedo Fm.: 0,07 - 2,08 7, 517-537 pp. (0,67) * San Emiliano Fm.: 0,19 - 5,71 (1,01) 5. TOC (%) 0,1 5,7 2

6. Porosity (%)

7. Maturity (%VR) or graptolite Fresnedo Fm.: 0,9-1,31 (1,07); San equivalent 2 Emiliano Fm.: 0,5-0,83 (0,66) *

8. Reservoir pressure (psi)

Geothermal gradient from wells: 9. Reservoir Temperature (°C) 3 18°C/km

6,0 - 10,5 m3/t (55-75% free; 45-25% 10. Gas saturation (%)(Sg) 1 adsorbed)

11. Oil Saturation (%) So)

12. Gas generation mgHC/g TOC (Hydrogen index)

Fresnedo Fm.: liptinite; San Emiliano 13. Kerogen type Fm.: Vitrinite

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy)

16. Adsorbed gas storage capacity (scf/ton)

17. Compressibility factor (z)

18. Bg - Gas formation volume factor

19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton)

Bulk mineral constituents XRD % Source

Average clay content (%)

Average quartz-feldspars content (%)

Average carbonate content (%) Mineralogy

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 77 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter Source REFERENCE LIST : (Screening criteria) Min Max Mean Distribution (Ref.list) Comments 1 . ACIEP, GESSAL (2013): Evaluación preliminar de los recursos prospectivos de 1032 hidrocarburos convencionales y Shale Name: Cantabrian Massif no convencionales en España. Silurian 2. Maio, F., Aramburu, C. and Age: Silurian Underwood, J. (2011). Geochemistry of Ordovician and Basin: Cantabrian Massif Silurian Black Shales, Cantabrian Zone, Asturias and Leon Structural setting: High complexity Poorly known Provinces, Northwest Spain. Adapted from poster presentation at AAPG Facies variability International Conference and Country: Spain Exhibition, Milan, Italy, October 1. Area extend (km2) 200 800 500 23-26, 2011. Offshore http://www.searchanddiscovery.c Onshore 200 800 500 1 om/pdfz/documents/2011/50529 maio/ndx_maio.pdf.html 2. Thickness (gross, m) 70 300 185 2 3 . Alvarez, R., Menendez, R., 2a. Thickness (net, m) 30 200 115 1 Ordoñez, A. and Cienfuegos, P. 2b. Net/Gross (%) (2012). Preliminary study of the potential for natural-gas recovery and geological CO2-sequentration 3. Depth (m) 0 6000 3000 5 in lutite from de Cantabrian Basin. Seguridad y Medio 4. Density (g/cm3) 2,1 2,6 2,35 1 Ambiente. Year 32 N 128 Fourth Quarter 2012. Fundación 5. TOC (%) 0,15 1,23 0,576 3 MAPFRE. https://www.fundacionmapfre.or 6. Porosity (%) g/documentacion/publico/en/cat alogo_imagenes/imagen.cmd?pat 7. Maturity (%VR) or graptolite h=1072549&posicion=2 equivalent 0,89 1,31 1,09 3 4. IGME (1981). Estudio de las posibilidades de explotación de 8. Reservoir pressure (psi) energía geotérmica en almacenes profundos de baja y media entalpía del territorio nacional. Geothermal gradient from wells: 5. Pérez-Estaún et al. (1988). A 9. Reservoir Temperature (°C) 4 18°C/km thin-skinned tectonic model for an arcuate fold and thrust belt. 3,0 - 9,0 m3/t (55-75% free; 45-25% The Cantabrian Zone (Variscan 10. Gas saturation (%)(Sg) 1 adsorbed) Ibero-Armorican Arc). Tectonics, 7, 517-537 pp. 11. Oil Saturation (%) So)

12. Gas generation mgHC/g TOC (Hydrogen index) 2 25 13,5 2

13. Kerogen type IV 2

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy)

16. Adsorbed gas storage capacity (scf/ton)

17. Compressibility factor (z)

18. Bg - Gas formation volume factor

19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton)

Bulk mineral constituents XRD % Source 2 Average clay content (%) 63

Average quartz-feldspars content (%) 30

Average carbonate content (%) 3 Mineralogy

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 78 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter Source REFERENCE LIST : (Screening criteria) Min Max Mean Distribution (Ref.list) Comments 1 . ACIEP, GESSAL (2013): Evaluación preliminar de los recursos prospectivos de 1033 hidrocarburos convencionales y no convencionales en España. Shale Name: Pyrenees Liassic 2. IGME (1981). Estudio de las Age: Lower Jurassic (Liassic) posibilidades de explotación de energía geotérmica en almacenes Basin: Pyrenees profundos de baja y media Structural setting: Medium entalpía del territorio nacional. 3. IGME (2010). Selección y complexity Well known caracterización de áreas y Facies variability: Laterally estructuras geológicas continuous susceptibles de constituir Country: Spain emplazamientos de 1. Area extend (km2) 600 400 500 almacenamiento geológico de Offshore CO2 (ALGECO2). Volumen II-1- Onshore 600 400 500 1 Cadena Pirenaica y Cuenca del Ebro. Geología. 2. Thickness (gross, m) 2a. Thickness (net, m) 40 100 70 1 2b. Net/Gross (%)

3. Depth (m) 2000 4300 2500 3

4. Density (g/cm3) 1,9 2,4 2,15 1

5. TOC (%)

6. Porosity (%)

7. Maturity (%VR) or graptolite equivalent

8. Reservoir pressure (psi)

Geothermal gradient from wells 9. Reservoir Temperature (°C) 2 between 14 - 48°C/km

6,0 - 10,5 m3/t (55-75% free; 45-25% 10. Gas saturation (%)(Sg) 1 adsorbed)

11. Oil Saturation (%) So)

12. Gas generation mgHC/g TOC (Hydrogen index)

13. Kerogen type

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy)

16. Adsorbed gas storage capacity (scf/ton)

17. Compressibility factor (z)

18. Bg - Gas formation volume factor

19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton)

Bulk mineral constituents XRD % Source

Average clay content (%)

Average quartz-feldspars content (%)

Average carbonate content (%) Mineralogy

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 79 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter Source REFERENCE LIST : (Screening criteria) Min Max Mean Distribution (Ref.list) Comments 1 . ACIEP, GESSAL (2013): Evaluación preliminar de los recursos prospectivos de 1034 hidrocarburos convencionales y Shale Name: Pyrenees Lower no convencionales en España. Cretaceous 2. IGME (1981). Estudio de las Age: Lower Cretaceous posibilidades de explotación de energía geotérmica en almacenes Basin: Pyrenees profundos de baja y media Structural setting: Medium Synclinoriums associated to thrust entalpía del territorio nacional. 3. IGME (1987). Contribucion de complexity faults la exploracion petrolifera al conocimiento de la geologia de Facies variability España. Country: Spain 1. Area extend (km2) 50 350 200 Offshore Onshore 50 350 200 1

2. Thickness (gross, m) 2a. Thickness (net, m) 20 150 85 1 2b. Net/Gross (%)

3. Depth (m) 200 2200 1000 3

4. Density (g/cm3) 1,9 2,4 2,15 1

5. TOC (%)

6. Porosity (%)

7. Maturity (%VR) or graptolite equivalent

8. Reservoir pressure (psi)

Geothermal gradient from wells 9. Reservoir Temperature (°C) 2 between 14 - 48°C/km

3,0 - 9,0 m3/t (55-75% free; 45-25% 10. Gas saturation (%)(Sg) 1 adsorbed)

11. Oil Saturation (%) So)

12. Gas generation mgHC/g TOC (Hydrogen index)

13. Kerogen type

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy)

16. Adsorbed gas storage capacity (scf/ton)

17. Compressibility factor (z)

18. Bg - Gas formation volume factor

19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton)

Bulk mineral constituents XRD % Source

Average clay content (%)

Average quartz-feldspars content (%)

Average carbonate content (%) Mineralogy

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 80 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter Source REFERENCE LIST : (Screening criteria) Min Max Mean Distribution (Ref.list) Comments 1 . ACIEP, GESSAL (2013): Evaluación preliminar de los recursos prospectivos de 1035 hidrocarburos convencionales y no convencionales en España. Shale Name: Pyrenees Eocene 2. Caja, M. A. and. Permanyer, A. Age: Eocene (2008) Significance of organic matter in Eocene turbidite Basin: Pyrenees sediments (SE Pyrenees, Spain). Synclinoriums associated to thrust Naturwissenschaften (2008) 95:1073–1077. Structural setting: Low complexity faults https://www.researchgate.net/pu blication/5234748_Significance_o Facies variability: High laterally f_organic_matter_in_Eocene_tur Country: SP bidite_sediments_SE_Pyrenees_S 1. Area extend (km2) pain Offshore 3. San Leon Energy web page Onshore 150 1000 575 1 http://www.sanleonenergy.com/ operations-and-assets/spain- 2. Thickness (gross, m) 900 2 cantabarian-ebro.aspx 2a. Thickness (net, m) 20 100 60 1 4. IGME (1981). Estudio de las posibilidades de explotación de 2b. Net/Gross (%) energía geotérmica en almacenes profundos de baja y media 3. Depth (m) 0 4500 2000 5 entalpía del territorio nacional. 5. IGME (2010). Selección y 4. Density (g/cm3) 1,9 2,4 2,15 1 caracterización de áreas y estructuras geológicas 5. TOC (%) 1 1,5 1,25 3 susceptibles de constituir emplazamientos de 6. Porosity (%) almacenamiento geológico de CO2 (ALGECO2). Volumen II-1- 7. Maturity (%VR) or graptolite Cadena Pirenaica y Cuenca del equivalent Ebro. Geología.

8. Reservoir pressure (psi)

Geothermal gradient from wells 9. Reservoir Temperature (°C) 4 between 18 - 31°C/km

6,0 - 10,5 m3/t (55-75% free; 45-25% 10. Gas saturation (%)(Sg) 1 adsorbed)

11. Oil Saturation (%) So)

12. Gas generation mgHC/g TOC Samples from outcrops. S2 values: (Hydrogen index) 236 390 313 2 1,84 - 18,42mg/g

13. Kerogen type

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy)

16. Adsorbed gas storage capacity (scf/ton)

17. Compressibility factor (z)

18. Bg - Gas formation volume factor

19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton)

Bulk mineral constituents XRD % Source

Average clay content (%)

Average quartz-feldspars content (%)

Average carbonate content (%) Mineralogy

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 81 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter Source REFERENCE LIST : (Screening criteria) Min Max Mean Distribution (Ref.list) Comments 1. Pene, C. (1996). Hydrocarbon generation modelling in the west of the Moesian Platform, Romania. Petroleum Shale Name: Tandarei graptolitic 1038 Geoscience, Vol. 2, 1996, pp.241-248 black shales 2 . Popescu, B. M. (1995). Romania’s Age: U Ordovician - U Silurian - L petroleum systems and their remaining potential. Petroleum Geoscience 1, Devonian 337-350 Basin: Moesian Platform 3. Iordan, M. (1988). Biostratipraphy of the Devonian in Romania. Devonian of the World. Proc. 2nd Intern. Symp. Structural setting: foreland basin Devonian System, Calgary – 1987, Facies variability: lateral variability Canada, vol. 14 (1). Canadian Society of of shale gas facies Petroleum Geologists, Calgary 4. Iordan, M. (1990). Biostratigraphic Country: Romania, Bulgaria guide marks in the Lower Palaeozoic 1. Area extend (km2) strata of the Moesian Platform, Offshore Romania. Abstract. IGCP Programme, Onshore Project 216 and 303 – Global Biological Events. Precambrian – Cambrian Event Stratigraphy, Oxford 2. Thickness (gross, m) 50 1200 625 6 5. Iordan, M. (1992). Biostratigraphic Depositional environment: marine - age indicators in the Lower Palaeozoic 2a. Thickness (net, m) restricted (anoxic) succesion of the Moesian Platform of 2b. Net/Gross (%) Romania. Geologica Carpathica 43 (4), 231 – 233 3. Depth (m) 6. Seghedi, A., Vaida, M., Iordan, M., Verniers, J. (2005). Paleozoic evolution 4. Density (g/cm3) of the Romanian part of the Moesian Platform: On overview. Geologica 5. TOC (%) 0,66 3,58 2,12 1,2,10 and 11 Belgica (2005) 8/4, 99-120 7. Vaida, M., Seghedi, A., Verniers, J. (2005). Northern Gondwanan affinity of 6. Porosity (%) the East Moesian Terrane based on chitinozoans. Tectonophysics special 7. Maturity (%VR) or graptolite Issue on the Carpathians/Pannonian equivalent System. Tectonophysics, 410, 379-387 8. Vaida, M., Verniers, J. (2005). 8. Reservoir pressure (psi) Biostratigraphy and paleogeography of Lower Devonian chitinozoans, from 9. Reservoir Temperature (°C) East and West Moesia, Romania. Geologica Belgica (2005) 8/4, 121-130 10. Gas saturation (%)(Sg) 9. Vaida, M., Verniers, J. (2006). Chitinozoan implications in the palaeogeography of the East Moesia, 11. Oil Saturation (%) So) Romania. Palaeogeography, Palaeoclimatology, Palaeoecology, 241 12. Gas generation mgHC/g TOC (2006) 561-571 (Hydrogen index) 20 90 55 1,10 and 11 10. Vinogradov, C., Sindilar, V., Olaru, R., Stan, L., Popescu, M., Arsene, S. 13. Kerogen type 0 0 I 1,10,11 (1999). Sequences of the source rocks from the central part of the Moesian 14. Sorption capacity VReq. - 1,9 % Platform. Implications in the (mmol/g) hydrocarbons accumulation. Romanian oil Magazine (1999) 13-22 (in 15. Matrix permeability (nDarcy) Romanian) 11. Gheorghe, S., Barbuliceanu, N., Raschitor, G., Burneiu, L. (2004). 16. Adsorbed gas storage capacity Comparative study of the carbonate (scf/ton) and clay source rocks in the Bibesti - Bulbuceni, Malu Mare, Fauresti and 17. Compressibility factor (z) Mitrofani perimeter. Romanian National Oil and Gas Symposium brochure (2004) 1-12 (In Romanian) 18. Bg - Gas formation volume factor

19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton)

Bulk mineral constituents XRD % Source

Average clay content (%)

Average quartz-feldspars content (%)

Average carbonate content (%) Mineralogy

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 82 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter Source REFERENCE LIST : (Screening criteria) Min Max Mean Distribution (Ref.list) Comments 1. Pene, C. (1996). Hydrocarbon generation modelling in the west of the Moesian Platform, Romania. Petroleum 1039 Geoscience, Vol. 2, 1996, pp.241-248 Shale Name: Calarasi bituminous 2 . Popescu, B. M. (1995). Romania’s limestones petroleum systems and their remaining potential. Petroleum Geoscience 1, 337- 350 Age: U Devonian - L Carboniferous 3. Iordan, M. (1988). Biostratipraphy of Basin: Moesian Platform the Devonian in Romania. Devonian of the World. Proc. 2nd Intern. Symp. Devonian System, Calgary – 1987, Canada, vol. 14 Structural setting: foreland basin (1). Canadian Society of Petroleum Geologists, Calgary Facies variability 4. Iordan, M. (1990). Biostratigraphic guide marks in the Lower Palaeozoic Country: Romania, Bulgaria strata of the Moesian Platform, Romania. 1. Area extend (km2) Abstract. IGCP Programme, Project 216 Offshore and 303 – Global Biological Events. Onshore Precambrian – Cambrian Event Stratigraphy, Oxford 5. Iordan, M. (1992). Biostratigraphic age 2. Thickness (gross, m) 100 2400 1250 6 indicators in the Lower Palaeozoic 2a. Thickness (net, m) succesion of the Moesian Platform of Depositional environment: marine - Romania. Geologica Carpathica 43 (4), 2b. Net/Gross (%) restricted - shallow 231 – 233 6. Seghedi, A., Vaida, M., Iordan, M., 3. Depth (m) Verniers, J. (2005). Paleozoic evolution of the Romanian part of the Moesian 4. Density (g/cm3) Platform: On overview. Geologica Belgica (2005) 8/4, 99-120 5. TOC (%) 0,05 2,4 1,225 1,11 7. Vaida, M., Seghedi, A., Verniers, J. (2005). Northern Gondwanan affinity of the East Moesian Terrane based on 6. Porosity (%) chitinozoans. Tectonophysics special Issue on the Carpathians/Pannonian System. 7. Maturity (%VR) or graptolite Tectonophysics, 410, 379-387 equivalent 8. Vaida, M., Verniers, J. (2005). Maturity reported 1,21 25,33 13,27 11 Biostratigraphy and paleogeography of 8. Reservoir pressure (psi) Lower Devonian chitinozoans, from East and West Moesia, Romania. Geologica 9. Reservoir Temperature (°C) Belgica (2005) 8/4, 121-130 9. Vaida, M., Verniers, J. (2006). 10. Gas saturation (%)(Sg) Chitinozoan implications in the palaeogeography of the East Moesia, Romania. Palaeogeography, 11. Oil Saturation (%) So) Palaeoclimatology, Palaeoecology, 241 (2006) 561-571 12. Gas generation mgHC/g TOC 10. Vinogradov, C., Sindilar, V., Olaru, R., (Hydrogen index) 32 1284 658 11 Stan, L., Popescu, M., Arsene, S. (1999). Sequences of the source rocks from the 13. Kerogen type I, II central part of the Moesian Platform. Implications in the hydrocarbons 14. Sorption capacity VReq. - 1,9 % accumulation. Romanian oil Magazine (mmol/g) (1999) 13-22 (in Romanian) 11. Gheorghe, S., Barbuliceanu, N., 15. Matrix permeability (nDarcy) Raschitor, G., Burneiu, L. (2004). Comparative study of the carbonate and clay source rocks in the Bibesti - 16. Adsorbed gas storage capacity Bulbuceni, Malu Mare, Fauresti and (scf/ton) Mitrofani perimeter. Romanian National Oil and Gas Symposium brochure (2004) 17. Compressibility factor (z) 1-12 (In Romanian)

18. Bg - Gas formation volume factor

19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton)

Bulk mineral constituents XRD % Source

Average clay content (%)

Average quartz-feldspars content (%)

Average carbonate content (%) Mineralogy

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 83 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter Source REFERENCE LIST : (Screening criteria) Min Max Mean Distribution (Ref.list) Comments 1. Pene, C. (1996). Hydrocarbon generation modelling in the west of the Moesian Platform, Romania. 1040 Petroleum Geoscience, Vol. 2, 1996, Shale Name: Vlasin black shale pp.241-248 Formation Age: U Carboniferous 2 . Popescu, B. M. (1995). Romania’s petroleum systems and their Basin: Moesian Platform remaining potential. Petroleum Geoscience 1, 337-350 Structural setting: foreland basin 3. Iordan, M. (1988). Biostratipraphy Facies variability: lateral variability of the Devonian in Romania. of shale gas facies Devonian of the World. Proc. 2nd Intern. Symp. Devonian System, Country: Romania, Bulgaria Calgary – 1987, Canada, vol. 14 (1). Canadian Society of Petroleum 1. Area extend (km2) Geologists, Calgary Offshore 4. Iordan, M. (1990). Biostratigraphic Onshore guide marks in the Lower Palaeozoic strata of the Moesian Platform, 2. Thickness (gross, m) 100 900 500 6 Romania. Abstract. IGCP Programme, Depositional environment: Paralic Project 216 and 303 – Global 2a. Thickness (net, m) (anoxic marine) Biological Events. Precambrian – 2b. Net/Gross (%) Cambrian Event Stratigraphy, Oxford 5. Iordan, M. (1992). Biostratigraphic 3. Depth (m) age indicators in the Lower Palaeozoic succesion of the Moesian Platform of Romania. Geologica 4. Density (g/cm3) Carpathica 43 (4), 231 – 233 6. Seghedi, A., Vaida, M., Iordan, M., 5. TOC (%) Verniers, J. (2005). Paleozoic evolution of the Romanian part of the 6. Porosity (%) Moesian Platform: On overview. Geologica Belgica (2005) 8/4, 99-120 7. Maturity (%VR) or graptolite 7. Vaida, M., Seghedi, A., Verniers, J. equivalent (2005). Northern Gondwanan affinity of the East Moesian Terrane based 8. Reservoir pressure (psi) on chitinozoans. Tectonophysics special Issue on the 9. Reservoir Temperature (°C) Carpathians/Pannonian System. Tectonophysics, 410, 379-387 8. Vaida, M., Verniers, J. (2005). 10. Gas saturation (%)(Sg) Biostratigraphy and paleogeography of Lower Devonian chitinozoans, 11. Oil Saturation (%) So) from East and West Moesia, Romania. Geologica Belgica (2005) 12. Gas generation mgHC/g TOC 8/4, 121-130 (Hydrogen index) 9. Vaida, M., Verniers, J. (2006). Chitinozoan implications in the 13. Kerogen type III 1 palaeogeography of the East Moesia, Romania. Palaeogeography, 14. Sorption capacity VReq. - 1,9 % Palaeoclimatology, Palaeoecology, (mmol/g) 241 (2006) 561-571 10. Vinogradov, C., Sindilar, V., Olaru, R., Stan, L., Popescu, M., Arsene, S. 15. Matrix permeability (nDarcy) (1999). Sequences of the source rocks from the central part of the 16. Adsorbed gas storage capacity Moesian Platform. Implications in the (scf/ton) hydrocarbons accumulation. Romanian oil review (1999) 13-22 (in 17. Compressibility factor (z) Romanian) 11. Gheorghe, S., Barbuliceanu, N., Raschitor, G., Burneiu, L. (2004). 18. Bg - Gas formation volume factor Comparative study of the carbonate and clay source rocks in the Bibesti - Bulbuceni, Malu Mare, Fauresti and Mitrofani perimeter. Romanian 19. Langmuir Pressure (pL, psi) National Oil and Gas Symposium brochure (2004) 1-12 (In Romanian) 20. Langmuir Volume (nL, scf/ton)

Bulk mineral constituents XRD % Source

Average clay content (%)

Average quartz-feldspars content (%)

Average carbonate content (%) Mineralogy

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 84 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter Source REFERENCE LIST : (Screening criteria) Min Max Mean Distribution (Ref.list) Comments 1. ŽůԑŽŝ͕K͘;ϮϬϭϭͿ͘Processes of forming and evolution of the diapiric structures and their roles 1041 in the hydrocarbon accumulation. Unpublish. PhD Shale Name: Biogenic shale Thesis, University of Bucharest. Age: U Badenian 131 p., Bucharest (in Romanian).

2. WĞŶĞ͕͘ĂŶĚŽůԑŽŝ͕K͘΀ϮϬϬϱ΁ Basin: Transilvanian basin Study of the salt movement mechanisms in the Transylvanian basin. Journal of the Balkan Structural setting: back-arc basin Geophysical Society, 8, Suppl. 1, Facies variability: lateral variability ϱϭϯ-ϱϭϲ͘ of shale gas facies 3. WĞŶĞ͕͘ĂŶĚŽůԑŽŝ͕K͘΀ϮϬϬϲ΁ Country: Romania Relationships between gas 1. Area extend (km2) accumulation and salt diapirism in Offshore the Transylvanian Basin. In st Onshore 20000 WƌŽĐĞĞĚŝŶŐƐŽĨƚŚĞϲϴ EAGE Conference & Exhibition, Extended Abstracts. 2. Thickness (gross, m) 0 2200 1100 1,2,3 4 . WŽƉĞƐĐƵ͕͘D͘;ϭϵϵϱͿ͘ 2a. Thickness (net, m) Romania’s petroleum systems 2b. Net/Gross (%) and their remaining potential. Petroleum Geoscience 1, 337-ϯϱϬ 3. Depth (m)

4. Density (g/cm3)

5. TOC (%) 4 The existing gas in this sedimentary basin has biogenic origin 6. Porosity (%)

7. Maturity (%VR) or graptolite equivalent

8. Reservoir pressure (psi)

9. Reservoir Temperature (°C)

10. Gas saturation (%)(Sg)

11. Oil Saturation (%) So)

12. Gas generation mgHC/g TOC (Hydrogen index)

13. Kerogen type

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy)

16. Adsorbed gas storage capacity (scf/ton)

17. Compressibility factor (z)

18. Bg - Gas formation volume factor

19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton)

Bulk mineral constituents XRD % Source

Average clay content (%)

Average quartz-feldspars content (%)

Average carbonate content (%) Mineralogy

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 85 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter Source REFERENCE LIST : (Screening criteria) Min Max Mean Distribution (Ref.list) Comments 1. ŽůԑŽŝ͕K͘;ϮϬϭϭͿ͘Processes of forming and evolution of the diapiric structures and their roles 1042 in the hydrocarbon accumulation. Unpublish. PhD Shale Name: Biogenic shale Thesis, University of Bucharest. Age: L Sarmatian 131 p., Bucharest (in Romanian).

2. WĞŶĞ͕͘ĂŶĚŽůԑŽŝ͕K͘΀ϮϬϬϱ΁ Basin: Transilvanian basin Study of the salt movement mechanisms in the Transylvanian basin. Journal of the Balkan Structural setting: back-arc basin Geophysical Society, 8, Suppl. 1, Facies variability: lateral variability ϱϭϯ-ϱϭϲ͘ of shale gas facies 3. WĞŶĞ͕͘ĂŶĚŽůԑŽŝ͕K͘΀ϮϬϬϲ΁ Country: Romania Relationships between gas 1. Area extend (km2) accumulation and salt diapirism in Offshore the Transylvanian Basin. In Onshore 20000 Proceedings of the 68st EAGE Conference & Exhibition, 2. Thickness (gross, m) 0 2800 1400 1,2,3 Extended Abstracts. 2a. Thickness (net, m) 4 . WŽƉĞƐĐƵ͕͘D͘;ϭϵϵϱͿ͘ 2b. Net/Gross (%) Romania’s petroleum systems and their remaining potential. Petroleum Geoscience 1, 337-ϯϱϬ 3. Depth (m)

4. Density (g/cm3)

5. TOC (%) 4 The existing gas in this sedimentary basin has biogenic origin 6. Porosity (%)

7. Maturity (%VR) or graptolite equivalent

8. Reservoir pressure (psi)

9. Reservoir Temperature (°C)

10. Gas saturation (%)(Sg)

11. Oil Saturation (%) So)

12. Gas generation mgHC/g TOC (Hydrogen index)

13. Kerogen type

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy)

16. Adsorbed gas storage capacity (scf/ton)

17. Compressibility factor (z)

18. Bg - Gas formation volume factor

19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton)

Bulk mineral constituents XRD % Source

Average clay content (%)

Average quartz-feldspars content (%)

Average carbonate content (%) Mineralogy

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 86 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter Source REFERENCE LIST : (Screening criteria) Min Max Mean Distribution (Ref.list) Comments 1 . Atlas of geological structure and oil-gas-bearing of Dniprovsko-Donetska Depression 1043 / Arsiriy, Yu.A., Bilyk, A.A., et al Shale Name: East Ukraine shales (Eds), 1984. - Kyiv: Ministry of Age: C2-P1 Geology of Ukrainian SSR, Basin: Dniprovsko-Donetska UkrNIGRI. - 190 p. (In Russian). Depression - DDD 2. Lukin, A.E., 2011. Perspectives of shale gas in Dniprovsko- Structural setting: south-eastern Donetskiy Aulacogene // part of DDD Geological Journal (Ukraine). - No. Facies variability: moderate lateral 1. - p. 21-41 (In Russian). consistence and facial variability 3. Lukin, A.E., 2010. Shale gas and Country: Ukraine perspectives of its exploitation in Ukraine. Paper 1. Shale gas 1. Area extend (km2) problem state-of-art (based on its Offshore resources development in USA) // Onshore 7900 13000 10500 Geological Journal (Ukraine). - No. 3. - p. 17-33 (In Russian). 4. Lukin, A.E., 2011. On the 2. Thickness (gross, m) 100 5700 2800 3 nature and gas-bearing 2a. Thickness (net, m) 20 800 400 3 Thickness depends on the column perspectives of the low- 2b. Net/Gross (%) 20 14 14 3 stratigraphic completion permeable rocks in the sedimentary layer of the Earth // 3. Depth (m) 100 8000 4500 1, 3 Proceedings of the National Academy of Sciences of Ukraine. - No. 3. - p. 114-123 (In Russian). 4. Density (g/cm3) 2,4 2,79 2,67 1, 3 Brittle rocks 5. Sachsenhofer, R.F., Shymanovskyy, V.A., Bechtel, A., General trend towards porocity Gratzer, R., Horsfield, B., 5. TOC (%) 0,1 4,6 1,8 5, 2 growth with TOC increase Reischenbacher, D., 2010. Paleozoic source rocks in the 6. Porosity (%) 0,2 7 3 1, 3 Dnieper-Donets Basin (in Ukraine) / Pet. Geosci., v. 16, p. 377-399. 7. Maturity (%VR) or graptolite Vitrinite reflectance data (R°/oil) - 0,65- equivalent 0,52 2,5 1,5 5, 1 1,7, avg. - 1,2

8. Reservoir pressure (psi) 1160 21756 6527 1 Possible anomalous pressure with anomalous coefficient up to 1,8-2,0

9. Reservoir Temperature (°C) 28 212 119 1 Average thermogradient value for 10. Gas saturation (%)(Sg) 18 23 20 ƐŽƵƚŚͲĞĂƐƚĞƌŶƉĂƌƚŽĨŝƐϮ͕ϲϱΣˁ

11. Oil Saturation (%) So)

12. Gas generation mgHC/g TOC Possible variations of Hydrogen index (Hydrogen index) 07730 5 due to predominate kerogen type

13. Kerogen type ʳʳ͕ʳʳʳ 1, 5 Possible I-type kerogen occurrence

Considerable range of sorption 14. Sorption capacity VReq. - 1,9 % capacity is caused by the rock facial (mmol/g) 0,1 0,28 0,15 variability

15. Matrix permeability (nDarcy) 0 0,08 0,01 4

16. Adsorbed gas storage capacity (scf/ton) 25 70 45

17. Compressibility factor (z) 0,65 0,98 0,85

18. Bg - Gas formation volume factor 0,01 0,02 0,015

Meaning gas absorbed by entire 19. Langmuir Pressure (pL, psi) 320 630 395 volume of organic matter

20. Langmuir Volume (nL, scf/ton) 15 55 30

Bulk mineral constituents XRD % Source

Average clay content (%) 80

Average quartz-feldspars content (%) 15

Average carbonate content (%) 5 Mineralogy

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 87 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter (Screening Source REFERENCE LIST : criteria) Min Max Mean Distribution (Ref.list) Comments 1 . Core descriptions: GSB-archive 017W0280 & 017W0265 (Merksplas-Beerse) Shale Name: Westphalian A and B 1045 017E0225 (Turnhout-zwemdok) Formations 007E0916 (Loenhout Heibaert) Age: Westphalian A and B (Early- 079E0243 (Halen) Pennsylvanian) 030W0371 (Poederlee) 047E0196 (Hechtel-Hoef) Basin: Campine Basin 062E0290 (Peer) Geverik-Netherland Structural setting: Foreland basin Variscan foreland basin 2. Databank Ondergrond Vlaanderen (DOV). 3. Dusar M., Piessens K., Facies variability: Low to moderate Vandewijngaerde W. 2013. Black shales in Belgium. Geologica Belgica: Country: Belgium - Netherland Black shales in Belgium? Namur: 11- 1. Area extend (km2) 12/10/13. Offshore 4. Dusar M., Bless M.J.M., Burger K., Onshore 708 708 1, 2, 5 Demare t M., Hardy M., Langenaeker V., Fan Thicker towards the N and NE L.S., 2. Thickness (gross, m) 292 737 514,5 1, 2, 6 of the Campine Basin Paproth E., Piérart P., Somers Y., 2a. Thickness (net, m) 15 45 30 9, 10 Streel M., Wouters L. 1998. De 2b. Net/Gross (%) 56 6 steenkoolverkennings- boring Hechtel-Hoef. Geological deeper towards the N and NE Survey of 3. Depth (m) 1500 2237 1868,5 1, 2, 3, 11 of the Campine Basin Belgium - Professional Paper 1998/1, vol. 286, 4. Density (g/cm3) 1-129. 5. Paproth E., Dusar M., Bless M.J.M., Based on 46 samples (ref. 4) Bouckaert J., Delmer A., Fairon- and 25 new (ref. 7 & 9). Demaret M., Houlleberghs E., Laloux 5. TOC (%) 2 24,5 5,5 Logaritmic 4, 7, 8, 9 rockeval evaluation M., Pierart P., Somers Y., Streel M., Thorez J. & Tricot J. 1983. Bio- and 6. Porosity (%) lithostratigraphic subdivisions of the Silesian in Belgium, a review. Annales de la Société géologique de la 7. Maturity (%VR) or graptolite Based on 11 samples VR Belgique, 106, 241 – 283. equivalent 2,12 2,61 2,3564 trigonal 6 reflectivity 6. Vandenberghe N., Dusar M., Boone P., Fan L.S., Voets R., Bouckaert J. Normal hydrostatic pressure to 2000. The Merksplas-Beerse 8. Reservoir pressure (psi) 2219 3353 2786 6 slightly underpressure Geothermal Well (17W265) and the Dinantian Reservoir. Geologica Belgica 9. Reservoir Temperature (°C) 52,5 71 61,75 6 Normal geothermic gradient 3/3-4 349-367 7. Vandewijngaerde W., Nzekwe O., 10. Gas saturation (%)(Sg) Piessens K., Dusar M. 2013 The potential of organic rich roof 11. Oil Saturation (%) So) shales in coal sequences: evaluation of Westphalian samples in well KB174, Campine Basin, Belgium. 12. Gas generation mgHC/g TOC 8. Vandewijngaerde W., Piessens K., (Hydrogen index) Krooss B., Bertier P., Swennen R. 2014. Influence of palaeoenvironment 13. Kerogen type II-III 7,8,9 and palaeogeography on source rock potential and theoretical gas storage 14. Sorption capacity VReq. - 1,9 % capacity of roof shales (mmol/g) (drilling KB174), Hechtel-Hoef, Campine Basin, Belgium. Conference 15. Matrix permeability (nDarcy) paper, MECC 2014. 9. Vandewijngaerde W. 2016. oral communication. PhD proceedings. 16. Adsorbed gas storage capacity Publications in progress. (scf/ton)

10. Wenselaers P., Dusar M. & van 17. Compressibility factor (z) Tongeren P.C.H. 1996. Steenkoollaag methaangaswinning in het Kempisch kolenbekken – Het proefproject te 18. Bg - Gas formation volume factor Peer. Report of the Ministry of the Flemisch Community (EWBL). 67p. 11. Yans J., Dusar M., Swennen R., 19. Langmuir Pressure (pL, psi) Delcambre B., Cornet C., Rippen D., Goemaere E. 2013. Shale Gas in 20. Langmuir Volume (nL, scf/ton) Belgium? Proceedings. Geologica Belgica: Black shales in Belgium? Namur: 11-12/10/13.

Bulk mineral constituents XRD % Source 7, 8, 9 Average clay content (%) 71,8

Average quartz-feldspars content (%) 20,1

Average carbonate content (%) 6,4 Mineralogy

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 88 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter Source REFERENCE LIST : (Screening criteria) Min Max Mean Distribution (Ref.list) Comments 1. Delmer A. (2004). Tectonique du front varisque en Hainaut et dans le Namurois. Memoirs of the 1046 Geological Survey of Belgium n°50, 62 p. + 16 plates. Shale Name: Chokier shales 2. Delmer A. (1977). Le Bassin du Hainaut et le sondage de St- Ghislain. Professional Paper, Age: Namurian (U-Mississipian) Marine & Lacustrine environment Geological Survey of Belgium, Basin: Mons Basin 1977/6 n°143, 14 p. + 8 plates. 3. Delmer A. (1968). Le Sondage d'Epinois. Professional Paper, Structural setting foreland basin Variscan orogenic front and foreland Geological Survey of Belgium, 1968 n°8, 90 p. + 1 plate. Facies variability: complex 4. Licourt L. (2012) Relations Country: Belgium entre la géologie profonde et le comportement 1. Area extend (km2) hydrogéologique du réservoir Offshore géothermique du Hainaut Gross thickness out of 3 boreholes (Belgique) - Caractérisation de Onshore 466 1,2,3 cross-cutting Namurian l’aquifère dans la région de Saint- Ghislain. PhD thesis. University of Namurian formations gross thickness = Mons. 2. Thickness (gross, m) 55 80 75 1,2,3 350 m 5. Licourt L.(2015). Understanding 2a. Thickness (net, m) the Thermal-induced Flow in the 2b. Net/Gross (%) Carbonate and Sulphate Karstic Reservoir of Hainaut (South Base of the deep exploration borehole Belgium) Proceedings World 3. Depth (m) 1500 2000 1750 1,2,3 of Epinois Geothermal Congress 2015. Melbourne, Australia, 19-25 April 2015 4. Density (g/cm3)

5. TOC (%)

6. Porosity (%)

7. Maturity (%VR) or graptolite equivalent % VR 8. Reservoir pressure (psi)

9. Reservoir Temp ° C 63 4, 5

11. Oil Saturation (%) So)

12. Gas generation mgHC/g TOC (Hydrogen index)

13. Kerogen type

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy)

16. Adsorbed gas storage capacity (scf/ton)

17. Compressibility factor (z)

18. Bg - Gas formation volume factor

19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton)

Bulk mineral constituents XRD % Source

Average clay content (%)

Average quartz-feldspars content (%)

Average carbonate content (%) Mineralogy

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 89 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter Source (Screening criteria) Min Max Mean Distribution (Ref.list) Comments REFERENCE LIST : 1 . Humblet, E. (1941). Le bassin houiller de Liège. Extrait de la 1047 Revue Universelle des Mines, 8e Shale Name: Chokier alum shales Série, t. XVII, n°12, Liège, 21 p.

Age: Namurian (U-Mississipian) Marine & Lacustrine environment Presence of gas shale formation, Basin: Liège Basin further research needed

Structural setting: Variscan orogenic front and foreland

Facies variability: Moderate

Country: Belgium (Wallonia) 1. Area extend (km2) Offshore Onshore 15,7 15,7 1

Based on mining works into 3 2. Thickness (gross, m) 100 110 105 1 concessions 2a. Thickness (net, m) 2b. Net/Gross (%)

Based on mining work observations 3. Depth (m) 1500 1800 1650 1 and borehole data

4. Density (g/cm3)

5. TOC (%)

6. Porosity (%)

7. Maturity (%VR) or graptolite equivalent

8. Reservoir pressure (psi)

9. Reservoir Temp ° C

10. Gas saturation (%)(Sg)

11. Oil Saturation (%) So)

12. Gas generation mgHC/g TOC (Hydrogen index)

13. Kerogen type

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy)

16. Adsorbed gas storage capacity (scf/ton)

17. Compressibility factor (z)

18. Bg - Gas formation volume factor

19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton)

Bulk mineral constituents XRD % Source

Average clay content (%)

Average quartz-feldspars content (%)

Average carbonate content (%) Mineralogy

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 90 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter Source REFERENCE LIST : (Screening criteria) Min Max Mean Distribution (Ref.list) Comments 1 . Core descriptions: GSB-archive 017W0280 & 017W0265 (Merksplas-Beerse) 1048 017E0225 (Turnhout- Shale Name: Chokier & Souvré hot zwemdok) shales 007E0916 (Loenhout Heibaert) 079E0243 (Halen) 030W0371 (Poederlee) Age: Namurian (Uper-Mississipian) Marine & Lacustrien environment 047E0196 (Hechtel-Hoef) Basin: Campine Basin 062E0290 (Peer) Geverik-Netherlands

Structural setting: low to moderate Variscan foreland basin 2. Databank Ondergrond Vlaanderen (DOV). Facies variability: 3. Dusar M., Piessens K., Vandewijngaerde W. 2013. Black Country: Belgium - Netherland shales in Belgium. Geologica 1. Area extend (km2) 1812 Belgica: Black shales in Belgium? Offshore Namur: 11-12/10/13. 4. Dusar M. 2006. Chokierian. Onshore 1812 1,2,3,4,5,8 GEOLOGICA BELGICA (2006) 9/1- 2: 177-187 thicker towards the N and NE of the Campine 5. Kochereshko P. 2015. 2. Thickness (gross, m) 20 120 70 1,2,5,7 Basin Correlating geophysical well-log 2a. Thickness (net, m) 20 120 70 1,3,4,6,7,8 data and cored intervals for 2b. Net/Gross (%) 100 100 100 amending incomplete data from the Chokier Formation, Campine 3. Depth (m) 1500 5286 1838 1,2,3,7 deeper towards the N and the NE Basin. MSc Geology thesis at University of Ghent. Promotor: Based on Geophysical log data of 17W0265 - Prof. Dr. Van Rooi D; Copromotor: 4. Density (g/cm3) 1,95 2,8 2,38 1,5,7 Merksplas well Dr. Piessens K. 6. Paproth E., Dusar M., Bless M.J.M., Bouckaert J., Delmer A., Based on 3 samples on a small interval of 1 Fairon-Demaret M., Houlleberghs 5. TOC (%) 2,11 17,8 8,21 ongoing core, ongoing research E., Laloux M., Pierart P., Somers Y., Streel M., Thorez J. & Tricot J. 6. Porosity (%) 0,1 7,6 1,59 ongoing Unknown number of samples 1983. Bio- and lithostratigraphic subdivisions of the Silesian in 7. Maturity (%VR) or graptolite Belgium, a review. Annales de la equivalent 2,95 3,3 3,0933 7 Based on 3 samples, VR% Société géologique de la Belgique, 106, 241 – 283. 8. Reservoir pressure (psi) 1140 1700 1420 5,7 less than hydrostatic pressure 7. Vandenberghe N., Dusar M., Boone P., Fan L.S., Voets R., 9. Reservoir Temp ° C 67 100 83,5 5,7 up to 100 °C in Chokier Bouckaert J. 2000. The Merksplas- Beerse Geothermal Well (17W265) and the Dinantian 10. Gas saturation (%)(Sg) Reservoir. Geologica Belgica 3/3-4 349-367 11. Oil Saturation (%) So) 8. Yans J., Dusar M., Swennen R., 12. Gas generation mgHC/g TOC Delcambre B., Cornet C., Rippen (Hydrogen index) D., Goemaere E. 2013. Shale Gas in Belgium? Proceedings. 13. Kerogen type II 8 Geologica Belgica: Black shales in Belgium? Namur: 11-12/10/13. 14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy) 0 0,18 Ongoing Only 1 sample out of 10 shows permeability

16. Adsorbed gas storage capacity (scf/ton)

17. Compressibility factor (z)

18. Bg - Gas formation volume factor

19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton)

Source Bulk mineral constituents XRD % Average clay content (%) 24,4 1

Average quartz-feldspars content (%) 60,6 Average carbonate content (%) 14,94 Mineralogy

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 91 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution Source (Ref.list) Comments REFERENCE LIST : 1 . ĂĚŝĐƐ͕͕͘sĞƚƅ͕ I., 2012, Source rocks and petroleum systems 1049 in the Shale Name: Kössen Marl Hungarian part of the Pannonian Basin: The potential for shale gas and shale oil plays: Marine and Petroleum Geology 31, 53-69 http://www.sciencedirect.com/science/article/pii/S0264817211002 Age: Upper Triassic, Late Norian to Rhaetian 7, 8, 9 017 2. Bruckner-tĞŝŶ͕͕͘sĞƚƅ͕/͕͘ϭϵϴϲ͕WƌĞůŝŵŝŶĂƌLJŽƌŐĂŶŝĐ geochemical Basin: Zala Basin study of an anoxic Upper Triassic sequence fromW. Hungary: Organic Geochemistry 10, 113-118. http://www.sciencedirect.com/science/article/pii/01466380869001 Structural setting 7,8 passive margin, extension 48 3. Clayton, J.L., Koncz, I., 1994, Petroleum geochemistry of the Zala Facies variability 7,8 low to moderate Basin, Hungary: American Association of Petroleum Geologists Country: Hungary Bulletin 78, 1-22. continouous, 2D, 3D: 300 4. Dank, V., 1988, Petroleum geology of the Pannonian Basin, 1. Area (km2) extend onshore 450 3a 1 km2, wells Hungary based on borehole data and - An overview. In: Royden, L.H., Horváth, F. (Eds.), The Pannonian Area of oil-mature source rock(km2) 450 normal 1 seismic interpretation Basin: Area of gas-mature source rock(km2) 270 normal 1 A Study in Basin Evolution: American Association of Petroleum Geologists Memoir, vol. 45, 319-331. 2. Thickness (gross, m) 17 575 200 triangular 1, 13 borehole data 5. Dolton, G.L., 2006, Pannonian Basin Province, Central Europe 2a. Thickness (net, m) 17 575 200 triangular 1 (Province 4808), Petroleum Geology, Total Petroleum Systems, and 2b. Net/Gross (%) 100 1 Petroleum Resource Assessment.: U.S. Geological Survey Bulletin, vol. 2204-B 47. 3a. Depth (m) Present-day burial depth (m) of oil- 6. Dövényi, P., Horváth, F., 1988, A review of temperature, thermal mature section 2100 3000 2500 normal 1 oil window conductivity, and heat flow data for the Pannonian basin. In: Royden, L., 3b. Depth (m) Present-day burial depth (m) of gas- Horváth, F. (Eds.), The Pannonian Basin: A Study in Basin Evolution: mature section 3000 5000 4000 normal 1 gas window American Association of Petroleum Geologists Memoir, vol. 45, 4a. Rock density(kg/m3) 2,4 2,7 2,5 triang 18 195-233. 0,972/20°C triassic, 7. Haas, J., 1993, Formation and evolution of the Kössen Basin in the 4b. Oil density (g/cm3) 0,92 0,97 0,95 triang 13, 18 Nagylengyel field Transdanubian Range: Földtani Közlöny 123, 34-54. From Zalaszentlászló-1 and 8. Haas, J., Hámor, G., Jámbor, Á, Kovács, S., Nagymarosy, A., Rezi-1 boreholes; 131 Szederkényi, T., 2012, Geology of Hungary. Springer, London, p.244 5. TOC (%) 0,07 31,5 3,86 triangular 1, 15 samples 9. Haas, J., Budai, T., Csontos, L., Fodor, L., Konrád, Gy, 2010, Pre-Cenozoic Geological Map of Hungary, 1:500 000: Geological borehole data, Nagylengyel Institute of Hungary. conventional oil field, triassic 10. Hetényi, M., 1989, Hydrocarbon generative features of the upper 6. Porosity (%) 1.2 2.2 2,0 triangular 1, 18 section Triassic Kössen Marl from W. Hungary: Acta Mineralogica- Petrographica Szeged XXX, 137-147. From Zalaszentlászló-1 and 11. Hetényi, M., Brukner-Wein, A., Sajgó, Cs., Haas, J., Hámor-Vidó, Rezi-1 boreholes; immature M., algal kerogene - from the Szántó, Zs., Tóth, M., 2002, Variations in organic geochemistry and 7. Maturity (%VR) or graptolite equivalent 0,32 0,35 0,335 normal 1, 15 immature part of Kossen Fm. lithology of a carbonate sequence deposited in a backplatform Basin (Triassic, Hungary): Organic Geochemistry 33, 1571-1591. borehole data, Nagylengyel http://www.sciencedirect.com/science/article/pii/S0146638002001 conventional oil field, 2130- 882 8. Reservoir pressure (psi) 2900 3550 3225 normal 18 2720 m bsl. hydrostatic 12. Koncz, I., 1990, The origin of the oil at the Nagylengyel and nearby fields: General Geological Review Journal of the Hungarian 2000-5000 m bsl. based on Geological Society 25, 55-82 (in Hungarian with English abstract). temperature-depth function 13. Körössy, L., 1988, Hydrocarbon geology of the Zala Basin, of the area (Zilahi et al. Hungary: 9. Reservoir Temperature (°C) 100 250 165 triangular 17, 16, 6 2011) General Geological Review Journal of the Hungarian Geological Society 10. Gas saturation (%)(Sg) not available 23, 3-162 (in Hungarian with English abstract). http://epa.oszk.hu/02700/02751/00023/pdf/EPA02751_alt_foldt_s Nagylengyel field data 2000- zemle_1988_23_003-162.pdf 11. Oil Saturation (%) So) 68 72 70 normal 13 2200 m bsl 14. Szalay, Á, Koncz, I., 1991, Genetic relations of hydrocarbons in the 12. Gas generation mgHC/g TOC (Hydrogen index) 93 990 516 triangular 1, 15 Hungarian part of the Pannonian Basin. In: Spencer, A.M. (Ed.), Generation, Accumulation and Production of Europe’s 13. Kerogen type II S 15, 11, 12 high sulfur content Hydrocarbons: Special Publication of the European Association of Petroleum Geoscientists, vol. 1, 317-322. ϭϱ͘sĞƚƅ͕/͕͘,ĞƚĠŶLJŝ͕D͕͘,ĄŵŽƌ-Vidó, M., Hufnagel, H., Haas, J., 14. Sorption capacity VReq. - 1,9 % (mmol/g) not available 2000, Anaerobic degradation of organic matter controlled by productivity 15. Matrix permeability (nDarcy) not available variation in a restricted late Triassic Basin: Organic Geochemistry 31, 439-452. 16. Adsorbed gas storage capacity (scf/ton) not available http://www.sciencedirect.com/science/article/pii/S0146638000000 115 17. Compressibility factor (z) not available 16. Dövényi, P., Horváth, F., Liebe, P., Gálfy, J., Erki, I. 1983, Magyarország Geotermikus viszonyai (Geothermal conditions of not available for deeper than Hungary): Geophysical Transactions, 29/1, 3-114. Eötvös Lorand 18. Bg - Gas formation volume factor 2700 m bsl. Geophysical Inst., 17. Zilahi-Sebess, L., Gyuricza, Gy. et al. 2011, Zalalövö geothermal concession report: Eötvös Lorand Geophys. Inst. Nagylengyel oil field, triassic http://www.mbfh.hu/gcpdocs/201510/zalalovo_geotermikus_konc reservoirs, -2200 m bsl. esszios_jelentes_2011dec.pdf Bo - Oil formation volume factor (m3/m3) 1.05 1.06 1.055 13, 18 (dissolved gas: 0 m3/m3) 18. Völgyi et al. 1985, Oil and gas occurences of Hungary (in Hungarian): Manuscript, GEOS, Budapest 19. Langmuir Pressure (pL, psi) not available

20. Langmuir Volume (nL, scf/ton) not available y

Bulk mineral constituents XRD % Source

Average clay content (%) 8-42 1 Average quartz-feldspars content (%) 4-20 1

Average carbonate content (%) 40-90 1 Mineralog

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 92 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution Source (Ref.list) Comments REFERENCE LIST : 1 . ĂĚŝĐƐ͕͕͘sĞƚƅ͕ I., 2012, Source rocks and petroleum systems 1050 in the Hungarian part of the Pannonian Basin: The potential for Shale Name: Tard Clay shale gas and shale oil plays: Marine and Petroleum Geology 31, 53-69 http://www.sciencedirect.com/science/article/pii/S0264817211002 017 Age: Oligocene 2. Bechtel, A., Hámor-Vidó, M., Gratzer, R., Sachenhofer, R., F., Püttmann, W., 2012, Facies evolution and stratigraphic correlation in the early Oligecene Tard Clay of Hungary as revealed by maceral, Basin: Hungarian Paleogene Basin 7, 10, 12 biomarker and stable isotope composition: Marine and Petroleum Geology 35, 55-74 http://www.sciencedirect.com/science/article/pii/S0264817212000 554 Structural setting 14 retroarc flexural bain 3. Brukner-tĞŝŶ͕͕͘,ĞƚĠŶLJŝ͕D͕͘sĞƚƅ͕/͕͘ϭϵϵϬ͘KƌŐĂŶŝĐ geochemistry of an anoxic cycle: a case history from the Oligocene Facies variability 7, 12 moderate section, Hungary. Organic Geochemistry 15, 123-130. Country: Hungary http://www.sciencedirect.com/science/article/pii/01466380909007 7D continouous, 2D, 3D: more 4. Dank, V., 1988. Petroleum geology of the Pannonian Basin, 1. Area (km2) extend onshore 7800 3a 1 than 1000 km2, wells Hungary - An overview. In: Royden, L.H., Horváth, F. (Eds.), The based on borehole data and Pannonian Basin: A Study in Basin Evolution. American Association Area of oil-mature source rock(km2) 2600 normal 1 seismic interpretation of Petroleum Geologists Memoir, vol. 45, pp. 319-331. Area of gas-mature source rock(km2) 1900 normal 1 5. Dolton, G.L., 2006. Pannonian Basin Province, Central Europe (Province 4808) - Petroleum Geology, Total Petroleum Systems, and 2. Thickness (gross, m) 8 200 68 normal 1, , 7, 13 borehole data Petroleum Resource Assessment. In: U.S. Geological Survey Bulletin, 2a. Thickness (net, m) 27 normal 1, 7 2204-B, 47. 2b. Net/Gross (%) 40 1 0,4 http://pubs.usgs.gov/bul/2204/b/pdf/b2204-b_508.pdf 6. Dövényi, P., Horváth, F., 1988. A review of temperature, thermal 3a. Depth (m) Present-day burial depth (m) of oil- conductivity, and heat flow data for the Pannonian basin. In: mature section 1300 3000 2150 normal 1 oil window Royden, L., Horváth, F. (Eds.), The Pannonian Basin: A Study in Basin Evolution. American Association of Petroleum Geologists Memoir, 3b. Depth (m) Present-day burial depth (m) of gas- vol. 45, pp. 195-233. mature section 3000 4500 3750 normal 1 gas window 7. Haas, J., Hámor, G., Jámbor, Á, Kovács, S., Nagymarosy, A., 4a. Rock density(kg/m3) 2,4 2,6 2,5 18 Szederkényi, T., 2012. Geology of Hungary. Springer, London, Conventional oil fields, Budapest, 244p. 4b. Oil density (g/cm3) 0,83 0,88 0,85 triang 18 paleogene reservoirs 8. Haas, J., Budai, T., Csontos, L., Fodor, L., Konrád, Gy, 2010. 5. TOC (%) 0.41 4.98 2.21 triangular 1 PreCenozoic Geological Map of Hungary, 1:500 000. Geological Institute of Hungary. borehole data, producing ϵ͘,ĞƌƚĞůĞŶĚŝ͕͕͘sĞƚƅ͕/͕͘ϭϵϵϭ͘dŚĞŵĂƌŝŶĞƉŚŽƚŽƐLJŶƚŚĞƚŝĐĐĂƌďŽŶ conventional fields, 2100- isotopic fractionation remained constant during Early Oligocene. 6. Porosity (%) 5.6 24.3 10 triangular 2400 m bsl. Palaeogeography, Palaeoclimatology, Palaeoecology 83, 333-339. 10. Kókai, J., Pogácsás, G., 1991. Tectono-stratigraphical evolution 7. Maturity (%VR) or graptolite equivalent 0,43 0,52 0,48 normal 1 and hydrocarbon habitat of the Pannonian Basin. In: Spencer, A.M. (Ed.), Generation, Accumulation and Production of Europe’s Hydrocarbons. Special Publication of the European Association of From borehole data, 2000- Petroleum Geoscientists, vol. 1, pp. 307-317. 8. Reservoir pressure (psi) 3045 3916 3480 normal 2400 m b see level ϭϭ͘<ƅƌƂƐƐLJ͕>͕͘ϮϬϬϰ͘,LJĚƌŽĐĂƌďŽŶŐĞŽůŽŐLJŽĨƚŚĞWĂůĂĞŽŐĞŶĞĂƐŝŶ͕ northern Hungary. General Geological Review Journal of the Zilahi-Sebess et al. 2012; Hungarian Geological Society 28, 9-121 (in Hungarian with English 124-134 °C (2100-2400 m abstract). bsl), in producing fields of http://epa.oszk.hu/02700/02751/00028/pdf/EPA02751_alt_foldt_s 9. Reservoir Temperature (°C) 70 200 130 triangular 17 the area zemle_2004_28_009-120.pdf 12. Milota, K., Kovács, A., Galicz, Zs, 1995. Petroleum potential of 10. Gas saturation (%)(Sg) not available the north Hungarian Oligocene sediments. Petroleum Geoscience 1, 81-87. Conventional oil fields, 13. Szalay, Á, Koncz, I., 1991. Genetic relations of hydrocarbons in the Hungarian part of the Pannonian Basin. In: Spencer, A.M. (Ed.), 11. Oil Saturation (%) So) 0,70 0,75 18 paleogene reservoirs Generation, Accumulation and Production of Europe’s Hydrocarbons. Special Publication of the European Association of 12. Gas generation mgHC/g TOC (Hydrogen index) 26 465 252 triangular 1,12 Petroleum Geoscientists, vol. 1, pp. 317-322. 14. Tari, G., Báldi, T., Báldi-Beke, M., 1993. Paleogene retroarc 13. Kerogen type II, III 12, 15, 2, 3, 1 mixed type flexural basin beneath the Neogene Pannonian Basin d A geodynamic model. Tectonophysics 226, 433-455 14. Sorption capacity VReq. - 1,9 % (mmol/g) not available http://www.sciencedirect.com/science/article/pii/00401951939013 13 15. Matrix permeability (nDarcy) not available ϭϱ͘sĞƚƅ͕/͕͘,ĞƚĠŶLJŝ͕D͕͘ϭϵϵϭ͘&ĂƚĞŽĨŽƌŐĂŶŝĐĐĂƌďŽŶĂŶĚƌĞĚƵĐĞĚ sulphur in dysoxic-anoxic Oligocene facies of the central Paratethys 16. Adsorbed gas storage capacity (scf/ton) not available (Carpathian Mountains and Hungary). In: Tyson, R.V., Pearson, T.H. (Eds.), Modern and Ancient Continental Shelf Anoxia. Geological Society Special Publication, vol. 58, pp. 449-460. 17. Compressibility factor (z) not available ϭϲ͘sĞƚƅ͕/͕͘EĂŐLJŵĂƌŽƐLJ͕͘ƌƵŬŶĞƌ-Wein, A., Hetényi, M., Sajgó, Cs., 1999. Salinity changes control, isotopic composition and 18. Bg - Gas formation volume factor preservation of the organic matter: the Oligocene Tard Clay, Conventional oil fields, Hungary, revisited. In: 19th International Meeting on Organic Bo - Oil formation volume factor 1,07 1,20 1,14 normal paleogene reservoirs Geochemistry, Abstract Vol., pp. 411-412. 17. Zilahi-^ĞďĞƐƐ͕ů͕͘'LJƵƌŝĐnjĂ͕'LJ͘ĞƚĂů͘ϮϬϭϮ͕'ƂĚƂůůƅŐĞŽƚŚĞƌŵĂů 19. Langmuir Pressure (pL, psi) not available concession report: Eötvös Lorand Geophys. Inst. http://www.mbfh.hu/gcpdocs/201510/godollo_geotermikus_konce 20. Langmuir Volume (nL, scf/ton) not available sszios_jelentes_2012marc.pdf 18. Völgyi et al. 1985, Oil and gas occurences of Hungary (in

y Hungarian): Manuscript, GEOS, Budapest

Bulk mineral constituents XRD % Source

Average clay content (%) 8-42 1 Average quartz-feldspars content (%) 4-20 1

Average carbonate content (%) 40-90 1 Mineralog

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 93 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter Source REFERENCE LIST : (Screening criteria) Min Max Mean Distribution (Ref.list) Comments 1 . Report PGI, 2012 (PGI-NRI, 2012. “Assessment of Shale Gas and Shale Oil Resources of the 1051 Lower Paleozoic Baltic-Podlasie- Shale Name: Lower Palaeozoic Lublin Basin in Poland, First shales Report.” Warsaw, Poland) 2. DŽĚůŝŷƐŬŝ͕͘;ĞĚ͘Ϳ͕ϮϬϭϬ͘ Paleogeological atlas of the sub- Age: Upper Cambrian - Llandovery Permian Paleozoic of the East- Basin: Baltic Basin (assessment area European Craton in Poland and 1) neighboring areas. PGI-NRI, small hydrocarbon fields present in Warsaw, Poland Structural setting: simple northernmost part 3. Poprawa, P., 2010. Shale Gas Potential of the Lower Palaeozoic Facies variability: Lateral continuity flexural bending towards the west Complex in the Baltic and Lublin- Alum shales present only in WŽĚůĂƐŝĞĂƐŝŶƐ;WŽůĂŶĚͿ͘WƌnjĞŐůČĚ northermost part of the assessment Geologiczny, volume 58, p. 226– 249 (in Polish with English Country: Poland area summary). 1. Area extend (km2) 4. CBDG database Offshore (www.pgi.gov.pl) Onshore 16039 19603 17821 triangular 1 5. Andrews I.J., 2013. The Carboniferous Bowland Shale gas 2. Thickness (gross, m) 22 112 65 triangular 2, 3 study: geology and resource 2a. Thickness (net, m) 12 73 40 triangular 2, 3 estimation. British Geological 2b. Net/Gross (%) 55 65 62 triangular 2, 3 Survey for Department of Energy and Climate Change, London, UK 3. Depth (m) 1500 4500 2800 triangular 4, 1 top of Upper Ordovician shales 6. tŝħĐųĂǁ͕͘<ŽƚĂƌďĂD͘:͕͘ Kosakowski P., Kowalski A., Grotek I., 2010. Habitat and 4. Density (g/cm3) 2,5 2,7 2,6 triangular 5 hydrocarbon potential of the lower Paleozoic source rocks in (parameters referring to net thickness) the Polish part of the Baltic 5. TOC (%) 2 4,5 2,97 triangular 1, 3, 6 region. Geol. Quart., 54 (2): 159- 182. Warszawa. 6. Porosity (%) 4,0 5,0 4,5 triangular 5, 7 7. Andrews, I.J., 2014. The Jurassic shales of the Weald 7. Maturity (%VR) or graptolite graptolites; gas and oil areas splitted Basin: geology and shale oil and equivalent 0,6 3,5 1,3 triangular 1, 3 in GIS shale gas resource estimation. British Geological Survey for hydrostatic gradient assumed (~450 Department of Energy and Climate Change, London, UK 8. Reservoir pressure (psi) 2200 6600 4100 triangular 1 psi/ft) 8. Górecki W. (ed.), 2006. Atlas of geothermal resources of top of Upper Ordovician shales - Paleozoic formations in the Polish based on map of (temperature at) Lowlands. AGH, 2006, Kraków Cambrian top & mean present day 9. online-calculating method for z geothermal gradient in the area in and Bg factors for different 9. Reservoir Temperature (°C) 40 120 74 triangular 8 question reservoir temperatures and pressures hypothetical values, plots from 10 (2 http://petrowiki.org/Calculating_ 10. Gas saturation (%)(Sg) 50 75 67 triangular 5, 7, 10 wells) gas_properties#.UzRf-s70fm5 10. Makos M., 2014. Activities of 11. Oil Saturation (%) So) 0,5 15 6 triangular 10 plots (2 wells, ESO - 2 wells) PGNiG in exploration of unconventional hydrocarbon resources in Poland. “Science for 12. Gas generation mgHC/g TOC Industry: Necessity is the mother (Hydrogen index) 50 300 100 triangular 10 plot of invention” Third Networking Event dedicated to the Polish 13. Kerogen type 21, 3 experience in the field of shale gas exploration, ING, Warsaw, 14. Sorption capacity VReq. - 1,9 % Poland (presentation) (mmol/g) no published information

15. Matrix permeability (nDarcy) no published information

16. Adsorbed gas storage capacity (scf/ton) 35 53 44 triangular 5, 7 shales of similar TOC

http://petrowiki.org/Calculating_gas_ 17. Compressibility factor (z) 0,8 1,1 1 triangular 9 properties#.UzRf-s70fm5

18. Bg - Gas formation volume factor 0,0033 0,0058 0,0043 triangular 9 Bg = 0.02829zT/P [Ra, psi]

19. Langmuir Pressure (pL, psi) no published information

20. Langmuir Volume (nL, scf/ton) no published information Compiled by Baiba Brikmane, Inga Piese. Supervised by Daiga Pipira

Bulk mineral constituents XRD % Source

Average clay content (%) 50 10

Average quartz-feldspars content (%) 40

Average carbonate content (%) 8 Mineralogy

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 94 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter Source REFERENCE LIST : (Screening criteria) Min Max Mean Distribution (Ref.list) Comments 1 . Report PGI, 2012 (PGI-NRI, 2012. “Assessment of Shale Gas Shale Name: Lower Palaeozoic 1052 and Shale Oil Resources of the shales Lower Paleozoic Baltic-Podlasie- Lublin Basin in Poland, First Age:Upper Ordovician - Llandovery Report.” Warsaw, Poland) ĂƐŝŶ͗WųŽĐŬͲtĂƌƐĂǁnjŽŶĞ 2. DŽĚůŝŷƐŬŝ͕͘;ĞĚ͘Ϳ͕ϮϬϭϬ͘ Paleogeological atlas of the sub- (assessment area 2) Permian Paleozoic of the East- European Craton in Poland and Structural setting: simple flexural bending towards the west neighboring areas. PGI-NRI, Warsaw, Poland. 3. Poprawa, P., 2010. Shale Gas Facies variability: Lateral continuity Potential of the Lower Palaeozoic Country: Poland Complex in the Baltic and Lublin- 1. Area extend (km2) WŽĚůĂƐŝĞĂƐŝŶƐ;WŽůĂŶĚͿ͘WƌnjĞŐůČĚ Offshore onshore only Geologiczny, volume 58, p. 226– Onshore 4139 5058 4599 triangular 1 249 (in Polish with English summary) approximate values - the shale 4. CBDG database 2. Thickness (gross, m) 30 80 50 triangular 2, 3 complexes (www.pgi.gov.pl) are located a quite deep and only a 5. Andrews I.J., 2013. The Carboniferous Bowland Shale gas 2a. Thickness (net, m) 30 80 50 triangular 2, 3 few wells study: geology and resource 2b. Net/Gross (%) 100 100 100 triangular 2, 3 drilled these complexes estimation. British Geological Survey for Department of Energy 3. Depth (m) 3500 5000 4430 triangular 4, 1 top of Upper Ordovician shales and Climate Change, London, UK 6. Andrews, I.J., 2014. The 4. Density (g/cm3) 2,5 2,7 2,6 triangular 5 Jurassic shales of the Weald Basin: geology and shale oil and (parameters referring to net shale gas resource estimation. 5. TOC (%) 2 4 2,76 triangular 1, 3 thickness) British Geological Survey for Department of Energy and 6. Porosity (%) 454,5triangular5, 7 Climate Change, London, UK 7. Górecki W. (ed.), 2006. Atlas of 7. Maturity (%VR) or graptolite geothermal resources of Paleozoic formations in the Polish equivalent 2 3,5 3 triangular 1, 3 graptolites; gas area only Lowlands. AGH, 2006, Kraków 8. online-calculating method for z hydrostatic gradient assumed (~450 and Bg factors for different 8. Reservoir pressure (psi) 5200 7300 6500 triangular 1 psi/ft) reservoir temperatures and pressures top of Upper Ordovician shales - http://petrowiki.org/Calculating_ based on map of (temperature at) gas_properties#.UzRf-s70fm5 Cambrian top & mean present day geothermal gradient in the area in 9. Reservoir Temperature (°C) 110 140 129 triangular 7 question

10. Gas saturation (%)(Sg) 50 75 67 triangular 5, 6 hypothetical values

no published information - values 11. Oil Saturation (%) So) 0,5 15 6 triangular from area 1 assumed

12. Gas generation mgHC/g TOC no published information - values (Hydrogen index) 50 300 100 triangular from area 1 assumed

13. Kerogen type II 1, 3

14. Sorption capacity VReq. - 1,9 % (mmol/g) no published information

15. Matrix permeability (nDarcy) no published information

16. Adsorbed gas storage capacity (scf/ton) 35 53 44 triangular 5, 6 shales of similar TOC

http://petrowiki.org/Calculating_gas_ 17. Compressibility factor (z) 0,81,11triangular8 properties#.UzRf-s70fm5

18. Bg - Gas formation volume factor 0,0030 0,0032 0,003151 triangular 8 Bg = 0.02829zT/P [Ra, psi]

19. Langmuir Pressure (pL, psi) no published information

20. Langmuir Volume (nL, scf/ton) no published information Compiled by Baiba Brikmane, Inga Piese. Supervised by Daiga Pipira

no published information Bulk mineral constituents XRD % Source

Average clay content (%) (%)

Average carbonate content (%) Mineralogy

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 95 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter Source REFERENCE LIST : (Screening criteria) Min Max Mean Distribution (Ref.list) Comments 1 . Report PGI, 2012 (PGI-NRI, 2012. “Assessment of Shale Gas and Shale Oil Resources of the 1053 Lower Paleozoic Baltic-Podlasie- Shale Name: Lower Palaeozoic Lublin Basin in Poland, First shales Report.” Warsaw, Poland) 2. DŽĚůŝŷƐŬŝ͕͘;ĞĚ͘Ϳ͕ϮϬϭϬ͘ Paleogeological atlas of the sub- Age: Llandovery - Wenlock Permian Paleozoic of the East- European Craton in Poland and Basin: Podlasie Basin and North neighboring areas. PGI-NRI, Lublin Basin (assessment area 3) small hydrocarbon fields present Warsaw, Poland. 3. Poprawa, P., 2010. Shale Gas Structural setting: simple to flexural bending towards the west; fault-block Potential of the Lower Palaeozoic complex tectonics in south Complex in the Baltic and Lublin- WŽĚůĂƐŝĞĂƐŝŶƐ;WŽůĂŶĚͿ͘WƌnjĞŐůČĚ Geologiczny, volume 58, p. 226– Facies variability: Lateral continuity 249 (in Polish with English Country: Poland summary) 1. Area extend (km2) 4. CBDG database Offshore onshore only (www.pgi.gov.pl) Onshore 7833,1 9573,7 8703,4 triangular 1 5. Andrews I.J., 2013. The Carboniferous Bowland Shale gas study: geology and resource estimation. British Geological 2. Thickness (gross, m) 103 150 130 triangular 2, 3 Wenlock of low net/gross ratio prevails Survey for Department of Energy 2a. Thickness (net, m) 24 60 40 triangular 2, 3 Lower Wenlock and Llandowery and Climate Change, London, UK 2b. Net/Gross (%) 23 40 31 triangular 2, 3 6. Andrews, I.J., 2014. The Jurassic shales of the Weald 3. Depth (m) 1500 4000 2025 triangular 4, 1 top of Llandowery shales Basin: geology and shale oil and shale gas resource estimation. 4. Density (g/cm3) 2,5 2,7 2,6 triangular 5 British Geological Survey for Department of Energy and Climate Change, London, UK (parameters referring to net thickness) 5. TOC (%) 2 4 2,83 triangular 1, 3 7. Górecki W. (ed.), 2006. Atlas of geothermal resources of Paleozoic formations in the Polish 6. Porosity (%) 454,5triangular5, 7 Lowlands. AGH, 2006, Kraków 8. online-calculating method for z 7. Maturity (%VR) or graptolite and Bg factors for different equivalent 0,6 3,5 1,3 triangular 1, 3 graptolites; gas and oil areas splitted in GIS reservoir temperatures and pressures http://petrowiki.org/Calculating_ 8. Reservoir pressure (psi) 2200 5900 3000 triangular 1 hydrostatic gradient assumed (~450 psi/ft) gas_properties#.UzRf-s70fm5 9. Makos M., 2014. Activities of top of Llandowery shales - based on map of PGNiG in exploration of (temperature at) Cambrian top & mean unconventional hydrocarbon present day geothermal gradient in the area resources in Poland. “Science for 9. Reservoir Temperature (°C) 57 107 68 triangular 7 in question Industry: Necessity is the mother of invention” Third Networking Event dedicated to the Polish 10. Gas saturation (%)(Sg) 50 75 67 triangular 5, 6 hypothetical values experience in the field of shale gas exploration, ING, Warsaw, no published information - values from area 1 Poland (presentation) 11. Oil Saturation (%) So) 0,5 15 6 triangular assumed

12. Gas generation mgHC/g TOC (Hydrogen index) 50 400 200 triangular 9 plot

13. Kerogen type II 1, 3

14. Sorption capacity VReq. - 1,9 % (mmol/g) no published information

15. Matrix permeability (nDarcy) no published information

16. Adsorbed gas storage capacity (scf/ton) 35 53 44 triangular 5, 6 shales of similar TOC

http://petrowiki.org/Calculating_gas_properti 17. Compressibility factor (z) 0,8 1,1 1 triangular 8 es#.UzRf-s70fm5

18. Bg - Gas formation volume factor 0,0036 0,0061 0,0058 triangular 8 Bg = 0.02829zT/P [Ra, psi]

19. Langmuir Pressure (pL, psi) no published information

20. Langmuir Volume (nL, scf/ton) no published information Compiled by Baiba Brikmane, Inga Piese. Supervised by Daiga Pipira

Bulk mineral constituents XRD % Source Average clay content (%) no published Average quartz-feldspars content (%) informatio n Average carbonate content (%) Mineralogy

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 96 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter (Screening Source REFERENCE LIST : criteria) Min Max Mean Distribution (Ref.list) Comments 1 . Report PGI, 2012 (PGI-NRI, 2012. “Assessment of Shale Gas and Shale Oil Resources of the 1054 Lower Paleozoic Baltic-Podlasie- Lublin Basin in Poland, First Shale Name: Lower Palaeozoic shales Report.” Warsaw, Poland) 2. DŽĚůŝŷƐŬŝ͕͘;ĞĚ͘Ϳ͕ϮϬϭϬ͘ Paleogeological atlas of the sub- Age: Llandovery - Wenlock Permian Paleozoic of the East- European Craton in Poland and Basin: South Lublin Basin and Narol Basin neighboring areas. PGI-NRI, (assessment area 4) small hydrocarbon fields present Warsaw, Poland. 3. Poprawa, P., 2010. Shale Gas Structural setting: complex fault-block tectonics Potential of the Lower Palaeozoic Complex in the Baltic and Lublin- Facies variability: Lateral continuity WŽĚůĂƐŝĞĂƐŝŶƐ;WŽůĂŶĚͿ͘WƌnjĞŐůČĚ Country: Poland Geologiczny, volume 58, p. 226– 249 (in Polish with English 1. Area extend (km2) summary) Offshore onshore only 4. CBDG database 7618,1 9311,1 8464,6 triangular 1 Onshore (www.pgi.gov.pl) 5. Andrews I.J., 2013. The Wenlock of relatively low net/gross Carboniferous Bowland Shale gas 2. Thickness (gross, m) 100 150 120 triangular 2, 3 ratio prevails study: geology and resource 2a. Thickness (net, m) 21 34 30 triangular 2, 3 Lower Wenlock and Llandowery estimation. British Geological 2b. Net/Gross (%) 21 25 23 triangular 2, 3 Survey for Department of Energy and Climate Change, London, UK 3. Depth (m) 2000 4300 2995 triangular 4, 1 top of Llandowery shales 6. Andrews, I.J., 2014. The Jurassic shales of the Weald 4. Density (g/cm3) 2,5 2,7 2,6 triangular 5 Basin: geology and shale oil and shale gas resource estimation. British Geological Survey for (parameters referring to net thickness) Department of Energy and 5. TOC (%) 232,5triangular1, 3 Climate Change, London, UK 7. Górecki W. (ed.), 2006. Atlas of 6. Porosity (%) 454,5triangular5, 7 geothermal resources of Paleozoic formations in the Polish graptolites; gas and oil areas splitted Lowlands. AGH, 2006, Kraków 7. Maturity (%VR) or graptolite equivalent 1 3,5 2 triangular 1, 3 in GIS 8. online-calculating method for z and Bg factors for different hydrostatic gradient assumed (~450 reservoir temperatures and 8. Reservoir pressure (psi) 2900 6300 4400 triangular 1 psi/ft) pressures http://petrowiki.org/Calculating_ gas_properties#.UzRf-s70fm5 top of Llandowery shales - based on 9. Makos M., 2014. Activities of map of (temperature at) Cambrian top PGNiG in exploration of & mean present day geothermal unconventional hydrocarbon 9. Reservoir Temperature (°C) 60 110 80 triangular 7 gradient in the area in question resources in Poland. “Science for Industry: Necessity is the mother 10. Gas saturation (%)(Sg) 50 75 67 triangular 5, 6 hypothetical values of invention” Third Networking Event dedicated to the Polish no published information - values experience in the field of shale 11. Oil Saturation (%) So) 0,5 15 6 triangular from area 1 assumed gas exploration, ING, Warsaw, Poland (presentation) 12. Gas generation mgHC/g TOC (Hydrogen index) 50 400 200 triangular 9 plot

13. Kerogen type II 1, 3

14. Sorption capacity VReq. - 1,9 % (mmol/g) no published information

15. Matrix permeability (nDarcy) no published information

16. Adsorbed gas storage capacity (scf/ton) 35 53 44 triangular 5, 6 shales of similar TOC

http://petrowiki.org/Calculating_gas_ 17. Compressibility factor (z) 0,8 1,1 1 triangular 8 properties#.UzRf-s70fm5

18. Bg - Gas formation volume factor 0,0034 0,0047 0,0041 triangular 8 Bg = 0.02829zT/P [Ra, psi]

19. Langmuir Pressure (pL, psi) no published information

20. Langmuir Volume (nL, scf/ton) no published information Compiled by Baiba Brikmane, Inga Piese. Supervised by Daiga Pipira

Bulk mineral constituents XRD % Source

no Average clay content (%) publishe Average quartz-feldspars content (%)

Average carbonate content (%) Mineralogy

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 97 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter (Screening Source REFERENCE LIST : criteria) Min Max Mean Distribution (Ref.list) Comments 1 . Report PGI, 2014 (Wójcicki A., Kiersnowski H., Dyrka I., Adamczak-ŝĂųLJd͕͘ĞĐŬĞƌ͕͘ 1055 'ųƵƐnjLJŷƐŬŝ͕͘:ĂŶĂƐD͕͘ <ŽnjųŽǁƐŬĂ͕͘<ƌnjĞŵŝŷƐŬŝ>͕͘ Shale Name: Upper Palaeozoic shales <ƵďĞƌƐŬĂD͕͘WĂĐnjĞƑŶĂ:͕͘ WŽĚŚĂůĂŷƐŬĂd͕͘ZŽŵĂŶD͕͘ ^ŬŽǁƌŽŷƐŬŝ>͕͘tĂŬƐŵƵŶĚnjŬĂ Age: Carboniferous easternmost part of Southern Permian basin D͘/͕͘ϮϬϭϰ͘"Assessment of undiscovered gas resources in Basin: Fore-Sudetic Monocline (assessment (UK, NL, DE, DK, PL); source rocks for selected tight gas reservoirs of area 5) Rotliegend gas fields Poland". PGI-NRI, Warsaw (in Polish with English summary)) fold and thrust deformations (eroded), fissures 2. EIA (U.S. Energy Information Structural setting: complex and cracks within Administration), 2013 Facies variability: high (lateral and, to (Technically Recoverable Shale Oil some, extent vertical) shale ratio increases northwards and Shale Gas Resources: An Country: Poland Assessment of 137 Shale 1. Area extend (km2) Formations in 41 Countries Offshore onshore only KƵƚƐŝĚĞƚŚĞhŶŝƚĞĚ^ƚĂƚĞƐ͘:ƵŶĞ Onshore 11861,1 14496,9 13179 triangular 1 2013. Washington DC), 2015 (Technically Recoverable Shale Oil Carboniferous shales within gas window, 50% and Shale Gas Resources: Poland. September 2015. Washington DC) 2. Thickness (gross, m) 191 679 430 triangular 1 shale ratio 3. San Leon Energy, 2012 (San 2a. Thickness (net, m) 20 100 55 triangular 2,1 mean value - Siciny-2 well Leon Energy provides Siciny-2 2b. Net/Gross (%) 10 15 12 triangular 1 mean value - Siciny-2 well ƵƉĚĂƚĞ͘EĞǁƐZĞůĞĂƐĞ͕Ϯϲ:ƵŶĞϮ- 12) 4. Botor D., Papiernik B., 3. Depth (m) 1700 3500 2500 triangular 1 Carboniferous shales within gas window DĂđŬŽǁƐŬŝd͕͘ZĞŝĐŚĞƌ͕͘ <ŽƐĂŬŽǁƐŬŝW͕DĂƌnjŽǁƐŬŝ'͕͘ 4. Density (g/cm3) 2,5 2,7 2,6 triangular 5 Carboniferous shales Górecki W. 2013. Gas generation in Carboniferous source rocks of the Variscan foreland basin: (parameters referring to net thickness) 5. TOC (%) 2 3,7 2,63 triangular 3, 4 implications for a charge history of Rotliegend deposits with natural gases. Annales Societatis 6. Porosity (%) 1,4 8,5 3,6 triangular 3 Geologorum Poloniae 83, pp. 353-383 mostly dry gas zone, in north-central part wet 5. ŶĚƌĞǁƐ/͘:͕͘ϮϬϭϯ͘dŚĞ 7. Maturity (%VR) or graptolite equivalent 1,1 3 1,5 triangular 4 gas zone Carboniferous Bowland Shale gas study: geology and resource slight overpressure (10% higher than estimation. British Geological 8. Reservoir pressure (psi) 2800 5700 4000 triangular 1, 3 hydrostatic gradient) Survey for Department of Energy and Climate Change, London, UK map of (temperature at) Carboniferous top & 6. Górecki W. (ed.), 2006. Atlas of mean present day geothermal gradient in SW geothermal resources of 9. Reservoir Temperature (°C) 65 115 85 triangular 6 Poland Paleozoic formations in the Polish Lowlands. AGH, 2006, Kraków 10. Gas saturation (%)(Sg) 30 80 55 triangular 3 Siciny-2 well 7. online-calculating method for z and Bg factors for different reservoir temperatures and pressures 11. Oil Saturation (%) So) no data from wet gas zone (north-central part) http://petrowiki.org/Calculating_ gas_properties#.UzRf-s70fm5 12. Gas generation mgHC/g TOC (Hydrogen index) no published information

13. Kerogen type III -II/III 4 predominantly III

14. Sorption capacity VReq. - 1,9 % (mmol/g) no published information

15. Matrix permeability (nDarcy) 80 100 90 triangular 3 Siciny-2 well

16. Adsorbed gas storage capacity (scf/ton) 35 53 44 triangular 5 shales of similar TOC

http://petrowiki.org/Calculating_gas_propertie 17. Compressibility factor (z) 0,8 1,1 1 triangular 7 s#.UzRf-s70fm5

18. Bg - Gas formation volume factor 0,0038 0,0049 0,0046 triangular 7 Bg = 0.02829zT/P [Ra, psi]

19. Langmuir Pressure (pL, psi) no published information

20. Langmuir Volume (nL, scf/ton) no published information Information from Siciny-2 well y

Bulk mineral constituents XRD % Source

Average clay content (%) 48,5 3 Average quartz-feldspars content (%) 46

Average carbonate content (%) 5 Mineralog

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 98 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter Source REFERENCE LIST : (Screening criteria) Min Max Mean Distribution (Ref.list) Comments 1. Kalinko, M. K. (ed.) 1976. Geology and oil-gas bearing capacity of Bulgaria. Moscow, 1056 Nedra, 242 p., (in Russian). Shale Name: Lower Paleozoic shales 2. Bokov, P., Tchemberski, H. (eds.) 1987. Geological preconditions for oil-gas bearing Age: Silurian - Lower Devonian (?) capacity of NE Bulgaria. Sofia, (Gedinnian-?) 3 Technika, 332 p., (in Bulgarian). Basin: Moesian Platform drilled only by 2 wells 3. Spasov, H. 1989. Litho- stratigraphy of Ordovician- Silurian deposits in Bulgaria. XIV Structural setting: extensional? congress CBGA – Extended passive margin? Structural unit: Abstracts, Sofia, 648-651. North Bulgarian Uplift 4. Shale Gas Research Group, 2011. “Hydrocarbon Potential and Facies variability: Lateral 3 Prospects of NE Bulgaria and Offshore Black Sea – An Overview.” Sofia, Bulgaria, 26 Country: Bulgaria and Romania January, 41 p. 1. Area extend (km2) 5. EIA. 2015. Technically Offshore Recoverable Shale Oil and Shale Onshore 950 1250 1100 rectangular 1,2 Gas Resources: Other Eastern Europe (Bulgaria, Romania, 2. Thickness (gross, m) 1000 1700 1350 rectangular 1,2 Ukraine), Independent Statistics 2a. Thickness (net, m) 300 850 540 rectangular 1,2 & Analysis, September 2015 2b. Net/Gross (%) 30 50 40 rectangular 4,5 (www.eia.gov)

3. Depth (m) 800 >3500 2200 1,2

4. Density (g/cm3) 2,3 2,5 2,4 1,2

5. TOC (%) 0,39 3,36 1.5-2 1,2,4,5

6. Porosity (%) 0,5 4 2 1

7. Maturity (%VR) or graptolite equivalent 1,3 2,2 1,6 1,4,5 in the source: MK3 - AK1

8. Reservoir pressure (psi) 1300 6400 4200 1

9. Reservoir Temperature (°C) 40 150 100 1

no data, but it is very low concluded from registrated values by gas logging 10. Gas saturation (%)(Sg) 1 during the drilling

11. Gas generation mgHC/g TOC (Hydrogen index) no data

12. Kerogen type II, III 1,2,4,5

13. Sorption capacity VReq. - 1,9 % (mmol/g) no data

14. Matrix permeability (nDarcy) no data

15. Adsorbed gas storage capacity (scf/ton) no data

16. Compressibility factor (z) no data

17. Bg - Gas formation volume factor no data

18. Langmuir Pressure (pL, psi) no data

19. Langmuir Volume (nL, scf/ton) no data

20. Langmuir Volume (nL, scf/ton) no data Complied by Kristiyan Valeriev Nikolov (KVN) AAUE as part of master thesis work. Supervised by K. Esbensen and N. Schovsbo

Bulk mineral constituents XRD % Source

Average clay content (%)

Average quartz-feldspars content (%)

Average carbonate content (%) Mineralogy

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 99 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter (Screening Source REFERENCE LIST : criteria) Min Max Mean Distribution (Ref.list) Comments 1. Kalinko, M. K. (ed.) 1976. Geology and oil-gas bearing capacity of Bulgaria. Moscow, Nedra, 242 p., (in Russian). Shale Name: Upper Paleozoic shale & coal 1057 2. Bokov, P., Tchemberski, H. (eds.) succession - Trigorska & Konarska Fms 1, 2, 7, 11 1987. Geological preconditions for oil- gas bearing capacity of NE Bulgaria. Sofia, Technika, 332 p., (in Bulgarian). Age: Lower carboniferous (Middle Mississippian, Upper Visean) 3, 7, 11 3. Nikolov, Z. (ed.) 1988. Geology of Dobrudja coal basin. Sofia, Thechnica, Basin: Moesian Platform 1, 5 150 p. 4. Nikolov, Z., Popova, K., Popov, A. Structural setting: extension (orogeny 1990. Coal-bearing Upper Paleozoic collapse) Structural unit: North Bulgarian sediments in R-1 Novacene (Central Uplift, Alexandria depression, Southern North Bulgaria). Review of the Bulgarian Dobudja 1, 5, 13 Geological Society, 51, 1, 39-47, (in Bulgarian). Facies variability: Lateral 3, 7, 11 5. Georgiev, G., Dabovski, H. 1997. Alpine structure and Petroleum Geology of Bulgaria. – Geology and Country: Bulgaria and Romania Mineral resources, 8-9, 3-7. 1. Area extend (km2) 6. Nikolov, K. 2014. Bulgarian Offshore unconventional hydrocarbon resources 1, 2, 3, 4, 6, with a focus on the Carboniferous Onshore 12000 13000 12500 12 strata. – In: Geological characteristics of continuous petroleum resources and 1, 2, 3, 4, 6, resources abundance evaluation 2. Thickness (gross, m) 0 2500 1000-1200 12 assessment methodology for shale 1, 2, 3, 4, 6, gas/oil in some European countries, MsC thesis, Aalborg University Esbjerg, 2a. Thickness (net, m) 0 1250 450-540 12 73-93. 2b. Net/Gross (%) 40 50 45 1, 2, 3, 6, 7 7. Kulaksazov, G., Tenchov, Y. 1973. Lower Carboniferous stratigraphy in Dobrudja coal basin. Bulletin of 3. Depth (m) 850 3400 2000-2500 1, 2, 3, 4 Geological Institute, series of stratigraphy & lithology, 22, 39-53, (in 4. Density (g/cm3) 2,3 2,45 2,35 1, 2 Bulgarian). 8. Todorov, I. 1990. Integrity maturity 1, 2, 3, 6, 8, 9, assessment of Carboniferous organic * with coal up to 10-11% 5. TOC (%) 0,5 2,9 1.5-2* 10 matter in Dobrudja coal basin. PhD thesis, Sofia University, 195 p. 6. Porosity (%) 0,5 5 2.5-3 1, 2 9. Todorov, I., Mandova, E., Siakov, G. 1992. Paleotemperature models from vitrinite reflectance data in Upper Carboniferous strata of Dobrudja coal 7. Maturity (%VR) or graptolite equivalent 0,55 1,9 0.9-1.3 3, 6, 8, 9, 10 basin. Annuaire de l’Universite de Sofia “St. Kliment Ohridski”, Fac. Geol. & 8. Reservoir pressure (psi) 1300 6800 4500-5000 1, 2, 3 Geogr., livre 1 – Geologie, t. 82, 131 - 147 (in Bulgarian). 9. Reservoir Temperature (°C) 42 170 110 1, 2, 3 10. Todorov, I., Schegg, R., Chochov, S. 1992. Maturity studies in the no data, but it is very low concluded Carboniferous Dobroudja coal basin (NE from registrated values by gas logging Bulgaria) – coalification, clay diagenesis 10. Gas saturation (%)(Sg) - - - during the drilling and thermal modeling. International Journal of Coal Geology, 161-185. 11. Tenchov, Y. (ed.) 1993. Glossary of 11. Gas generation mgHC/g TOC (Hydrogen the Formal Lithostratigraphic units in index) - - - Bulgaria (1882-1992). Sofia, BAS, 397 p. (in Bulgarian). 12. Kerogen type II, II-III, III 3, 6, 8, 9, 10 12. Yanev. S. 2000. Paleozoic terranes of the Balkan Peninsula in the 13. Sorption capacity VReq. - 1,9 % framework of Pangea assembly. (mmol/g) - - - Paleogeography, Paleoclimatology, Paleoecology, 161, 151-177. 14. Matrix permeability (nDarcy) - - - 13. Tari, G., Dicea, O., Faulkerson, J., Georgiev, G., Popov, S., Stefanescu, M. and Weir, G. 1997. Cimmerian and 15. Adsorbed gas storage capacity (scf/ton) - - - Alpine Stratigraphy and Structural Evolution of the Moesian Platform (Romania/Bulgaria). – In: A. G. 16. Compressibility factor (z) - - - Robinson, ed., Regional and Petroleum geology of the Black Sea and 17. Bg - Gas formation volume factor - - - Surrounding regions: AAPG Memoir 68, p. 63-90.

18. Langmuir Pressure (pL, psi) - - -

19. Langmuir Volume (nL, scf/ton) - - -

20. Langmuir Volume (nL, scf/ton) Complied by Kristiyan Valeriev Nikolov (KVN) AAUE as part of master thesis work. Supervised by K. Esbensen and N. Schovsbo y

Bulk mineral constituents XRD % Source

Average clay content (%) Average quartz-feldspars content (%)

Average carbonate content (%) Mineralog

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 100 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

Source REFERENCE LIST : EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution (Ref.list) Comments 1. Kalinko, M. K. (ed.) 1976. Geology and oil-gas bearing capacity of Bulgaria. Moscow, Nedra, 242 p., (in Russian).

Shale Name: J1 shale & clay limestones - Ozirovo 1, 4, 9, 10, 1058 2. Georgiev, G. 1983. Geological Preconditions for Oil and Gas Prospects Fm (Bucorovo & Dolnilucovt Mbs) 11, 12, 14-19 of Lower-Middle Jurassic Sediments from Southern Moesian Platform 1, 4, 12, 14- zone in NE Bulgaria. Petroleum and Coal Geology, 18, 20-32 (in Bulgarian). Age: Sinemurian - Toarcian 19 3. Ilinskaya, V.V. 1985. Comparative study of hydrocarbons in OM and Oils in Mesozoic sediments of Northern Bulgaria. – In: Genetic correlation of Basin: Moesian Platform 1, 4, hydrocarbons in OM and Oils, Moscow, Nedra, 83-110 (in Russian). 4. Bokov, P., Tchemberski, H. (eds.) 1987. Geological preconditions for oil- Structural setting: extension (Passive margin) gas bearing capacity of NE Bulgaria. Sofia, Technika, 332 p., (in Bulgarian). Structural unit: Moesian Platform & Forebalkan 1, 4, 5, 20 5. Atanasov, A., Bokov, P. (eds.) 1987. Geology and oil-gas prospects of Moesian Platform in Central North Bulgaria. Sofia, Technika, 287 p., (in Facies variability: lateral & vertical 1, 2, 4 Bulgarian). 6. Georgiev, G., Dabovski, H. 1997. Alpine structure and Petroleum Country: Bulgaria Geology of Bulgaria. – Geology and Mineral resources, 8-9, 3-7. 1. Area extend (km2) 7. Georgiev G. 2000. Oil-oil and oil-source correlation for the major crude Offshore oils in Bulgaria. Annuaire de l’Universite de Sofia “St. Kliment Ohridski”, Onshore 9500 10500 10000 1, 2, 4, 5, 6 Faculte de Geologie et Geographie, livre 1 - Geologie, t. 92, p. 39-60. 8. Georgiev, G., Bechtel, A., Sachsenhofer, R., Gratzer, R. 2001. Petroleum Play-Concept for Main Oil/Gas Fields in the Southern Moesian Platform (Bulgaria). - In: EAGE 63rd Conference & Technical Exhibition, Amsterdam- 2. Thickness (gross, m) 0 400 120-180 1, 2, 4, 5, 6, 9 The Netherlands, Extended Abstracts Volume (CD-ROM) (P-512). 2a. Thickness (net, m) 0 200 55-80 1, 2, 4, 5, 6, 9 9. Georgiev, G., Ilieva, A. 2007. Selanovtsi oil accumulation – geological 2b. Net/Gross (%) 40 50 45 1, 2, 4, 5 and genetic model. – Annuaire de l’Universite de Sofia “St. Kliment Ohridski”, Fac. Geol. & Geogr., livre 1 – Geologie, t. 100, 67 -96 (in 3. Depth (m) 2600 4400 3500 2, 4, 5 Bulgarian).

4. Density (g/cm3) 2,25 2,5 2,4 1, 2, 4, 5 10. Nikolov, K. 2014. Bulgarian unconventional hydrocarbon resources with a focus on the Carboniferous strata. – In: Geological characteristics 1,3, 4, 5, 7, 8, of continuous petroleum resources and resources abundance evaluation 5. TOC (%) 0,7 1,7 1,2 9, 10, 11 assessment methodology for shale gas/oil in some European countries, MsC thesis, Aalborg University Esbjerg, 73-93. 11. EIA. 2015. Technically Recoverable Shale Oil and Shale Gas Resources: 6. Porosity (%) 0,2 5,5 3 1, 2, 4, 5 Other Eastern Europe (Bulgaria, Romania, Ukraine), Independent Statistics & Analysis, September 2015 (www.eia.gov) 1,3, 4, 5, 7, 8,

7. Maturity (%VR) or graptolite equivalent 0,65 1,2 0.75-0.85 9 12. Tenchov, Y. (ed.) 1993. Glossary of the Formal Lithostratigraphic units in Bulgaria (1882-1992). Sofia, BAS, 397 p. (in Bulgarian). 8. Reservoir pressure (psi) 3700 6800 5200 2, 3 13. Sapunov, I., Tchoumatchenco, P., Chopov, V. 1967. Some peculiarities of paleogeography in Teteven area. Bulletin of Geological 9. Reservoir Temperature (°C) 95 150 120-125 2, 3 Institute, series of geotectonics, stratigraphy & lithology, 20, 33-62, (in Bulgarian). 10. Gas saturation (%)(Sg) 2 8.5-10 4.5-5 2 14. Sapunov, I., Tchoumatchenco, P., Chopov, V. 1976. Early Jurassic paleoecology and stratigraphy in part of Western Bulgaria. Annuaire de l’Universite de Sofia “St. Kliment Ohridski”, Fac. Geol. & Geogr., livre 1 – Geologie, t. 67, 101 -149 (in Bulgarian). 11. Gas generation mgHC/g TOC (Hydrogen index) - - -

15. Sapunov, I. 1983. Jurassic system. - In: Geology and oil-gas prospects 1, 2, 3, 4, 5, 7, of Moesian Platform in Central North Bulgaria (Atanasov, A. &, Bokov, P. - 12. Kerogen type I, I-II 8, 9, 10, 11 eds.). Sofia, Technika, 18-28, (in Bulgarian). 16. Sapunov, I., Tchoumatchenco, P. 1989. Some new concepts on the 13. Sorption capacity VReq. - 1,9 % (mmol/g) - - - lithostratigraphy of the Middle Jurassic marine sediments in West and Central Bulgaria. Review of the Bulgarian Geological Society, 50, 1, 15-25, 14. Matrix permeability (nDarcy) - - - (in Bulgarian).

15. Adsorbed gas storage capacity (scf/ton) - - - 17. Sapunov, I., Tchoumatchenco P. 1987. Geological development of NE Bulgaria during the Jurassic. Paleontology, stratigraphy & lithology, 24, 3- 16. Compressibility factor (z) - - - 59, (in Bulgarian). 18. Sapunov, I., Tchoumatchenco P., Mitov, P. 1988. Jurassic development of NW. Geologica Balcanica, 18, 1, 3-82 (in Russian). 17. Bg - Gas formation volume factor - - - 19. Sapunov, I., Tchoumatchenc, P., Atanasov, A., Marinkov, A. 1991. Central North Bulgaria during the Jurassic. Geologica Balcanica, 21, 5, 3- 68 (in Russian). 18. Langmuir Pressure (pL, psi) - - - 20. Georgiev G., Dabovski C., Stanisheva-Vassileva, G. 2001. East Srednogorie-Balkan Rift zone. - In: P. A. Ziegler, W. Cavazza, A. H. F. 19. Langmuir Volume (nL, scf/ton) - - - Robertson & S. Crasquin-Soleau (eds.), Peri-Tethys Memoir 6: PeriTethyan Rift/Wrench Basins and Passive Margins. Mem. Mus. natn. 20. Langmuir Volume (nL, scf/ton) Hist.nat., 186 :259-293. Complied by Kristiyan Valeriev Nikolov (KVN) AAUE as part of master thesis work. Supervised by K. Esbensen and N. Schovsbo y Bulk mineral constituents XRD % Source

Average clay content (%) Average quartz-feldspars content (%)

Average carbonate content (%) Mineralog

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 101 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter (Screening Source REFERENCE LIST : criteria) Min Max Mean Distribution (Ref.list) Comments 1. Kalinko, M. K. (ed.) 1976. Geology and oil-gas bearing capacity of Bulgaria. Moscow, Nedra, 242 p., (in Russian).

1059 2. Georgiev, G. 1983. Geological Preconditions for Oil and Gas Prospects of Shale Name: J2 shale - Etropole Fm 1, 4, 9, 10, 11, Lower-Middle Jurassic Sediments from Southern Moesian Platform zone in (Stefanets Mb) 12, 14-19 NE Bulgaria. Petroleum and Coal Geology, 18, 20-32 (in Bulgarian). 3. Ilinskaya, V.V. 1985. Comparative study of hydrocarbons in OM and Oils in Mesozoic sediments of Northern Bulgaria. – In: Genetic correlation of Age: Aalenian - Lower Bajocian 1, 4, 12, 14-19 hydrocarbons in OM and Oils, Moscow, Nedra, 83-110 (in Russian). 4. Bokov, P., Tchemberski, H. (eds.) 1987. Geological preconditions for oil- Basin: Moesian Platform & Forebalkan 1, 4, gas bearing capacity of NE Bulgaria. Sofia, Technika, 332 p., (in Bulgarian). 5. Atanasov, A., Bokov, P. (eds.) 1987. Geology and oil-gas prospects of Structural setting: extension (Passive Moesian Platform in Central North Bulgaria. Sofia, Technika, 287 p., (in Bulgarian). margin) Structural unit: Moesian Platform 6. Georgiev, G., Dabovski, H. 1997. Alpine structure and Petroleum Geology & Forebalkan 1, 4, 5, 20 of Bulgaria. – Geology and Mineral resources, 8-9, 3-7. 7. Georgiev G. 2000. Oil-oil and oil-source correlation for the major crude Facies variability: lateral & vertical 1, 2, 4 oils in Bulgaria. Annuaire de l’Universite de Sofia “St. Kliment Ohridski”, Country: Bulgaria Faculte de Geologie et Geographie, livre 1 - Geologie, t. 92, p. 39-60. 1. Area extend (km2) 8. Georgiev, G., Bechtel, A., Sachsenhofer, R., Gratzer, R. 2001. Petroleum Offshore Play-Concept for Main Oil/Gas Fields in the Southern Moesian Platform Onshore 10500 11500 11000 1, 2, 4, 5, 6 (Bulgaria). - In: EAGE 63rd Conference & Technical Exhibition, Amsterdam- The Netherlands, Extended Abstracts Volume (CD-ROM) (P-512). 2. Thickness (gross, m) 0 280 80 -120 1, 2, 4, 5, 6, 9 9. Georgiev, G., Ilieva, A. 2007. Selanovtsi oil accumulation – geological and 2a. Thickness (net, m) 0 200 50-70 1, 2, 4, 5 genetic model. – Annuaire de l’Universite de Sofia “St. Kliment Ohridski”, Fac. Geol. & Geogr., livre 1 – Geologie, t. 100, 67 -96 (in Bulgarian). 2b. Net/Gross (%) 50 70 60 1, 2, 4, 5

10. Nikolov, K. 2014. Bulgarian unconventional hydrocarbon resources with 3. Depth (m) 2500 4400 3350 2, 4, 5 a focus on the Carboniferous strata. – In: Geological characteristics of continuous petroleum resources and resources abundance evaluation 4. Density (g/cm3) 2,25 2,4 2,3 1, 2, 4, 5 assessment methodology for shale gas/oil in some European countries, MsC thesis, Aalborg University Esbjerg, 73-93. 1,3, 4, 5, 7, 8, 9, 11. EIA. 2015. Technically Recoverable Shale Oil and Shale Gas Resources: 5. TOC (%) 0,9 2,2 1,4 10, 11 Other Eastern Europe (Bulgaria, Romania, Ukraine), Independent Statistics & Analysis, September 2015 (www.eia.gov) 6. Porosity (%) 0,2 4,5 2.5-3 1, 2, 4, 5 12. Tenchov, Y. (ed.) 1993. Glossary of the Formal Lithostratigraphic units in Bulgaria (1882-1992). Sofia, BAS, 397 p. (in Bulgarian). 7. Maturity (%VR) or graptolite equivalent 0,6 0,95 0.7-0.8 1,3, 4, 5, 7, 8, 9 13. Sapunov, I., Tchoumatchenco, P., Chopov, V. 1967. Some peculiarities of Early Jurassic paleogeography in Teteven area. Bulletin of Geological Institute, series of geotectonics, stratigraphy & lithology, 20, 33-62, (in 8. Reservoir pressure (psi) 3550 6000 4800 2, 3 Bulgarian). 14. Sapunov, I., Tchoumatchenco, P., Chopov, V. 1976. Early Jurassic 9. Reservoir Temperature (°C) 90 130 110 2, 3 paleoecology and stratigraphy in part of Western Bulgaria. Annuaire de l’Universite de Sofia “St. Kliment Ohridski”, Fac. Geol. & Geogr., livre 1 – 10. Gas saturation (%)(Sg) 2 6.5-8 3.5-4 2 Geologie, t. 67, 101 -149 (in Bulgarian).

11. Gas generation mgHC/g TOC (Hydrogen 15. Sapunov, I. 1983. Jurassic system. - In: Geology and oil-gas prospects of index) Moesian Platform in Central North Bulgaria (Atanasov, A. &, Bokov, P. - eds.). Sofia, Technika, 18-28, (in Bulgarian). 1, 2, 3, 4, 5, 7, 8, 16. Sapunov, I., Tchoumatchenco, P. 1989. Some new concepts on the 12. Kerogen type I-II 9, 10, 11 lithostratigraphy of the Middle Jurassic marine sediments in West and Central Bulgaria. Review of the Bulgarian Geological Society, 50, 1, 15-25, (in Bulgarian). 13. Sorption capacity VReq. - 1,9 %

(mmol/g) 17. Sapunov, I., Tchoumatchenco P. 1987. Geological development of NE Bulgaria during the Jurassic. Paleontology, stratigraphy & lithology, 24, 3- 14. Matrix permeability (nDarcy) 59, (in Bulgarian). 18. Sapunov, I., Tchoumatchenco P., Mitov, P. 1988. Jurassic development 15. Adsorbed gas storage capacity (scf/ton) of NW. Geologica Balcanica, 18, 1, 3-82 (in Russian). 19. Sapunov, I., Tchoumatchenc, P., Atanasov, A., Marinkov, A. 1991. 16. Compressibility factor (z) Central North Bulgaria during the Jurassic. Geologica Balcanica, 21, 5, 3-68 (in Russian). 17. Bg - Gas formation volume factor 20. Georgiev G., Dabovski C., Stanisheva-Vassileva, G. 2001. East Srednogorie-Balkan Rift zone. - In: P. A. Ziegler, W. Cavazza, A. H. F. Robertson & S. Crasquin-Soleau (eds.), Peri-Tethys Memoir 6: PeriTethyan 18. Langmuir Pressure (pL, psi) Rift/Wrench Basins and Passive Margins. Mem. Mus. natn. Hist.nat., 186 :259-293.

19. Langmuir Volume (nL, scf/ton)

20. Langmuir Volume (nL, scf/ton) Complied by Kristiyan Valeriev Nikolov (KVN) AAUE as part of master thesis work. Supervised by K. Esbensen and N. Schovsbo y

Bulk mineral constituents XRD % Source

Average clay content (%) Average quartz-feldspars content (%)

Average carbonate content (%) Mineralog

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 102 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

Source REFERENCE LIST : EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution (Ref.list) Comments 1. Kalinko, M. K. (ed.) 1976. Geology and oil-gas bearing capacity of Bulgaria. Moscow, Nedra, 242 p., (in Russian). 1060 2. Bokov, P., Tchemberski, H. (eds.) 1987. Shale Name: Oligocene shale - Ruslar Fm Geological preconditions for oil-gas bearing (equivalent of Maykop Fm) 1, 2, 8, 9, 14 capacity of NE Bulgaria. Sofia, Technika, 332 p., (in Age: Oligocene 1, 2, 8, 9, 15 Bulgarian). 3. Georgiev, G. V. 1996. Hydrocarbon generation in the Tertiary filling (above the Illyrian Basin: Kamchia basin (western branch of unconformity) of the Kamchiya depression- Western Black Sea basin 1, 2, 3, 4 offshore.- 4th International Conference “Gas in Marine Sediments”, Varna, Extended Abstracts. 4. Georgiev, G., Dabovski, H. 1997. Alpine structure Structural setting: compression (Foredeep) and Petroleum Geology of Bulgaria. – Geology and Structural unit: Kamchia basin 11, 12, 13, 16 Mineral resources, 8-9, 3-7. 1, 2, 6, 10, 11, 5. Georgiev G. 2000. Oil-oil and oil-source Facies variability: lateral 12 correlation for the major crude oils in Bulgaria. Country: Bulgaria Annuaire de l’Universite de Sofia “St. Kliment 1. Area extend (km2) Ohridski”, Faculte de Geologie et Geographie, livre Offshore 200 220 210 1, 2, 7 1 - Geologie, t. 92, p. 39-60. 1, 2, 7, 11, 12, 6. Sachsenhofer, R. F., Stummer, B., Georgiev, G., Onshore 1800 2000 1900 13 Bechtel, A., Gratzer, R., Coric, S., Dellmour, R. 2009. Depositional environment and source potential of the Oligocene Ruslar Formation 1, 2, 7, 11, 12, (Western Black Sea). Marine and Petroleum 2. Thickness (gross, m) 50 1500 500-700 13 geology, 26, 57-84. 2a. Thickness (net, m) 25 1050 300-420 1, 2, 7, 11, 12 7. Georgiev, G. 2012. Geology and Hydrocarbon 2b. Net/Gross (%) 50 70 60 1, 2, 7, 11, 12 Systems in the Western Black Sea. Turkish Journal of Earth Sciences [Turkish J. Earth Sci.], vol. 21, pp 1, 2, 7, 11, 12, 723-754. 3. Depth (m) 100 2000 200-300 13 onshore 1000 offshore 8. Juranov, S., Pimpirev, H. 1989. Lithostratigraphy 4. Density (g/cm3) 2,25 2,35 2,3 2 of the Upper Cretaceous and the Paleogene in the coastal part of East Stara Planina. Review of the 5. TOC (%) 1,4 2,8 2-2.2 1, 2, 5, 6, 7 Bulgarian Geological Society, 50, 2, 1-16, (in Bulgarian). 9. Juranov, S. 1991. Stratigraphy of the Upper 6. Porosity (%) 0,1 5,5 3-3.5 2 Cretaceous series and the Paleogene System in the marine borehole sections at the village of Samotino. Review of the Bulgarian Geological 7. Maturity (%VR) or graptolite equivalent 0,3 0,5 0,4 6, 7 Society, 52, 3, 19-29, (in Bulgarian).

8. Reservoir pressure (psi) 140 2800 350 6, 7 onshore 10. Dimitrov, H., Georgiev, G. 2005. Lithofacies 1500 offshore analyses of sedimentary sequences in Lower 9. Reservoir Temperature (°C) 15 70 18 6, 7 onshore Kamchiya basin (offshore). – Proceedings of 40-5 onshore Mining-Geology university “St. Ivan Rilski”, t. 48, 10. Gas saturation (%)(Sg) 2>83.5 - 5 6, 7 book I, Geology and Geophisics, 47-52. 11. Marinov, E. 1994. Geology and oil-gas potential 11. Gas generation mgHC/g TOC (Hydrogen of zones with thrust structure (case study: Southern slope of Lower Kamchiya depression). index) PhD thesis, Sofia University. 12. Dimitrov, H. 2010. Seismic stratigraphic 12. Kerogen type II 6, 7 analysis (sequence & lithofacies architecture) related to assessment of hydrocarbon potential of 13. Sorption capacity VReq. - 1,9 % (mmol/g) Lower Kamchiya basin – offshore. PhD thesis, Sofia University. 14. Matrix permeability (nDarcy) 13 Georgiev, G., Dimitrov, H. 2013. Geological structure and evolution of Lower Kamchiya 15. Adsorbed gas storage capacity (scf/ton) depression - Proceedings of the IV International scientific and technical conference "Geology and 16. Compressibility factor (z) Hydrocarbon potential of the Balkan-Black Sea Region", 11 - 15 Sept. 2013, Varna – Bulgaria, 64- 17. Bg - Gas formation volume factor 72. 14. Shale Gas Research Group, 2011. “Hydrocarbon Potential and Prospects of NE Bulgaria and Offshore Black Sea – An Overview.” 18. Langmuir Pressure (pL, psi) Sofia, Bulgaria, 26 January, 41 p. 15. Tenchov, Y. (ed.) 1993. Glossary of the Formal 19. Langmuir Volume (nL, scf/ton) Lithostratigraphic units in Bulgaria (1882-1992). Sofia, BAS, 397 p. (in Bulgarian). 20. Langmuir Volume (nL, scf/ton) 16. Georgiev G., Dabovski C., Stanisheva-Vassileva, Complied by Kristiyan Valeriev Nikolov (KVN) AAUE as part of master thesis work. Supervised by K. Esbensen and N. Schovsbo G. 2001. East Srednogorie-Balkan Rift zone. - In: P.

y A. Ziegler, W. Cavazza, A. H. F. Robertson & S. Bulk mineral constituents XRD % Source Crasquin-Soleau (eds.), Peri-Tethys Memoir 6: PeriTethyan Rift/Wrench Basins and Passive Margins. Mem. Mus. natn. Hist.nat., 186 :259-293. Average clay content (%)

Average quartz-feldspars content (%)

Average carbonate content (%) Mineralog

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 103 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

Source REFERENCE LIST : EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution (Ref.list) Comments 1. Investigations of structure and composition of shaley Lower Paleozoic succession in Lithuanian 1061 (summarises shale 1002 and 1003) part of the Baltic Sedimentary Shale Name: Upper Ordovician – Llandovery Basin. Report of Lithuanian Shales Geological Survey, Lazauskiene et al., 2014, 132 pp (in Lithuanian). Age: Late Ordovician (Fjäcka-Mossen) – Middle- 2. Lazauskiene, J., Bitinas, J., Late Llandovery ĞēLJƐ͕͕͘ĞƚĂů͘;/ŶƚĞƌŶĂůͿ- Excel sheet with parameters for data distribution. Basin: Baltic Sedimentary Basin 3. Petersen, H.I., Schovsbo, N.H., Nielsen, A.T., 2013. Reflectance measurements of zooclasts and Structural setting: foreland basin; structural solid bitumen in Lower Palaeozoic complexity - low shales, southern Scandinavia: correlation to vitrinite Facies variability: lateral continuity - high; reflectance. International Journal lateral variability - homogenous; vertical of Coal Petrology 114, 1–18. variability - moderate http://www.sciencedirect.com/sc Country: Lithuania ience/article/pii/S016651621300 Maximum offshore AU area comprises of the total area of the Lithuanian Baltic sea 1080 territory where the shales are widespread. Minumum offshore AU area has been 4. EIA/ARI World Shale Gas and 1. Area extend (km2) 9376 20233 14800 Lognorm 1 considerd as half of the total offshore area. Shale Oil Resource Assessment, Technically Recoverable Shale Oil Offshore 3206 6413 5000 Lognorm 2 and Shale Gas Resources: An Onshore 6170 13820 10000 Lognorm 1 Assessment of 137 Shale Formations in 41 Countries Cumulative thickness of Fjäcka-Mossen (Upper Ordovician) and Middle-Upper Llandovery Outside the United States 2. Thickness (gross, m) 30 100 50 Lognorm 1, 2, 6, 10 (Lower Silurian) shales. http://www.eia.gov/analysis/stud 2a. Thickness (net, m) 16,5 35 20 Lognorm 2 ies/worldshalegas/pdf/fullreport. 2b. Net/Gross (%) 35 55 40 Lognorm pdf 5. Matus Gasparik, Pieter Bertier, 3. Depth (m) top 1500 2130 1800 Lognorm 1, 2, 6, 10 Depth of the top of the Upper Ordovician-Llandovery Shales. Yves Gensterblum, Amin Ghanizadeh, Bernhard M. Krooss, Ralf Littke, Geological controls on Grain density values based on measurements. Wt % from QuantaETC (QXRD) and TOC the methane storage capacity in organic-rich shales - April 2013 obtained from RockEval and converted into the volume percent (vol.%) of the solid matrix 6͘ĚĂŶĂǀŝēŝƻƚĦK͕͘^ĂŬĂůĂƵƐŬĂƐ<͘ constituents. Llandovery: number of measurements - 91; uncertainty - 20%. Fjäcka- (reds.). 2001. Petroleum Geology 4. Density (g/cm3) 2,11 2,85 2,49 Lognorm 1, 2 Mossen: number of measurements - 35; uncertainty - 50%. of Lithuania and Southeastern Baltic. Vilnius. 204 p. 7. Genesis of Shale Geological Llandovery: TOC values based on 332 RockEval measurements; uncertainty - 5%. Porosity Formations and Hydrocarbon values based on 37 mesurements: 7- GRI-derived absolute Kg-matrix total interconnected Extraction: Impact on porosity measurements and ~30 helium porosimeter mesurements (Soviet uncertified environment and human health. 2014-12-02, 56 pp. equipment); uncertainty - 50%. Fjäcka-Mossen: TOC values based on 33 RockEval http://skalunudujos.lt/wp- measurements; uncertainty - 85%. Porosity values based on 10 measurements: 2 GRI- content/uploads/2014-12- 1, 2, 4, 6, 8, 9, derived absolute Kg-matrix total interconnected porosity measurements and ~15 helium 02_Genesis_of_shale_geological- 5. TOC (%) 2 19,2 4,1 Lognorm 10 porosimeter mesurements (Soviet uncertified equipment); uncertainty - 90%. formations_LMA-website.pdf. 8. ĚĂŶĂǀŝēŝƻƚĦ͕K͕͘>ĂnjĂƵƐŬŝĞŶĦ͕ 6. Porosity (%) 0,35 14,1 5,7 Lognorm 1, 2 J. 2009.Organic matter of Early Silurian succession – the potential 7. Maturity (%VR) or graptolite equivalent 0,7 1,94 0,85 Lognorm 1, 2, 3, 8, 9 Vitrinite-like particles + graptolites + bitumens calibrated to Vitrinite reflectance. source of unconventional gas in Lithuania. Baltica. Vol. 22, No. 2. Sparse measurement data in Llandovery shales. Converted from MPa to psi. Mean present 89-98.. day pressure gradient (Baltic region) is 0.453 psi/ft. No overpressure indications. Data for 9. ĚĂŶĂǀŝēŝƻƚĦ͕K͕͘>ĂnjĂƵƐŬŝĞŶĦ͕ 8. Reservoir pressure (psi) 1450 1886 1668 2, 4 Ordovician are based on analogue with Lithuanian Silurian shales. J. 2007. The Petroleum potential of the Silurian succession in Lithuania. Journal of Petroleum Temperature mesurements at certain depth data. Mean present day geothermal gradient Geology. 325-337. in Lithuania is 25 °C/km. Present day geothermal gradient in geothermal anomaly in 10. Lapinskas P. 2000. Structure 9. Reservoir Temperature (°C) 32 91,7 71,4 2 Western Lithuania is 40-45 °C/km. and petroleum potential of the Silurian in Lithuania. Vilnius, 203 No production data available. Polish Upper Ordovician/Silurian shales would be the best p. (in Lithuanian). 10. Gas saturation (%)(Sg) n/a n/a n/a analogue.

No production data available. Llandovery oil obtained in 2 test wells. Polish Upper 11. Oil Saturation (%) So) n/a n/a n/a Ordovician/Llandovery shales would be the best analogue.

12. Gas generation mgHC/g TOC (Hydrogen index) 86 720 297 1, 2, 6, 8, 9 Values based on 364 RockEval and LECO measurements. Uncertainty - 25 %.

13. Kerogen type II, II-III 1, 2, 6, 8, 9 Kerogen type values based on 322 RockEval measurements. Uncertainty - 20%.

No data acquired. Analogue numbers could be from Furongian unit of Alum Shale or Polish 14. Sorption capacity VReq. - 1,9 % (mmol/g) n/a n/a n/a Silurian shales.

Llandovery: matrix permeability values based on 7 GRI-derived absolute Kg determined from pressure decay results and 27 helium permeameter measurements (Soviet uncertified equipment); uncertainity - 70%. Fjäcka-Mossen: matrix permeability values based on 70 GRI-derived absolute Kg determined from pressure decay results; uncertainity 15. Matrix permeability (mDarcy) 9E-05 0,0004 0,0001 1, 2 - 70%. Matrix permeability (nDarcy) 85 400 100

No data acquired. Analogue numbers could be from Furongian unit of Alum Shale or Polish 16. Adsorbed gas storage capacity (scf/ton) n/a n/a n/a Upper Ordovician/Silurian shales.

No data acquired. Analogue numbers are from Furongian unit of Alum Shale, or could be 17. Compressibility factor (z) 0,76 1,1 1,01 from Polish Silurian shales.

18. Bg - Gas formation volume factor n/a n/a n/a No data acquired. Polish Upper Ordovician/Silurian shales would be the best analogue.

No data acquired. Analogue numbers are from Furongian unit of Alum Shale, or could be 19. Langmuir Pressure (pL, psi) 432 700 435 5 from Polish Upper Ordovician/Silurian shales.

No data acquired. Analogue numbers are from Furongian unit of Alum Shale, or could be 20. Langmuir Volume (nL, scf/ton) 20 63 36 5 from Polish Upper Ordovician/Silurian shales.

Bulk mineral constituents XRD %Source

1,2 Average clay content (%) 49 Average quartz-feldspars content (%) 29

Average carbonate content (%) 10 Mineralogy

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 104 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

Source REFERENCE LIST : EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution (Ref.list) Comments 1 . Ja.G. Lazaruk. 2015, PROSPECTS AND PROBLEMS OF DEVELOPMENT OF SOURCES OF 1062 UNCONVENTIONAL HYDROCARBON OF THE VOLYN- Shale Name:Black shale PODOLIA OIL AND GAS FIELD OF Age: L Silurian UKRAINE Paper 1. Perspectives of shale gas of Oleska site // Geological Journal (Ukraine). - 2015.-No1 pp. 7-16 Basin: Lviv-Volyn 2. Lukin A.E., 2010. Shale gas and its production prospects in Ukraine. Paper 2. Black shale complexes of Ukraine and the Country: Ukraine prospects for their gas content in the Volyn-Podolia and the North- Western Black Sea region // Facies variability: Marine -deep marine Geological Journal (Ukraine). - Geol. magazine - 2010.-No4 pp. 7- 1. Area extend (km2) 24 3.Technically Recoverable Shale Offshore 2 Oil and Shale Gas Resources. U.S. Onshore 30669 Triangular 2 Energy Information Administration (EIA) // https://www.eia.gov/analysis/stu 2. Thickness (gross, m) 2035 2557 2296 Triangular 3 dies/worldshalegas/pdf/Eastern_ 2a. Thickness (net, m) 1109 1898 1503,5 Triangular 3 Europe_BULGARIA_ROMANIA_UK 2b. Net/Gross (%) 54 74 65 Triangular RAINE_2013.pdf

3. Depth (m) 261,4 5120 2821,4 Triangular 3

4. Density (g/cm3) 2,6 2,8 2,7 Triangular 1

5. TOC (%) 0,7 1,53 1,115 Triangular 2

6. Porosity (%) 1,3 6,1 4,35 Triangular 1

7. Maturity (%VR) or graptolite equivalent 1,3 3,5 2,5 Triangular 3

8. Reservoir pressure (psi)

9. Reservoir Temperature (°C)

10. Gas saturation (%)(Sg)

11. Oil Saturation (%) So)

12. Gas generation mgHC/g TOC (Hydrogen index)

13. Kerogen type

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy)

16. Adsorbed gas storage capacity (scf/ton)

17. Compressibility factor (z)

18. Bg - Gas formation volume factor

19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton) y

Bulk mineral constituents XRD % Source

Average clay content (%) Average quartz-feldspars content (%)

Average carbonate content (%) Mineralog

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 105 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

REFERENCE LIST : EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution Source (Ref.list) Comments 1 . Francu J., Radke M., Schaefer R.G., Poelchau H.S., Caslavsky J., 1063 Bohacek Z., 1996. Oil-oil and oil- Shale Name: Mikulov Fm. source rock correlation in the northern Vienna basin and Age: U. Jurassic - Oxfordian adjacent Flysch Zone. In: Oil and Gas in Alpidic Thrustbelts and Basins of Central and Eastern Basin: SE Bohemian Massif Europe. G. Wessely and W. Liebl, eds., EAPG Spec. Publ. No. 5, Geological Society Publishing House, Bath, pp. 343-354. Structural setting: Passive margin 2. Krejci O., Francu J., Poelchau H.S., Müller P., Stranik Z., 1996. Facies variability: low (basinal facies) Tectonic evolution and oil and gas Country: Czech Republic, Austria generation model in the contact area of the North European 1. Area extend (km2) Platform with the West Offshore more than Carpathians. In: Oil and Gas in Onshore 1374 2000 1600 Triangular Alpidic Thrustbelts and Basins of Central and Eastern Europe. G. 2. Thickness (gross, m) 30 1500 650 Triangular basinal facies Wessely and W. Liebl, eds., EAPG 2a. Thickness (net, m) 30 1500 650 Triangular with incised valleys Spec Publ. No. 5, Geological 2b. Net/Gross (%) 100 100 100 Society Publishing House, Bath, pp. 177-186. 3. Depth (m) 3000 8000 5500 Triangular

4. Density (g/cm3) 2,41 2,63 2,52 Triangular

5. TOC (%) 1,26 2,6 1,86 Triangular

6. Porosity (%) 0,5 8,2 4,35 Triangular

Rc calculated from MPI1 7. Maturity (%VR) 0,6 0,8 0,7 log with depth 2.8-4 km 1,6 Ro predicted/extrapolated Max. expected pressure gradient (Mikulov region) 8. Reservoir pressure (psi) expected at 3000 m 4351 5221 4786,1 0.531 psi/ft. Reservoir pressure (psi) expected at 8000 m 11603 13924 9. Reservoir Temp. (°C) meas. at 3000 m 75 measured Reservoir Temp. (°C) meas. at 8000 m 185 extrapolated estimated based on 10. Gas saturation (%)(Sg) 15 80 50 analogy

11. Oil Saturation (%) So) not known

12. Gas generation mgHC/g TOC (Hydrogen index) 500 650 570 initial HI0 calculated

13. Kerogen type II marine planktonic algae

14. Sorption capacity VReq. - 1,9 % (mmol/g) no data available

15. Matrix permeability (nDarcy) no data available

16. Adsorbed gas storage capacity (scf/ton) no data available

17. Compressibility factor (z) no data available

18. Bg - Gas formation volume factor no data available

19. Langmuir Pressure (pL, psi) no data available

20. Langmuir Volume (nL, scf/ton) no data available y

Bulk mineral constituents XRD % Source

Average clay content (%) 48 Average quartz-feldspars content (%) 9

Average carbonate content (%) 41 Mineralog

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 106 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

REFERENCE LIST : EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution Source (Ref.list) Comments 1 . Bergen, F. van, Zijp, M.H.A.A., Nelskamp, S. and Kombrink, H. [2013] 1064 Shale gas evaluation of the Early Shale Name: Geverik Shale Member Jurassic Posidonia Shale Formation and the Carboniferous Epen Formation in the Netherlands. AAPG Hedberg Memoir, 103, 1–24. Age: Namurian A 2. Bouw, S. and Lutgert, J. [2012] Shale Plays in The Netherlands. SPE/EAGE European Unconventional Basin: Northwest European Carboniferous Basin Resources Conference and Exhibition, SPE 152644. 3. Zijp, M.H.A.A. Nelskamp, S.N., Structural setting; Schavemaker, Y.A., ten Veen, J.H., ter Heege, J.H. [2013] Multidisciplinary Approach for Detailed Facies variability: mudstones with sandstone Characterization of Shale Gas intercalations, recurring cycles of delta progradation. Reservoirs, a Netherlands Showcase. Reasonable correlatability Offshore Technology Conference, Brasil, OTC-2483-MS Country: Netherlands 4. Verreussel, R.M.C.H., Zijp, M.H.A.A., S. Nelskamp, L. Wasch, G. de Bruin, J. ter Heege and J. ten Veen. 1. Area extend (km2) 21232 2013. Pay-zone identification workflow for shale gas in the Posidonia Shale Formation, the Netherlands, First Break Volume 31, Offshore 12703 normal 3 February 2013 Onshore 8529 normal 3 5. Zijp, M.H.A.A., ten Veen J., Verreussel, R., ter Heege, J., Ventra, 2. Thickness (gross, m) 40 80 50 normal 6 D., Martin, J. [2015] Shale gas 2a. Thickness (net, m) -- - - - formation research: from well logs to outcrop - and back again. First Break 2b. Net/Gross (%) --0,7- - Volume 33, February 2015 6. Zijp, M.H.A.A., Nelskamp, S., 3. Depth (m) 444 9935 3700 normal 3, 7 Verreussel, R., ter Heege, J. [2015] The Geverik Member of the 4. Density (g/cm3) 2,63 2,77 2,71 normal 3 Brittle Lithology Carboniferous Epen Formation, Shale Gas Potential in Western Europe, 5. TOC (%) 1 9 2 normal 1, 2, 4 IPTC-18410-MS 7. Zijp, M.H.A.A., ter Heege, J. [2014] Shale gas in the Netherlands: current state of play. International Shale Gas & Oil Journal, Volume 2, Issue 1, 6. Porosity (%) 19 1,5normal 1, 2 February 2014 8. Zijp, M., ten Veen, J., Ventra, D., Verreussel, R., van Laerhoven, L., 7. Maturity (%VR) or graptolite equivalent 23 1 Boxem, T. [2014] New Insights From Jurassic Shale Characterization: 8. Reservoir pressure (MPa) 320 420 370 1 Strenghten Subsurface Data With Outcrop Analogues 9. Reservoir Temperature (°C) - - 124,7 1 9. Balen, R.T. van, Van Bergen, F., De Leeuw, C., Pagnier, H., Simmelink, H., 10. Gas saturation (%)(Sg) 20 50 20 1, 2 Van Wees, J.D., and Verweij, J.M., 2000. Modelling the hydrocarbon 11. Oil Saturation (%) So) -- - generation and migration in the West Netherlands Basin, the Netherlands. 12. Gas generation mgHC/g TOC (Hydrogen index) -- - Geologie en Mijnbouw / Netherlands Journal of Geosciences 79: 29-44. 10. Jager, J. de and M. C. Geluk, 2007. 13. Kerogen type Type II 1, 4 Petroleum Geology. In: Wong, T. E., Batjes, D. A. J. and De Jager, J. (Eds) 14. Sorption capacity VReq. - 1,9 % (mmol/g) -- - Geology of the Netherlands. Royal Dutch Academy of Arts and Sciences, Amsterdam, 237–260. 11. Van Hulten, F.F.N. [2012] Devono- 15. Matrix permeability (nDarcy) 0,9 680 2 carboniferous carbonate platform systems of The Netherlands, 16. Adsorbed gas storage capacity (scf/ton) -- 33 2 Geologica Belgica 15(4), 284- 296. 12. EIA/ARI World Shale Gas and Shale Oil Resource Assessment, Technically Recoverable Shale Oil and Shale Gas Resources: An Assess-ment 17. Compressibility factor (z) of 137 Shale Formations in 41 Countries Outside the United States http://www.eia.gov/analysis/studies/ worldshalegas/pdf/fullreport.pdf 18. Bg - Gas formation volume factor - - 212 1

19. Langmuir Pressure (pL, psi) -- -

20. Langmuir Volume (nL, scf/ton) -- -

Bulk mineral constituents XRD % Source g

Average clay content (%) 5,39 Average quartz-feldspars content (%) 68,98 3

Average carbonate content (%) 25,62 Mineralo

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 107 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

REFERENCE LIST : EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution Source (Ref.list) Comments 1 . Bergen, F. van, Zijp, M.H.A.A., Nelskamp, S. and Kombrink, H. [2013] 1065 Shale gas evaluation of the Early Jurassic Shale Name: Posidonia Shale Formation Posidonia Shale Formation and the Carboniferous Epen Formation in the Netherlands. AAPG Hedberg Memoir, 103, 1–24. Age: Toarcian (Jurassic) 2. Bouw, S. and Lutgert, J. [2012] Shale Plays in The Netherlands. SPE/EAGE Basin: West Netherlands Basin/Broad 14s European Unconventional Resources Basin Conference and Exhibition, SPE 152644. 3. Zijp, M.H.A.A. Nelskamp, S.N., Structural setting; large amounts of faults, Schavemaker, Y.A., ten Veen, J.H., ter some inverse tectonics Heege, J.H. [2013] Multidisciplinary Approach for Detailed Characterization of Facies variability; low. Correlatable over entire Shale Gas Reservoirs, a Netherlands Dutch on- and offshore Showcase. Offshore Technology Conference, Brasil, OTC-2483-MS 4. Verreussel, R.M.C.H., Zijp, M.H.A.A., S. Country: Netherlands Nelskamp, L. Wasch, G. de Bruin, J. ter Heege and J. ten Veen. 2013. Pay-zone identification workflow for shale gas in the 1. Area extend (km2) 12400 Posidonia Shale Formation, the Netherlands, First Break Volume 31, February 2013 5. Zijp, M.H.A.A., ten Veen J., Verreussel, Offshore 6240 normal 3 R., ter Heege, J., Ventra, D., Martin, J. Onshore 6160 normal 3 [2015] Shale gas formation research: from well logs to outcrop - and back again. First 2. Thickness (gross, m) 86030normal 5 Break Volume 33, February 2015 2a. Thickness (net, m) -- 27- - ? 6. Zijp, M.H.A.A., Nelskamp, S., Verreussel, 2b. Net/Gross (%) -- 0,9- - R., ter Heege, J. [2015] The Geverik Member of the Carboniferous Epen 3. Depth (m) 90 3960 2000 normal 3 Formation, Shale Gas Potential in Western Europe, IPTC-18410-MS 7. Zijp, M.H.A.A., ter Heege, J. [2014] Shale 4. Density (g/cm3) Ductile lithology gas in the Netherlands: current state of play. International Shale Gas & Oil Journal, 5. TOC (%) 2185,7normal 1, 2 Volume 2, Issue 1, February 2014 8. Zijp, M., ten Veen, J., Ventra, D., Verreussel, R., van Laerhoven, L., Boxem, T. [2014] New Insights From Jurassic Shale Characterization: Strenghten Subsurface 6. Porosity (%) 5 13 7 normal 1, 2, 7 Data With Outcrop Analogues 9. Balen, R.T. van, Van Bergen, F., De 7. Maturity (%VR) or graptolite equivalent 0,5 1,2 0,8 normal 2, 3, 4 Leeuw, C., Pagnier, H., Simmelink, H., Van Wees, J.D., and Verweij, J.M., 2000. 8. Reservoir pressure (Psi) 3336 3770 5880 Modelling the hydrocarbon generation Reservoir pressure (MPa) 23 26 24 1 Mega pascal and migration in the West Netherlands Basin, the Netherlands. Geologie en 9. Reservoir Temperature (°C) 72 85 78 1 Mijnbouw / Netherlands Journal of Geosciences 79: 29-44. 10. Gas saturation (%)(Sg) 05023 1, 2 10. Jager, J. de and M. C. Geluk, 2007. Petroleum Geology. In: Wong, T. E., Batjes, 11. Oil Saturation (%) So) -- - D. A. J. and De Jager, J. (Eds) Geology of the Netherlands. Royal Dutch Academy of 12. Gas generation mgHC/g TOC (Hydrogen Arts and Sciences, Amsterdam, 237–260. index) -- - 11. Trabucho-Alexandre, A., Dirkx, R., Veld H., Klaver G. and de Boer, P.L. 2012. 13. Kerogen type Type II 1, 7, 8 Toarcian black shales in the Dutch Central Graben; record of energetic, variable 14. Sorption capacity VReq. - 1,9 % (mmol/g) -- - depositional conditions during an oceanic anoxic event. Journal of Sedimentary Research, 82(2), 104–120. 12. EIA/ARI World Shale Gas and Shale Oil Resource Assessment, Technically 15. Matrix permeability (nDarcy) 190 16000 8095 2 Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale 16. Adsorbed gas storage capacity (scf/ton) 81 2 Formations in 41 Countries Outside the United States http://www.eia.gov/analysis/studies/worl dshalegas/pdf/fullreport.pdf 17. Compressibility factor (z) -- -

18. Bg - Gas formation volume factor - - 195 1

19. Langmuir Pressure (pL, psi) -- -

20. Langmuir Volume (nL, scf/ton) -- -

Bulk mineral constituents XRD % Source y

Average clay content (%) Average quartz-feldspars content (%)

Average carbonate content (%) Mineralog

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 108 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

REFERENCE LIST : EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution Source (Ref.list) Comments 1. JELEN, B. & RIFELJ, H. 2011: Površinska litostratigrafska in 1066 tektonska strukturna karta Shale Gas ŽďŵŽēũĂd-JAM projekta, severovzhodna Slovenija = Surface litostratigraphic and tectonic structural map of T-JAM Shale Name: Haloze-Špilje Fm. Shale 1, 6 The newest literature and reports are project area, northeastern used. In older literature (before 2000), Slovenia 1: 100.000 (in Haloze-Špilje Fm. was termed Murska Slovenian). Geological Survey of Age: Neogene: Karpatian and Badenian 1, 6 Sobota Formation. Sub-basins were Slovenia. http://www.geo- termed depressions. Mura-Zala basin was zs.si/podrocje.aspx?id=489 termed Mura Depression.Through the 2 . ŠRAM, D., RMAN, N., R/EZ, I. & Basin: Mura-Zala Basin (SW part of the whole sequence (in average 675 m, LAPANJE, A. 2015: The three- Pannonian basin System) 1, 6, 10 maximally even 2 km thick) 10-40 m thick dimensional regional geological shales (clayey marls) alternate with 10-40 model of the Mura-Zala Basin, northeastern Slovenia = Structural setting: sub-basins (depressions) and m thick sandstones. Sandstones to shales Tridimenzionalni regionalni inverse antiforms 1, 6, 10 ratio is 35:65 geološki model Mursko-zalskega Facies variability: both vertical and lateral bazena, severovzhodna Slovenija. moderate to high 1, 6 Geologija, 58/2: 139-154, doi: Country: Slovenia - extending to Austria, 10.5474/geologija.2015.011. Data below refer only to Slovenia Hungary, Croatia 3. SACHSENHOFER, R. F., JELEN, B., HASENHÜTTL C., DUNKL, I. & RAINER, T. 2001: Thermal history of Tertiary basins in Slovenia Based on 3-D regional geological (Alpine-Dinaride-Pannonian modeling (using data from 25 wells for junction). Tectonophysics, 334/2: Haloze Fm. and 77 wells for Špilje Fm.), 77-99. ISSN 0040-1951. 1. Area extend (km2) >1,5 km depth criterium, maturity of 4. JELEN, B. 1985/86: Poizkus Offshore organic matter to generate gas (%Rr > iskanja organskih parametrov Onshore 914 2 0,9) (10 wells) and TOC > 0,5 %. TOC >2 % terciarnih sedimentnih kamenin v is rare. Only shale (clayey marl) (based on vzhodni Sloveniji. 2. Thickness (gross, m) 80 750 685 Triangular 2, 3, 5 35:65 sanstones to shales ratio) is taken 5. HASENHÜTTL, C., KZ>:/, M., 2a. Thickness (net, m) 80 750 685 Triangular into account, therefore Net/Gross is 100 SACHSENHOFER, R.F., JELEN, B. & 2b. Net/Gross (%) 100 100 100 Triangular %. RIEGER, R. 2001: Source rocks and hydrocarbon generation in 3. Depth (m) 1500 4300 2900 Triangular 2, 3, 5, 10 Slovenia (Mura Depression, Pannonian Basin). Marine and 4. Density (g/cm3) 2,1 2,5 2,3 expert's opinin, data not published Petroleum Geology, 18: 115-132, doi:10.1016/S0264- 8172(00)00046-5. TOC > 0,5 % is taken into consideration; 6. MAROS, G. - with 31 co-authors TOC >2 % is rare. Greater TOC is in from Hungary, Austria, Slovakia younger sediments which are not HC and Slovenia, 2012: Summary report of geological models - prone. 5. TOC (%) 03 1 Triangular 4, 5 Transenergy Project. MFGI Budapest, GBA Vienna, ŠGÚDŠ A general estimation for marls of the Bratislava, GeoZS , 189 p. Haloze-Špilje Fms and the correlating http://transenergy- formations within the Pannonian Basin eu.geologie.ac.at/Downloads/out 6. Porosity (%) 15 2 6 system puts/Summary%20report%20of% 20geological%20models/Summar 7. Maturity (%VR) or graptolite equivalent 0,9 2,66 1,29 Triangular 3, 4 Based on %Rr measurements in 10 boreholes y%20report%20of%20geological% 20models.pdf 8. Reservoir pressure (psi) 3000 6000 4500 not published expert's opinin, data not published 7. ATLAS OF GEOTHERMAL RESOURCES IN EUROPE, 2002: Slovenia (by Based on temperature/depth Rajver, D., Ravnik, D., Premru, U., 9. Reservoir Temperature (°C) 70 190 130 7 measurements in tens of wells DŝŽē͕W͕<ƌĂůũ͕W͘ͿWůĂƚĞƐϳϰ-76. - Editors: Hurter, S., Haenel, R. - 10. Gas saturation (%)(Sg) Leibniz Institute for Applied Estimated to 10 % for gas (expertʢƐ not published Geosciences (GGA), Hannover. opinion) 11. Oil Saturation (%) So) 8. DÖVÉNYI, P. & HORVÁTH, F. 1988: A review of temperature, thermal conductivity, and heat flow data Published for samples from 12 wells and for the Pannonian Basin. In: 12. Gas generation mgHC/g TOC (Hydrogen 40 outcrops - indicating prevailing Royden, L.H. & Horváth, F. (Eds.), index) 10 420 210 5 kerogens III and II The Pannonian Basin. A study in basin evolution. Am. Assoc. Pet. 13. Kerogen type III, II 4, 5 ed by mgHC/gTOC and reflected light microscopyGeol. Mem. 45, 195-233. 9. BAVEC, M. and 17 co-authors, 14. Sorption capacity VReq. - 1,9 % (mmol/g) 2005: Overview of geological data for deep repository for 15. Matrix permeability (nDarcy) 10 100 50 8 Considered at porosity <5%; literature data radioactive waste in argillaceous formations in Slovenia. Geological 16. Adsorbed gas storage capacity (scf/ton) not known Survey of Slovenia, 131 p. 10. DJURASEK, S. 1988: Rezultati ƐƵǀƌĞŵĞŶŝŚŐĞŽĨŝnjŝēŬŝŚ 17. Compressibility factor (z) not known ŝƐƚƌĂǎŝǀĂŶũĂƵ^Z^ůŽǀĞŶŝũŝ;ϭϵϴϱ- 1987) = Results of geophysical 18. Bg - Gas formation volume factor not known

19. Langmuir Pressure (pL, psi) not known

20. Langmuir Volume (nL, scf/ton) not known y

Bulk mineral constituents XRD % Source

Average clay content (%) 50 9 Average quartz-feldspars content (%) 22

Average carbonate content (%) 26 Mineralog

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 109 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

REFERENCE LIST : EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution Source (Ref.list) Comments 1. JELEN, B. & RIFELJ, H. 2011: Površinska litostratigrafska in 1067 tektonska strukturna karta Shale Oil ŽďŵŽēũĂd-JAM projekta, severovzhodna Slovenija = Surface litostratigraphic and tectonic structural map of T-JAM Shale Name: Haloze-Špilje Fm. Shale 1, 6 The newest literature and reports are used. In older project area, northeastern literature (before 2000), Haloze-Špilje Fm. was Slovenia 1: 100.000 (in termed Formation. Sub-basins were Slovenian). Geological Survey of Age: Neogene: Karpatian and Badenian 1, 6 Slovenia. http://www.geo- termed depressions. Mura-Zala basin was termed zs.si/podrocje.aspx?id=489 Basin: Mura-Zala Basin (SW part of the Mura Depression.Through the whole sequence (in 2 . ŠRAM, D., RMAN, N., R/EZ, I. & Pannonian basin System) 1, 6, 10 average 675 m, maximally even 2 km thick) 10-40 m LAPANJE, A. 2015: The three- thick shales (clayey marls) alternate with 10-40 m dimensional regional geological thick sandstones. Sandstones to shales ratio is Structural setting: sub-basins (depressions) and model of the Mura-Zala Basin, 35:65. inverse antiforms 1, 6, 10 northeastern Slovenia = Tridimenzionalni regionalni Facies variability: both vertical and lateral geološki model Mursko-zalskega moderate to high 1, 6 bazena, severovzhodna Slovenija. Country: Slovenia - extending to Austria, Geologija, 58/2: 139-154, doi: Data below refer only to Slovenia Hungary, Croatia 10.5474/geologija.2015.011. 3. SACHSENHOFER, R. F., JELEN, B., HASENHÜTTL C., DUNKL, I. & RAINER, T. 2001: Thermal history of Based on 3-D regional geological modeling (using Tertiary basins in Slovenia 1. Area extend (km2) data from 25 wells for Haloze Fm. and 77 wells for (Alpine-Dinaride-Pannonian Offshore Špilje Fm.), >1,5 km depth criterium, maturity of junction). Tectonophysics, 334/2: Onshore 1230 2 organic matter to generate gas (%Rr > 0,9) (10 wells) 77-99. ISSN 0040-1951. 4. JELEN, B. 1985/86: Poizkus and TOC > 0,5 %. TOC >2 % is rare. Only shale (clayey 2. Thickness (gross, m) 130 780 660 Triangular 2, 3, 5 iskanja organskih parametrov marl) is taken into account, therefore Net/Gross is 2a. Thickness (net, m) 130 780 660 Triangular terciarnih sedimentnih kamenin v 100 %. 2b. Net/Gross (%) 100 100 100 Triangular vzhodni Sloveniji. 5. HASENHÜTTL, C., KZ>:/, M., 3. Depth (m) 1500 4000 2800 Triangular 2, 3, 5, 10 SACHSENHOFER, R.F., JELEN, B. & RIEGER, R. 2001: Source rocks and hydrocarbon generation in 4. Density (g/cm3) 2,1 2,5 2,3 expert's opinin, data not published Slovenia (Mura Depression, Pannonian Basin). Marine and Petroleum Geology, 18: 115-132, TOC > 0,5 % is taken into consideration; TOC >2 % is doi:10.1016/S0264- rare. Greater TOC is in younger sediments which are 8172(00)00046-5. not HC prone. 6. MAROS, G. - with 31 co-authors 5. TOC (%) 03 1 Triangular 4, 5 from Hungary, Austria, Slovakia and Slovenia, 2012: Summary A general estimation for marls of the Haloze-Špilje report of geological models - Fms and the correlating formations within the Transenergy Project. MFGI 6. Porosity (%) 15 2 6 Pannonian Basin system Budapest, GBA Vienna, ŠGÚDŠ Bratislava, GeoZS Ljubljana, 189 p. 7. Maturity (%VR) or graptolite equivalent 0,6 1,35 0,86 Triangular 3, 4 Based on %Rr measurements in 10 boreholes http://transenergy- eu.geologie.ac.at/Downloads/out 8. Reservoir pressure (psi) 3000 6000 4500 not published expert's opinin, data not published puts/Summary%20report%20of% 20geological%20models/Summar Based on temperature/depth measurements in tens y%20report%20of%20geological% 9. Reservoir Temperature (°C) 70 190 130 7 of wells 20models.pdf 7. ATLAS OF GEOTHERMAL RESOURCES 10. Gas saturation (%)(Sg) not published IN EUROPE, 2002: Slovenia (by Estimated to about 10 % for gas (expertʢƐŽƉŝŶŝŽŶͿ Rajver, D., Ravnik, D., Premru, U., 11. Oil Saturation (%) So) DŝŽē͕W͕<ƌĂůũ͕W͘ͿWůĂƚĞƐϳϰ-76. - Editors: Hurter, S., Haenel, R. - Leibniz Institute for Applied Published for samples from 12 wells and 40 Geosciences (GGA), Hannover. 12. Gas generation mgHC/g TOC (Hydrogen outcrops - indicating prevailing kerogens III and II 8. DÖVÉNYI, P. & HORVÁTH, F. 1988: index) 10 420 210 5 A review of temperature, thermal conductivity, and heat flow data for the Pannonian Basin. In: Proved by mgHC/gTOC and reflected light Royden, L.H. & Horváth, F. (Eds.), microscopy. Predominance of the kerogen III type of The Pannonian Basin. A study in OM considerably decreases oil generation potential basin evolution. Am. Assoc. Pet. of the whole formation Geol. Mem. 45, 195-233. 13. Kerogen type III, II 4, 5 9. BAVEC, M. and 17 co-authors, 2005: Overview of geological data for deep repository for radioactive waste in argillaceous formations in Slovenia. Geological 14. Sorption capacity VReq. - 1,9 % (mmol/g) not known Survey of Slovenia, 131 p. 10. DJURASEK, S. 1988: Rezultati 15. Matrix permeability (nDarcy) 10 100 50 8 Considered at porosity <5%; literature data ƐƵǀƌĞŵĞŶŝŚŐĞŽĨŝnjŝēŬŝŚ ŝƐƚƌĂǎŝǀĂŶũĂƵ^Z^ůŽǀĞŶŝũŝ;ϭϵϴϱ- 1987) = Results of geophysical exploration in Slovenia (1985- 16. Adsorbed gas storage capacity (scf/ton) not known 1987). Nafta, 39, 311-326.

17. Compressibility factor (z) not known

18. Bg - Gas formation volume factor not known

19. Langmuir Pressure (pL, psi) not known

20. Langmuir Volume (nL, scf/ton) not known y

Bulk mineral constituents XRD % Source

Average clay content (%) 50 9 Average quartz-feldspars content (%) 22

Average carbonate content (%) 26 Mineralog

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 110 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

REFERENCE LIST : EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution Source (Ref.list) Comments 1. JELEN, B. & RIFELJ, H. 2011: Površinska litostratigrafska in 1068 tektonska strukturna karta Shale Name: Haloze-Špilje Fm. Sandstone 1, 6 ŽďŵŽēũĂd-JAM projekta, severovzhodna Slovenija = Surface litostratigraphic and tectonic structural map of T-JAM Age: Neogene: Karpatian and Badenian 1, 6 project area, northeastern The newest literature and reports are used. In older Slovenia 1: 100.000 (in Basin: Mura-Zala Basin (SW part of the literature (before 2000), Haloze-Špilje Fm. was Slovenian). Geological Survey of Pannonian basin System) 1, 6, 10 termed Murska Sobota Formation. Sub-basins were Slovenia. http://www.geo- termed depressions. Mura-Zala basin was termed zs.si/podrocje.aspx?id=489 Mura Depression Through the whole sequence (in 2 . ŠRAM, D., RMAN, N., R/EZ, I. & Structural setting: sub-basins (depressions) and average 675 m, maximally even 2 km thick) 10-40 m LAPANJE, A. 2015: The three- inverse antiforms 1, 6, 10 thick sandstone strata alternate with 10-40 m thick dimensional regional geological shale (clayey marl) strata. Sandstones to shales ratio model of the Mura-Zala Basin, northeastern Slovenia = Facies variability: both vertical and lateral is 35:65 Tridimenzionalni regionalni moderate to high 1, 6 geološki model Mursko-zalskega Country: Slovenia - extending to Austria, bazena, severovzhodna Slovenija. Hungary, Croatia Geologija, 58/2: 139-154, doi: 10.5474/geologija.2015.011. Data below refer only to Slovenia 3. SACHSENHOFER, R. F., JELEN, B., 1. Area extend (km2) HASENHÜTTL C., DUNKL, I. & RAINER, T. 2001: Thermal history of Tertiary basins in Slovenia Based on 3-D regional geological modeling (using (Alpine-Dinaride-Pannonian Offshore data from 25 wells for Haloze Fm. and 77 wells for junction). Tectonophysics, 334/2: Onshore 914 2 77-99. ISSN 0040-1951. Špilje Fm.), >1,5 km depth criterium, maturity of 4. JELEN, B. 1985/86: Poizkus organic matter to generate gas (%Rr > 0,9) (10 wells) 2. Thickness (gross, m) 40 400 365 Triangular 2, 3, 5 iskanja organskih parametrov and TOC > 0,5 %. TOC >2 % is very rare. Only 2a. Thickness (net, m) 40 400 365 Triangular terciarnih sedimentnih kamenin v sandstone (based on 35:65 ratio) is taken into 2b. Net/Gross (%) 100 100 100 Triangular vzhodni Sloveniji. account, therefore Net/Gross is 100 %. 5. HASENHÜTTL, C., KZ>:/, M., 3. Depth (m) 1500 4300 2900 Triangular 2, 3, 5, 10 SACHSENHOFER, R.F., JELEN, B. & RIEGER, R. 2001: Source rocks and hydrocarbon generation in 4. Density (g/cm3) 2,1 2,5 2,3 Slovenia (Mura Depression, expert's opinin, data not published Pannonian Basin). Marine and 5. TOC (%) 03 1 Triangular 4, 5 Petroleum Geology, 18: 115-132, TOC > 0,5 % is taken into consideration; TOC >2 % is doi:10.1016/S0264- 8172(00)00046-5. rare. Greater TOC is in younger sediments which are 6. MAROS, G. - with 31 co-authors not HC prone. from Hungary, Austria, Slovakia 6. Porosity (%) 7 13 9,5 not published and Slovenia, 2012: Summary Based on data from the newest (2011) wells Pg-10 report of geological models - and Pg-11 Transenergy Project. MFGI 7. Maturity (%VR) or graptolite equivalent 0,9 2,66 1,29 Triangular 3, 4 Budapest, GBA Vienna, ŠGÚDŠ Bratislava, GeoZS Ljubljana, 189 Based on %Rr measurements in 10 boreholes p. 8. Reservoir pressure (psi) 3500 5800 5000 not published http://transenergy- Based on data from the newest (2011) wells Pg-10 eu.geologie.ac.at/Downloads/out and Pg-11 puts/Summary%20report%20of% 9. Reservoir Temperature (°C) 114 165 147 not published 20geological%20models/Summar Based on data from the newest (2011) wells Pg-10 y%20report%20of%20geological% and Pg-11 20models.pdf 10. Gas saturation (%)(Sg) 40 60 50 not published 7. ATLAS OF GEOTHERMAL RESOURCES Based on data from the newest (2011) wells Pg-10 IN EUROPE, 2002: Slovenia (by 11. Oil Saturation (%) So) and Pg-11. It is in fact Shc - saturation with Rajver, D., Ravnik, D., Premru, U., "hydrocarbons" (= 1-Sw), where Sw is saturation DŝŽē͕W͕<ƌĂůũ͕W͘ͿWůĂƚĞƐϳϰ-76. - 12. Gas generation mgHC/g TOC (Hydrogen Editors: Hurter, S., Haenel, R. - Leibniz Institute for Applied index) 10 420 210 5 Geosciences (GGA), Hannover. Published for samples from 12 wells and 40 8. DÖVÉNYI, P. & HORVÁTH, F. 1988: outcrops - indicating prevailing kerogens III and II. A review of temperature, thermal Mostly refering to marls conductivity, and heat flow data 13. Kerogen type III, II 4, 5 for the Pannonian Basin. In: Proved by mgHC/gTOC and reflected light Royden, L.H. & Horváth, F. (Eds.), microscopy. Mostly refering to marls The Pannonian Basin. A study in not basin evolution. Am. Assoc. Pet. 14. Sorption capacity VReq. - 1,9 % (mmol/g) known Geol. Mem. 45, 195-233. 9. BAVEC, M. and 17 co-authors, 2005: Overview of geological data for deep repository for radioactive waste in argillaceous 15. Matrix permeability (nDarcy) 100 10000 1000 8 formations in Slovenia. Geological Considered at porosity <5% for sandstones and Survey of Slovenia, 131 p. sandstones & shales; literature data 10. DJURASEK, S. 1988: Rezultati 16. Adsorbed gas storage capacity (scf/ton) ƐƵǀƌĞŵĞŶŝŚŐĞŽĨŝnjŝēŬŝŚ ŝƐƚƌĂǎŝǀĂŶũĂƵ^Z^ůŽǀĞŶŝũŝ;ϭϵϴϱ- 1987) = Results of geophysical not known exploration in Slovenia (1985- 17. Compressibility factor (z) 1987). Nafta, 39, 311-326. 11. M/K, P. & MZ

y

Bulk mineral constituents XRD % Source

Average clay content (%) 15 11 Average quartz-feldspars content (%) 75

Average carbonate content (%) 7 Mineralog

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 111 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

REFERENCE LIST : EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution Source (Ref.list) Comments 1. JELEN, B. & RIFELJ, H. 2011: Površinska litostratigrafska in 1069 tektonska strukturna karta Tight Oil ŽďŵŽēũĂd-JAM projekta, severovzhodna Slovenija = Surface litostratigraphic and tectonic structural map of T-JAM Shale Name: Haloze-Špilje Fm. Sandstone 1, 6 project area, northeastern The newest literature and reports are used. In older Slovenia 1: 100.000 (in literature (before 2000), Haloze-Špilje Fm. was termed Slovenian). Geological Survey of Age: Neogene: Karpatian and Badenian 1, 6 Murska Sobota Formation. Sub-basins were termed Slovenia. http://www.geo- depressions. Mura-Zala basin was termed Mura zs.si/podrocje.aspx?id=489 Basin: Mura-Zala Basin (SW part of the Depression.Through the whole sequence (in average 2 . ŠRAM, D., RMAN, N., R/EZ, I. & Pannonian basin System) 1, 6, 10 675 m, maximally even 2 km thick) 10-40 m thick shales LAPANJE, A. 2015: The three- (clayey marls) alternate with 10-40 m thick sandstones. dimensional regional geological model of the Mura-Zala Basin, Structural setting: sub-basins (depressions) Sandstones to shales ratio is 35:65. and inverse antiforms 1, 6, 10 northeastern Slovenia = Tridimenzionalni regionalni Facies variability: both vertical and lateral geološki model Mursko-zalskega moderate to high 1, 6 bazena, severovzhodna Slovenija. Country: Slovenia - extending to Austria, Geologija, 58/2: 139-154, doi: Data below refer only to Slovenia Hungary, Croatia 10.5474/geologija.2015.011. 3. SACHSENHOFER, R. F., JELEN, B., HASENHÜTTL C., DUNKL, I. & RAINER, T. 2001: Thermal history of Based on 3-D regional geological modeling (using data Tertiary basins in Slovenia 1. Area extend (km2) from 25 wells for Haloze Fm. and 77 wells for Špilje (Alpine-Dinaride-Pannonian Offshore Fm.), >1,5 km depth criterium, maturity of organic junction). Tectonophysics, 334/2: Onshore 1230 2 77-99. ISSN 0040-1951. matter to generate gas (%Rr > 0,9) (10 wells) and TOC > 4. JELEN, B. 1985/86: Poizkus 0,5 %. TOC >2 % is rare. Only sandstone (based on 35:65 2. Thickness (gross, m) 70 420 355 Triangular 2, 3, 5 iskanja organskih parametrov ratio) is taken into account, therefore Net/Gross is 100 2a. Thickness (net, m) 70 420 355 Triangular terciarnih sedimentnih kamenin v %. 2b. Net/Gross (%) 100 100 100 Triangular vzhodni Sloveniji. 5. HASENHÜTTL, C., KZ>:/, M., 3. Depth (m) 1500 4000 2800 Triangular 2, 3, 5, 10 SACHSENHOFER, R.F., JELEN, B. & RIEGER, R. 2001: Source rocks and hydrocarbon generation in 4. Density (g/cm3) 2,1 2,5 2,3 expert's opinin, data not published Slovenia (Mura Depression, Pannonian Basin). Marine and TOC > 0,5 % is taken into consideration; TOC >2 % is Petroleum Geology, 18: 115-132, doi:10.1016/S0264- rare. Greater TOC is in younger sediments which are not 8172(00)00046-5. HC prone. 5. TOC (%) 03 1 Triangular 4, 5 6. MAROS, G. - with 31 co-authors from Hungary, Austria, Slovakia Based on data from the newest (2011) wells Pg-10 and and Slovenia, 2012: Summary 6. Porosity (%) 7 13 9,5 not published Pg-11 report of geological models - Transenergy Project. MFGI Budapest, GBA Vienna, ŠGÚDŠ 7. Maturity (%VR) or graptolite equivalent 0,6 1,35 0,86 Triangular 3, 4 Based on %Rr measurements in 10 boreholes Bratislava, GeoZS Ljubljana, 189 p. Based on data from the newest (2011) wells Pg-10 and http://transenergy- 8. Reservoir pressure (psi) 3500 5800 5000 not published Pg-11 eu.geologie.ac.at/Downloads/out puts/Summary%20report%20of% Based on data from the newest (2011) wells Pg-10 and 20geological%20models/Summar 9. Reservoir Temperature (°C) 114 165 147 not published Pg-11 y%20report%20of%20geological% 20models.pdf 10. Gas saturation (%)(Sg) 40 60 50 not published Based on data from the newest (2011) wells Pg-10 and 7. ATLAS OF GEOTHERMAL RESOURCES Pg-11. It is in fact Shc - saturation with "hydrocarbons" IN EUROPE, 2002: Slovenia (by 11. Oil Saturation (%) So) based on "1-Sw", where Sw is saturation with water. Rajver, D., Ravnik, D., Premru, U., DŝŽē͕W͕<ƌĂůũ͕W͘ͿWůĂƚĞƐϳϰ-76. - Editors: Hurter, S., Haenel, R. - Published for samples from 12 wells and 40 outcrops - Leibniz Institute for Applied 12. Gas generation mgHC/g TOC (Hydrogen indicating prevailing kerogens III and II. Mostly refering Geosciences (GGA), Hannover. index) 10 420 210 5 to marls. 8. DÖVÉNYI, P. & HORVÁTH, F. 1988: A review of temperature, thermal conductivity, and heat flow data Proved by mgHC/gTOC and reflected light microscopy. for the Pannonian Basin. In: Mostly refering to marls. Predominance of the kerogen Royden, L.H. & Horváth, F. (Eds.), III type of OM considerably decreases oil generation The Pannonian Basin. A study in potential of the whole formation. basin evolution. Am. Assoc. Pet. 13. Kerogen type III, II 4, 5 Geol. Mem. 45, 195-233. 9. BAVEC, M. and 17 co-authors, 2005: Overview of geological data for deep repository for 14. Sorption capacity VReq. - 1,9 % (mmol/g) not known radioactive waste in argillaceous formations in Slovenia. Geological Survey of Slovenia, 131 p. Considered at porosity <5% for sandstones and 10. DJURASEK, S. 1988: Rezultati 15. Matrix permeability (nDarcy) 100 10000 1000 8 sandstones & marls; literature data ƐƵǀƌĞŵĞŶŝŚŐĞŽĨŝnjŝēŬŝŚ ŝƐƚƌĂǎŝǀĂŶũĂƵ^Z^ůŽǀĞŶŝũŝ;ϭϵϴϱ- not 1987) = Results of geophysical 16. Adsorbed gas storage capacity (scf/ton) known not known exploration in Slovenia (1985- 1987). Nafta, 39, 311-326.

17. Compressibility factor (z) known not known 11. M/K, P. & MZ

Bulk mineral constituents XRD % Source

Average clay content (%) 15 11 Average quartz-feldspars content (%) 75

Average carbonate content (%) 7 Mineralog

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 112 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

References EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution Source (Ref.list) Comments Andrews, I.J. 2014. The Jurassic 1070 shales of the Weald Basin: Shale Name: Kimmeridge Clay geology and shale oil and shale gas resource estimation. British Age: Upper Jurassic oil play Geological Survey for Department of Energy and Climate Change, London, UK. Basin: Weald Basin, SE England

Structural setting: Complex

Facies variability: Country: UK 1. Area extend (km2) Offshore Onshore

2. Thickness (gross, m) 2a. Thickness (net, m) 2b. Net/Gross (%) Net organic rich shale and potentially productive 2c. Net mature shale volume (x 109 m3) 52,0 70,0 63,0 Andrews, 2014 shale, % 3. Depth (m)

4. Density (g/cm3) 2,6 2,7 2,6 Andrews, 2014 estimated 4b. Oil density (g/cm3) 0,8 0,9 0,8 Andrews, 2014 analysed 5. TOC (%) 0,5 21,3 10,9 Andrews, 2014 analysed

6. Porosity (%) not known

7. Maturity (%VR) or graptolite equivalent Ro>0.6 Andrews, 2014 analysed

8. Reservoir pressure (psi) USEIA, 2013 hydrostatic assumed

9. Reservoir Temperature (°C) Variable- depth dependant

10. Gas saturation (%)(Sg)

11. Oil Saturation (%) So)

12. Gas generation mgHC/g TOC (Hydrogen index)

I with minor 13. Kerogen type II, III Andrews, 2014 analysed

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy)

16. Adsorbed gas storage capacity (scf/ton)

17. Compressibility factor (z)

18. Bg - Gas formation volume factor 18.b Free oil content (mgHC/gRock) 0,0 1,4 1,2 Andrews, 2014 18c. Correvtion for evaporitic loss 1,5 2,4 1,9 Andrews, 2014 19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton) y

Bulk mineral constituents XRD % Source

Average clay content (%) 34 Average quartz-feldspars content (%) 43

Average carbonate content (%) 23 Mineralog

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 113 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

References EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution Source (Ref.list) Comments Monaghan, AA. 2014. The 1071 Carboniferous shales of the Shale Name: Limestone Coal Formation Midland Valley of Scotland: geology and resource estimation. Age: Carboniferous (Pendleian) British Geological Survey for Department of Energy and Climate Change, London, UK. Basin: Midland Valley, Scotland

Structural setting: Complex

Facies variability: Country: UK 1. Area extend (km2) Offshore Onshore

2. Thickness (gross, m) 2a. Thickness (net, m) 2b. Net/Gross (%) Net mature shale volume (x 2c. Net mature shale volume (x 109 m3) 16 Monaghan, 2014 109 m3) 3. Depth (m) 813 1700 1151 Monaghan, 2014 Median, not mean

4. Density (g/cm3) 2,55 2,65 2,6 Monaghan, 2014 estimated

5. TOC (%) 2 80 4,1 Monaghan, 2014 Mean from Passey method

6. Porosity (%) not known

7. Maturity (%VR) or graptolite equivalent Ro>1.1 Monaghan, 2014

8. Reservoir pressure (psi) Monaghan, 2014 hydrostatic assumed

9. Reservoir Temperature (°C) Variable- depth dependant

Estimated, gas filled 10. Gas saturation (%)(Sg) 0,5 10 3 Monaghan, 2014 porosity

11. Oil Saturation (%) So)

12. Gas generation mgHC/g TOC (Hydrogen index) 99 136 117,5 Monaghan, 2014 Analysed

13. Kerogen type I, III, minor II Monaghan, 2014 Analysed

14. Sorption capacity VReq. - 1,9 % (mmol/g) not known

15. Matrix permeability (nDarcy) not known

16. Adsorbed gas storage capacity (scf/ton) 18 71 44,5 Monaghan, 2014 Estimated

17. Compressibility factor (z) not known

Variable- hydrostatic pressure used (depth 18. Bg - Gas formation volume factor Monaghan, 2014 (m)/10.7)

19. Langmuir Pressure (pL, psi) not known

Analogues used from US (Curtis 2002; Jarvie 20. Langmuir Volume (nL, scf/ton) 2012a) not known y

Bulk mineral constituents XRD % Source

Average clay content (%) 59 Average quartz-feldspars content (%) 32

Average carbonate content (%) 9 Mineralog

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 114 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

References EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution Source (Ref.list) Comments Monaghan, AA. 2014. The 1072 Carboniferous shales of the Shale Name: West Lothian Oil Shale unit Midland Valley of Scotland: geology and resource estimation. Age: Carboniferous British Geological Survey for Department of Energy and Climate Change, London, UK. Basin: Midland Valley, Scotland

Structural setting: Complex

Facies variability: Country: UK 1. Area extend (km2) Offshore Onshore

2. Thickness (gross, m) 2a. Thickness (net, m) 2b. Net/Gross (%) 2c. Net mature shale volume (x 109 m3) 123 Monaghan, 2014 3. Depth (m) 804 4505 1050 Monaghan, 2014 Median, not mean

4. Density (g/cm3) 2,55 2,65 2,6 Monaghan, 2014 Estimated

5. TOC (%) 1 80 2,7 Monaghan, 2014 Mean from Passey method

6. Porosity (%) not known

7. Maturity (%VR) or graptolite equivalent Ro>1.1 Monaghan, 2014

8. Reservoir pressure (psi) Monaghan, 2014 hydrostatic assumed

9. Reservoir Temperature (°C) Variable- depth dependant

Estimated, gas filled 10. Gas saturation (%)(Sg) 0,5 10 3 Monaghan, 2014 porosity

11. Oil Saturation (%) So)

12. Gas generation mgHC/g TOC (Hydrogen index) 346 Monaghan, 2014 analysed

13. Kerogen type I, III, minor II Monaghan, 2014 analysed

14. Sorption capacity VReq. - 1,9 % (mmol/g) not known

15. Matrix permeability (nDarcy) not known

16. Adsorbed gas storage capacity (scf/ton) 18 71 44,5 Monaghan, 2014 estimated

17. Compressibility factor (z) not known

Variable- hydrostatic pressure used (depth 18. Bg - Gas formation volume factor Monaghan, 2014 (m)/10.7)

19. Langmuir Pressure (pL, psi) not known

Analogues used from US (Curtis 2002; Jarvie 20. Langmuir Volume (nL, scf/ton) 2012a) not known y

Bulk mineral constituents XRD % Source

Average clay content (%) 59 Average quartz-feldspars content (%) 32

Average carbonate content (%) 9 Mineralog

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 115 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

References EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution Source (Ref.list) Comments Monaghan, AA. 2014. The 1073 Carboniferous shales of the Shale Name: Lower Limestone Formation Midland Valley of Scotland: geology and resource estimation. Age: Carboniferous British Geological Survey for Department of Energy and Climate Change, London, UK. Basin: Midland Valley, Scotland

Structural setting: Complex

Facies variability: Country: UK 1. Area extend (km2) Offshore Onshore

2. Thickness (gross, m) 2a. Thickness (net, m) 2b. Net/Gross (%) 2c. Net mature shale volume (x 109 m3) 30 Monaghan, 2014 3. Depth (m) 809 1970 1016 Monaghan, 2014 Median, not mean

4. Density (g/cm3) 2,55 2,65 2,6 Monaghan, 2014 Estimated

Mean from Passey method 5. TOC (%) 1 30 3,1 Monaghan, 2014

6. Porosity (%) not known

7. Maturity (%VR) or graptolite equivalent Ro>1.1 Monaghan, 2014

hydrostatic 8. Reservoir pressure (psi) assumed Monaghan, 2014 hydrostatic assumed

Variable- depth 9. Reservoir Temperature (°C) dependant Variable- depth dependant

Estimated, gas filled 10. Gas saturation (%)(Sg) 0,5 10 3 Monaghan, 2014 porosity

11. Oil Saturation (%) So)

12. Gas generation mgHC/g TOC (Hydrogen index) 65 82 73,5 Monaghan, 2014 analysed

13. Kerogen type I, III, minor II Monaghan, 2014 analysed

14. Sorption capacity VReq. - 1,9 % (mmol/g) not known

15. Matrix permeability (nDarcy) not known

16. Adsorbed gas storage capacity (scf/ton) 18 71 44,5 Monaghan, 2014 estimated

17. Compressibility factor (z) not known

Variable- hydrostatic pressure used (depth 18. Bg - Gas formation volume factor Monaghan, 2014 (m)/10.7)

19. Langmuir Pressure (pL, psi)

Analogues used from US (Curtis 2002; Jarvie 20. Langmuir Volume (nL, scf/ton) 2012a) y

Bulk mineral constituents XRD % Source

Average clay content (%) 59 Average quartz-feldspars content (%) 32

Average carbonate content (%) 9 Mineralog

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 116 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

References EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution Source (Ref.list) Comments Andrews, I.J. 2014. The Jurassic 1074 shales of the Weald Basin: geology Shale Name: Mid Lias Clay and shale oil and shale gas resource estimation. British Geological Survey for Department of Energy Age: Jurrassic and Climate Change, London, UK.

Basin: Weald Basin, SE England

Structural setting: Complex

Facies variability: Country: UK 1. Area extend (km2) Offshore Onshore

2. Thickness (gross, m) 2a. Thickness (net, m) Net organic rich shale and potentially productive 2b. Net/Gross (%) 9 37 20 Andrews, 2014 shale, % 2c. Net mature shale volume (x 109 m3) 3. Depth (m)

4. Density (g/cm3) 2,55 2,65 2,6 Andrews, 2014 estimated 4b. Oil density 0,8 0,85 0,825 Andrews, 2014 analysed 5. TOC (%) 0,25 2,1 1,175 Andrews, 2014 analysed

6. Porosity (%) not known

7. Maturity (%VR) or graptolite equivalent 0,6 Andrews, 2014 analysed

8. Reservoir pressure (psi) USEIA, 2013 hydrostatic assumed

9. Reservoir Temperature (°C) Variable- depth dependant

10. Gas saturation (%)(Sg)

11. Oil Saturation (%) So)

12. Gas generation mgHC/g TOC (Hydrogen index)

I with minor 13. Kerogen type II, III Andrews, 2014 analysed

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy)

16. Adsorbed gas storage capacity (scf/ton)

17. Compressibility factor (z)

18. Bg - Gas formation volume factor 18 b Free oil content (mgHC/gRock) 0 1 0,88 Andrews, 2014 18 c Correvtion for evaporitic loss 1,53 2,42 1,87 Andrews, 2014 19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton) y

Bulk mineral constituents XRD % Source

Average clay content (%) 34 Average quartz-feldspars content (%) 43

Average carbonate content (%) 23 Mineralog

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 117 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

References EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution Source (Ref.list) Comments Andrews, I.J. 2014. The Jurassic 1075 shales of the Weald Basin: geology Shale Name: Oxford Clay and shale oil and shale gas resource estimation. British Geological Survey for Department of Energy Age: Jurassic (Oxfordian) and Climate Change, London, UK.

Basin: Weald Basin, SE England

Structural setting: Complex

Facies variability: Country: UK 1. Area extend (km2) Offshore Onshore

2. Thickness (gross, m) 2a. Thickness (net, m) Net organic rich shale and potentially productive 2b. Net/Gross (%) 22 39 30 Andrews, 2014 shale, % 2c. Net mature shale volume (x 109 m3) 3. Depth (m)

4. Density (g/cm3) 2,55 2,65 2,6 Andrews, 2014 4b Oil density (g/cm3) 0,8 0,85 0,825 Andrews, 2014; Ebuknanson & Kinghorn, 5. TOC (%) 0,42 12,36 6,39 1986

6. Porosity (%) not known

7. Maturity (%VR) or graptolite equivalent Ro>0.6 Andrews, 2014

hydrostatic 8. Reservoir pressure (psi) assumed hydrostatic assumed

Variable- depth 9. Reservoir Temperature (°C) dependant Variable- depth dependant

10. Gas saturation (%)(Sg)

11. Oil Saturation (%) So)

12. Gas generation mgHC/g TOC (Hydrogen index)

13. Kerogen type I with minor II, III Andrews, 2014

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy)

16. Adsorbed gas storage capacity (scf/ton)

17. Compressibility factor (z)

18. Bg - Gas formation volume factor 18b Free oil content (mgHC/gRock) 0 1,3 1,16 Andrews, 2014 18c Correvtion for evaporitic loss 1,53 2,42 1,87 Andrews, 2014 19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton) y

Bulk mineral constituents XRD % Source

Average clay content (%) 34 Average quartz-feldspars content (%) 43

Average carbonate content (%) 23 Mineralog

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 118 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

References EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution Source (Ref.list) Comments Andrews, I.J. 2013. The 1076 Carboniferous Bowland Shale gas Shale Name: Upper Lias Clay study: geology and resource estimation. British Geological Age: Jurassic Survey for Department of Energy and Climate Change, London, UK.

Basin: Weald Basin, SE England

Structural setting: Complex

Facies variability: Country: UK 1. Area extend (km2) Offshore Onshore

2. Thickness (gross, m) 2a. Thickness (net, m) Net organic rich shale and potentially productive 2b. Net/Gross (%) 15 28 20 Andrews, 2014 shale, % 2c. Net mature shale volume (x 109 m3) 3. Depth (m)

4. Density (g/cm3) 2,55 2,65 2,6 Andrews, 2014 estimated

Lamb, 1983; USEIA (2013; 5. TOC (%) 0,42 4,84 3 for mean) analysed

6. Porosity (%) not known

7. Maturity (%VR) or graptolite equivalent Ro>0.6 Andrews, 2014 analysed

8. Reservoir pressure (psi) hydrostatic assumed

9. Reservoir Temperature (°C) Variable- depth dependant

10. Gas saturation (%)(Sg)

11. Oil Saturation (%) So)

12. Gas generation mgHC/g TOC (Hydrogen index)

I with minor 13. Kerogen type II, III Andrews, 2014 analysed

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy)

16. Adsorbed gas storage capacity (scf/ton)

17. Compressibility factor (z)

18. Bg - Gas formation volume factor

19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton) y

Bulk mineral constituents XRD % Source

Average clay content (%) 34 Average quartz-feldspars content (%) 43

Average carbonate content (%) 23 Mineralog

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 119 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

Source References EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution (Ref.list) Comments 1. Andrews, I.J. 2013. The 1077 Carboniferous Bowland Shale gas Shale Name: Bowland -Hodder unit study: geology and resource estimation. British Geological Age: Carboniferous Survey for Department of Energy and Climate Change, London, UK.

Basin: Northern England

Structural setting: Complex

Facies variability: Country: UK 1. Area extend (km2) Offshore Onshore

2. Thickness (gross, m) 2a. Thickness (net, m) 2b. Net/Gross (%) 2c. Net mature shale volume (x 109 m3) 3. Depth (m)

4. Density (g/cm3) 2,55 2,65 2,6 1 estimated

5. TOC (%) 0,06 8,56 1,84 1 analysed

6. Porosity (%) not known

7. Maturity (%VR) or graptolite equivalent

analysed; Tmax used. Variable maturities due to differential 7.b Maturity Tmax 331 595 1 burial and uplift 8. Reservoir pressure (psi) 2610 3915 3263 Reservoir pressure (Mpa) 18 27 22,5 1

9. Reservoir Temperature (°C) Variable- depth dependant

10. Gas saturation (%)(Sg) 0,5 10 3 1 estimated gas filled porosity

11. Oil Saturation (%) So)

12. Gas generation mgHC/g TOC (Hydrogen index) 0 498 74,2 1 Analysed; Present day HI

13. Kerogen type II, III 1 analysed

14. Sorption capacity VReq. - 1,9 % (mmol/g) not known

15. Matrix permeability (nDarcy) not known

16. Adsorbed gas storage capacity (scf/ton) 18 71 44,5 1

17. Compressibility factor (z) not known

18. Bg - Gas formation volume factor 168 253 0,02105 1 estimated

19. Langmuir Pressure (pL, psi) 2,5 10 6,25 1 estimated

Analogues used from US (Curtis 20. Langmuir Volume (nL, scf/ton) 18 71 44,5 1 2002; Jarvie 2012a) y

Bulk mineral constituents XRD % Source

Average clay content (%) Average quartz-feldspars content (%)

Average carbonate content (%) Mineralog

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 120 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

References EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution Source (Ref.list) Comments Andrews, I.J. 2014. The Jurassic 1078 shales of the Weald Basin: Shale Name: Corallian Clay geology and shale oil and shale gas resource estimation. British Age: Jurassic (Oxfordian) Oil Play Geological Survey for Department of Energy and Climate Change, London, UK. Basin: Weald Basin, SE England

Structural setting: complex

Facies variability: Country: UK 1. Area extend (km2) Offshore Onshore

2. Thickness (gross, m) 2a. Thickness (net, m) 2b. Net/Gross (%) 20 35 27 Andrews, 2014 2c. Net mature shale volume (x 109 m3) 3. Depth (m)

4. Density (g/cm3) 2,55 2,65 2,6 Andrews, 2014 estimated 4b. Oil density (g/cm3) 0,8 0,85 0,825 Andrews, 2014 5. TOC (%) 1,23 1,67 Andrews, 2014 analysed

6. Porosity (%) not known

7. Maturity (%VR) or graptolite equivalent Ro>0.6 Andrews, 2014 analysed

8. Reservoir pressure (psi) USEIA, 2013 hydrostatic assumed

9. Reservoir Temperature (°C) Variable- depth dependant

10. Gas saturation (%)(Sg)

11. Oil Saturation (%) So)

12. Gas generation mgHC/g TOC (Hydrogen index)

13. Kerogen type I with minor II, III Andrews, 2014 analysed

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy)

16. Adsorbed gas storage capacity (scf/ton)

17. Compressibility factor (z)

18. Bg - Gas formation volume factor

19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton) y

Bulk mineral constituents XRD % Source

Average clay content (%) 34 Average quartz-feldspars content (%) 43

Average carbonate content (%) 23 Mineralog

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 121 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

References EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution Source (Ref.list) Comments Monaghan, AA. 2014. The 1079 Carboniferous shales of the Shale Name: Gullane Unit Midland Valley of Scotland: geology and resource estimation. Age: Carboniferous British Geological Survey for Department of Energy and Climate Change, London, UK. Basin: Midland Valley, Scotland

Structural setting: Comples

Facies variability: Country: UK 1. Area extend (km2) Offshore Onshore

2. Thickness (gross, m) 2a. Thickness (net, m) 2b. Net/Gross (%) 2c. Net mature shale volume (x 109 m3) 106 Monaghan, 2014 3. Depth (m) 809 5469 1570 Monaghan, 2014 Median, not mean

4. Density (g/cm3) 2,55 2,65 2,6 Monaghan, 2014 estimated

5. TOC (%) 1 80 2,2 Monaghan, 2014 Mean from Passey method

6. Porosity (%) not known

7. Maturity (%VR) or graptolite equivalent Ro>1.1 Monaghan, 2014

hydrostatic 8. Reservoir pressure (psi) assumed Monaghan, 2014 hydrostatic assumed

Variable- depth 9. Reservoir Temperature (°C) dependant Variable- depth dependant

Estimated, gas filled 10. Gas saturation (%)(Sg) 0,5 10 3 Monaghan, 2014 porosity

11. Oil Saturation (%) So)

12. Gas generation mgHC/g TOC (Hydrogen index) 36 493 264,5 Monaghan, 2014 analysed

13. Kerogen type I, III, minor II Monaghan, 2014 analysed

14. Sorption capacity VReq. - 1,9 % (mmol/g) not known

15. Matrix permeability (nDarcy) not known

16. Adsorbed gas storage capacity (scf/ton) 18 71 44,5 Monaghan, 2014 estimated

17. Compressibility factor (z) not known

Variable- hydrostatic pressure used (depth 18. Bg - Gas formation volume factor Monaghan, 2014 (m)/10.7)

19. Langmuir Pressure (pL, psi) not known

Analogues used from US 20. Langmuir Volume (nL, scf/ton) (Curtis 2002; Jarvie 2012a) not known y

Bulk mineral constituents XRD % Source

Average clay content (%) 59 Average quartz-feldspars content (%) 32

Average carbonate content (%) 9 Mineralog

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 122 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

References EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution Source (Ref.list) Comments 1 . Allanic, C. (2009) Evaluation du potentiel « Gas shales » dans l’est 1080 de la France. Note technique confidentielle BRGM. Shale Name: Permo-carboniferous 2. DELMAS J., HOUEL P. & VIALLY R. (2002). – Paris Basin, Petroleum Age: Westphalian to Autunian potential. – IFP regional report. 3. BRGM (1984) Synthèse géologique du Sud-Est de la France. Basin: Paris Basin, Lorraine, Alsace, South-East Basin Mém. BRGM n°125.

Post-orogenic distensive basins

High lateral variability (fluvio-lacustrine settings) Country: France 1. Area extend (km2) Offshore 00 0

Values for the Alsace- Lorraine Basin only. Other basins are a few 100s km² Onshore 30000 40000 35000

2. Thickness (gross, m) 10 1300 200 2a. Thickness (net, m) 2b. Net/Gross (%)

highly variable according to 3. Depth (m) 300 4500 1000 each basin

4. Density (g/cm3)

highly variable according to each basin, from low (0.02%) in Lorraine Basin, to high (>20%) in Jura 5. TOC (%) 0231

6. Porosity (%)

7. Maturity (%VR) or graptolite equivalent 330 462 440 Tmax values

8. Reservoir pressure (psi)

9. Reservoir Temperature (°C)

10. Gas saturation (%)(Sg)

11. Oil Saturation (%) So)

12. Gas generation mgHC/g TOC (Hydrogen index)

Type III for Carboniferous, 13. Kerogen type I type I for Autunian

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy)

16. Adsorbed gas storage capacity (scf/ton)

17. Compressibility factor (z)

18. Bg - Gas formation volume factor

19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton) y

Bulk mineral constituents XRD % Source

Average clay content (%) Average quartz-feldspars content (%)

Average carbonate content (%) Mineralog

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 123 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

REFERENCE LIST : EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution Source (Ref.list) Comments 1 . Châteauneuf J.J., Farjanel G. (coord) (1989) Synthèse des bassins 1081 permiens français. Mémoire BRGM n°128, 309 p. Shale Name: Autunian shales Marteau P., Bourrat M., Châteauneuf J.J., Clozier L., Farjanel Age: Permian G., Feys, R., Valentin J. (1982) les schistes bitumineux du bassin d’Autun, Etude géologique et Basin: Autun estimation des réserves. BRGM report 82 SGN 484 GEO, 86 p.

Post-orogenic distensive basins

High lateral variability (fluvio-lacustrine settings) Country: France 1. Area extend (km2) Offshore 00 0 Onshore 250

2. Thickness (gross, m) 900 1200 1000 2a. Thickness (net, m) 45 2b. Net/Gross (%) 4,5

Estimation of reserve made 3. Depth (m) 0 <1000 <300 for depth <300 m

4. Density (g/cm3)

5. TOC (%)

6. Porosity (%)

7. Maturity (%VR) or graptolite equivalent

8. Reservoir pressure (psi)

9. Reservoir Temperature (°C)

10. Gas saturation (%)(Sg)

11. Oil Saturation (%) So)

12. Gas generation mgHC/g TOC (Hydrogen index) 50 100 70 Petroleum Potential in kg/t

kerogen type I (algal / 13. Kerogen type I lacustrine OM)

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy)

16. Adsorbed gas storage capacity (scf/ton)

17. Compressibility factor (z)

18. Bg - Gas formation volume factor

19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton) y

Bulk mineral constituents XRD % Source

Average clay content (%) Average quartz-feldspars content (%)

Average carbonate content (%) Mineralog

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 124 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

REFERENCE LIST : EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution Source (Ref.list) Comments 1 . Allanic, C. (2009) Evaluation du potentiel « Gas shales » dans l’est 1082 de la France. Note technique confidentielle BRGM. Shale Name: Promicroceras Shales 2. BRGM (1980) Synthèse géologique du Bassin de Paris. Age: Lotharingian = Sinemurian (Jurassic) Mém. n° 101, 102, 103. 3. DELMAS J., HOUEL P. & VIALLY R. (2002). – Paris Basin, Petroleum Basin: Paris Basin potential. – IFP regional report. 4. Védrine S., Lasseur E. (2011) 3D paleogeography and facies distribution of the Lias deposits in Structural setting : sag basin the Paris Basin, France: Study to evaluate the Shale Oil Potential in the Paris Basin. Confidential report, Facies variability very low RP-59611-FR, 334p. Country: France 5. BRGM (1984) Synthèse 1. Area extend (km2) géologique du Sud-Est de la France. Mém. BRGM n°125. Offshore 00 0 6. Bessereau, G., Guillocheau, F. Onshore 45000 50000 47000 (1994) Sequence stratigraphy and organic matter distribution of the 2. Thickness (gross, m) 05025 3, 4 Lias of the Paris Basin. In: Mascle, 2a. Thickness (net, m) A. (Ed.) Hydrocarbon and 2b. Net/Gross (%) Petroleum Geology of France – EAPG Special Publication 4. 3. Depth (m) Springer, Berlin, 107-119.

4. Density (g/cm3)

5. TOC (%) 0,2 0,9 0,7 6

6. Porosity (%)

7. Maturity (%VR) or graptolite equivalent <430 >450 3 Tmax values

8. Reservoir pressure (psi)

9. Reservoir Temperature (°C)

10. Gas saturation (%)(Sg)

11. Oil Saturation (%) So)

12. Gas generation mgHC/g TOC (Hydrogen index)

kerogen type II (marine 13. Kerogen type II OM)

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy)

16. Adsorbed gas storage capacity (scf/ton)

17. Compressibility factor (z)

18. Bg - Gas formation volume factor

19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton) y

Bulk mineral constituents XRD % Source

Average clay content (%) Average quartz-feldspars content (%)

Average carbonate content (%) Mineralog

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 125 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

REFERENCE LIST : EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution Source (Ref.list) Comments 1 . Allanic, C. (2009) Evaluation du potentiel « Gas shales » dans l’est 1083 de la France. Note technique confidentielle BRGM. Shale Name: Amaltheus Shales 2. BRGM (1980) Synthèse AKA Toarcian shales AKA géologique du Bassin de Paris. "Lias marneux" (marly Mém. n° 101, 102, 103. Age: Domerian= Pliensbachian (Jurassic) Liassic) 3. DELMAS J., HOUEL P. & VIALLY R. (2002). – Paris Basin, Petroleum potential. – IFP regional report. Basin: Paris Basin 4. Védrine S., Lasseur E. (2011) 3D paleogeography and facies distribution of the Lias deposits in the Paris Basin, France: Study to Structural setting : sag basin evaluate the Shale Oil Potential in the Paris Basin. Confidential report, RP-59611-FR, 334p. Facies variability very low 5. BRGM (1984) Synthèse Country: France géologique du Sud-Est de la France. Mém. BRGM n°125. 1. Area extend (km2) 6. Bessereau, G., Guillocheau, F. Offshore 00 0 (1994) Sequence stratigraphy and Onshore 20000 25000 21000 organic matter distribution of the Lias of the Paris Basin. In: Mascle, 2. Thickness (gross, m) 04020 3, 4 A. (Ed.) Hydrocarbon and 2a. Thickness (net, m) Petroleum Geology of France – 2b. Net/Gross (%) EAPG Special Publication 4. Springer, Berlin, 107-119.

3. Depth (m)

4. Density (g/cm3)

5. TOC (%) 24 3 6

6. Porosity (%)

7. Maturity (%VR) or graptolite equivalent <430 >450 3 Tmax values

8. Reservoir pressure (psi)

9. Reservoir Temperature (°C)

10. Gas saturation (%)(Sg)

11. Oil Saturation (%) So)

12. Gas generation mgHC/g TOC (Hydrogen index) 130 3, 6

kerogen type II (marine 13. Kerogen type II OM)

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy)

16. Adsorbed gas storage capacity (scf/ton)

17. Compressibility factor (z)

18. Bg - Gas formation volume factor

19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton) y

Bulk mineral constituents XRD % Source

Average clay content (%) Average quartz-feldspars content (%)

Average carbonate content (%) Mineralog

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 126 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

REFERENCE LIST : EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution Source (Ref.list) Comments 1 . Allanic, C. (2009) Evaluation du potentiel « Gas shales » dans l’est 1084 de la France. Note technique confidentielle BRGM. Shale Name: Schistes Cartons Fm 2. BRGM (1980) Synthèse géologique du Bassin de Paris. AKA Toarcian shales AKA "Lias Mém. n° 101, 102, 103. Age: Toarcian marneux" (marly Liassic) 3. DELMAS J., HOUEL P. & VIALLY R. (2002). – Paris Basin, Petroleum potential. – IFP regional report. Basin: Paris Basin, Jura, South-East 4. Védrine S., Lasseur E. (2011) 3D paleogeography and facies distribution of the Lias deposits in the Paris Basin, France: Study to Structural setting sag & syn-rift evaluate the Shale Oil Potential in the Paris Basin. Confidential report, Facies variability: Lateral continuety high and facies RP-59611-FR, 334p. variability low. 5. BRGM (1984) Synthèse Country: France, Germany géologique du Sud-Est de la France. Mém. BRGM n°125. 1. Area extend (km2) 6. Bessereau, G., Guillocheau, F. Offshore 00 0 (1994) Sequence stratigraphy and Onshore 100000 115000 105000 1-4 organic matter distribution of the Lias of the Paris Basin. In: Mascle, A. (Ed.) Hydrocarbon and Thickness of the Toarcian; in the SE Petroleum Geology of France – (Causses and Languedoc), it ranges EAPG Special Publication 4. 2. Thickness (gross, m) 3 100 40 1, 3 from 14 to 2900 m with a mean 500 m Springer, Berlin, 107-119.

2a. Thickness (net, m) 1 32 13 1 thickness of the Schistes Cartons 2b. Net/Gross (%) 0,333333 0,32 0,325 1

highly dependant on the Basin: from 0 to 1180 m in the Paris Basin, from 300 3. Depth (m) 0 2200 800 1 to 2200 m in the SE Basin

4. Density (g/cm3)

5. TOC (%) 0,5 9,5 4 1 Best values in the Paris Basin

6. Porosity (%)

7. Maturity (%VR) or graptolite equivalent <430 450 440 1 Tmax values

8. Reservoir pressure (psi)

9. Reservoir Temperature (°C)

10. Gas saturation (%)(Sg)

11. Oil Saturation (%) So)

12. Gas generation mgHC/g TOC (Hydrogen index) 500 750 625 3, 6

13. Kerogen type II kerogen type II (marine OM)

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy)

16. Adsorbed gas storage capacity (scf/ton)

17. Compressibility factor (z)

18. Bg - Gas formation volume factor

19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton) y

Bulk mineral constituents XRD % Source

Average clay content (%) Average quartz-feldspars content (%)

Average carbonate content (%) Mineralog

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 127 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

REFERENCE LIST : EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution Source (Ref.list) Comments 1 . BRGM, ELF-Re, ESSO Rep, SNPA (1974) - Géologie du bassin 1085 d’Aquitaine. Atlas de 26 planches 2. Serrano O., Delmas J., Hanot F., Shale Name: Sainte Suzanne Marls Vially R., Herbin JP., Huel P., Tourlière B. (2006) - Le Bassin d’Aquitaine : valorisation des Age: 'Bedoulian' = Aptian (Cretaceous) AKA Deshayesites Marls données sismiques, cartographie structurale et potentiel pétrolier. Ed. BRGM, 245 p., 142 figures, 17 Basin: Aquitaine Basin Forbesi and Fissicostatus zones tableaux, 17 annexes

Structural setting : post-rift series Facies variability: Lateral continuety high and facies variability low. Country: France 1. Area extend (km2) Offshore 00 0 Onshore 2200 4000 2800

2. Thickness (gross, m) 0 1200 600 2a. Thickness (net, m) 2b. Net/Gross (%)

3. Depth (m) 0

4. Density (g/cm3)

5. TOC (%) 121,5

6. Porosity (%)

7. Maturity (%VR) or graptolite equivalent mostly immature

8. Reservoir pressure (psi)

9. Reservoir Temperature (°C)

10. Gas saturation (%)(Sg)

11. Oil Saturation (%) So)

12. Gas generation mgHC/g TOC (Hydrogen index)

13. Kerogen type II kerogen type II (marine OM)

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy)

16. Adsorbed gas storage capacity (scf/ton)

17. Compressibility factor (z)

18. Bg - Gas formation volume factor

19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton) y

Bulk mineral constituents XRD % Source

Average clay content (%) Average quartz-feldspars content (%)

Average carbonate content (%) Mineralog

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 128 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution Source (Ref.list) Comments References

1086 1. Hartley, A. J. and Otava, J., 2001, Sediment Shale Name: Myslejovice Fm. (Culm) 1, 3 provenance and dispersal in a deep marine foreland basin: the Lower Carboniferous Culm basin, Czech Age: Lower Carboniferous - Viséan 1 Republic, J. Geol. Soc., 158, 137–150.

2. Francu, E., 2000: Optical properties of organic Basin: Culm Basin, Eastern Bohemian Massif 1 matter in Devonian and Lower Carboniferous black shales in the northern Drahany Upland, Structural setting: Variscan syntectonic foreland basin - Bull. of Czech Geol. Soc., 75, 2, 115–120. compressional setting during and shortly after deposition 1, 3 3. Francu E., Francu J., Kalvoda J., Poelchau H.S., Otava J., 2002. Burial and uplift history of the Facies variability: moderate to low 1, 3 Palaeozoic Flysch in the Variscan foreland basin (SE Country: Czech Republic Bohemian Massif, Czech Republic) In: Bertotti G., Schulmann K., Cloetingh S., eds.: Continental 1. Area extend (km2) collision and the tectono-sedimentary evolution of Offshore forelands. European Geophysical Society - Stephan Uncertainty below the Carpathians Mueller Special Publication Series, Vol. 1, European Onshore 800 1000 900 Triangular 1 (North) Geosciences Union Stephan Mueller Special Publication Series, 1, 167–179. 2. Thickness (gross, m) 100 1250 675 Triangular 1, 9 2a. Thickness (net, m) 30 250 140 Triangular 4. Myslil V., Burda J., Franců J., Stibitz M. (2002) Czech 2b. Net/Gross (%) 30 20 25 Triangular Republic. In: Hurter S. and Haenel R., eds., Atlas of Geothermal Resources in Europe. EUR, Luxembourg, 3. Depth (m) 2100 7000 4550 Triangular 1, 3 Belgium, 17811, 26-27, 77-78 and Plates 13 and 14 (8 p.) ISSN 1018-5593 ISBN 92-828-0999-4.

internal CGS 5. Franců E., Franců J., Kalvoda J. (1999) Illite 4. Density (g/cm3) 2,38 2,68 2,53 Triangular database crystallinity and vitirnite reflectance in Paleozoic siliciclastics in the SE Bohemian Massif as evidence of 5. TOC (%) 0,59 11,33 1,72 Log normal 2, 3, 4, 5, 6, 7, 8, 9 thermal history. Geologica Carpathica, 50, 5, 365-672, ISSN 1335-0552. internal CGS this value does not include 6. Francu, E., Francu, J., Martinec, P., Krejčí, O. (2002): 6. Porosity (%) 0,05 13 6 Log normal database microporosity Coal rank and pyrolitic characteristics in the boreholes in the Upper Silesian Basin. In -: Documenta Geonica, Below the Carpathians and Carpathian The 5th Czech and Polish Conference Geology of the 7. Maturity (%VR) 0,6 2,2 1,4 Triangular 2, 3, 4, 5, 6, 7, 8, 9 Foredeep Upper Silesian Basin, s. 65-68. – Ústav geoniky AV ČR. Variscan fold-and-thrust belt West off Ostrava. ISBN 80-7275-024-0. 2,2 3,9 3,05 Triangular the Carpathians internal database expected normal hydrostatic pressure 7. Weniger, P., Francu, J., Krooss B.M., Buzek F., 8. Reservoir pressure (psi) 4409 10287 7348 Triangular CGS (limited data) Hemza P., Littke R. (2012) Geochemical and stable carbon isotopic composition of coal-related gases depends very much on the heat flow from the SW Upper Silesian Coal Basin, Czech variability and also on the thermal Republic. Organic Geochemistry, 53, 153-165 (IF 2,79) 9. Reservoir Temperature (°C) 80 210 145 Log normal 4, int. Database conductivity of the overburden rocks

8. Albrycht, I., Bigaj, W., Dvorakova, V., Francu, J., 10. Gas saturation (%)(Sg) 10 20 15 Log normal 7 estimated based on analogy Garpiel, R., Osicka, J., Mathews, A., Sikora, A., Sikorski, M., Smith, K. C., Tarnawski, M. and Wagner, 11. Oil Saturation (%) So) no data available A. (2014): The development of the shale gas sector HI values are lower due to higher in Poland and its prospects in the Czech Republic - 12. Gas generation mgHC/g TOC (Hydrogen index) 150 350 225 3, 9 thermal maturity analysis and recommendations. The Kosciuszko Institute, 96 p. 13. Kerogen type III - II 2. 3, 4, 5, 6, 7, 8 mixed 9. Gerslova, E., Goldbach, M., Gersl, M. and Skupien, P., 2016, Heat flow evolution, subsidence and erosion in 14. Sorption capacity VReq. - 1,9 % (mmol/g) no data available Upper Silesian Coal Basin, Czech Republic. International Journal of Coal Geology, 2016, roč. 154-155, č. 1, s. 30- 15. Matrix permeability (nDarcy) no data available 42. ISSN 0166-5162.

16. Adsorbed gas storage capacity (scf/ton) no data available

17. Compressibility factor (z) no data available

18. Bg - Gas formation volume factor no data available

19. Langmuir Pressure (pL, psi) no data available

20. Langmuir Volume (nL, scf/ton) no data available

Bulk mineral constituents XRD % Source

Average clay content (%) Average quartz-feldspars content (%)

Average carbonate content (%) Mineralogy

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 129 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution Source (Ref.list) Comments References

1) McWhorter, S., Torguson,W., Shale Name: two organic-rich marls, the Polvoeira McWhoter, R., 2014. Member of the Água de Madeiros Formation and the 1087 Characterization of the Lias of the Vale das Fontes Formation, separated by a limestone Lusitanian Basin, Portugal, as an interval of varying thickness. Unconventional Resource Play. AAPG 2014 Annual Convention Age: Lower Jurassic (lias) and Exhibition, Houston, Texas, oil and gas shows in old wells April 6-9, 2014, AAPG 2014. throughout the basin, oil seeps at the surface, and live oil in shallow Lias cores verify a viable resource interval. Basin: Lusitanian Basin Structural setting:

Facies variability Country: Pt 1. Area extend (km2) Offshore Onshore

2. Thickness (gross, m) 2a. Thickness (net, m) 2b. Net/Gross (%)

3. Depth (m) 1000 3500 2250 triangular

4. Density (g/cm3)

5. TOC (%) 2,3 5,9 4,1 triangular

6. Porosity (%) 0,2 19,8 10 triangular 1

7. Maturity (%VR) or graptolite equivalent 0,5 1,8 1,15 triangular

8. Reservoir pressure (psi)

9. Reservoir Temperature (°C)

10. Gas saturation (%)(Sg)

11. Oil Saturation (%) So)

12. Gas generation mgHC/g TOC (Hydrogen index)

13. Kerogen type II

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy)

16. Adsorbed gas storage capacity (scf/ton)

17. Compressibility factor (z)

18. Bg - Gas formation volume factor

19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton) y

Bulk mineral constituents XRD % Source

Average clay content (%) Average quartz-feldspars content (%) 63.8 to 83.7

Average carbonate content (%) Mineralog

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 130 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS.

Overview of shale layers characteristics in Europe

Appendix C Shale layer characteristics for reference shales

Delivery T6b. Appendix Volume A-D February 2017 131 Appendix C Shale layer characteristics for reference shales Overview of shale layers characteristics in Europe

Critical Parameter (Screening criteria) Source (Ref. REFERENCE LIST : 2001 Min Max Mean Distribution list) Comments 1 . Pool, W., Geluk, M., Abels, J., Tiley, G., 2012, Assessment of an 2001 (summarises shale unusual European Shale Gas Shale Name: Alum Shale Formation 1015, 1016, 1019) play—The Cambro-Ordovician Age: M. Cambrian-L Ordovician Alum Shale, southern Sweden: Proceedings of the Society of Petroleum Engineers/European Basin: Norwegian-Danish basin Association of Geoscientists and (Center and rim of N. Permian basin) Engineers Unconventional Resources Conference, Vienna, Countries: DK, S, N Austria, March 20–22, 2012, Facies variability: Lateral continuety 152339. high and facies variability low. 2. EIA/ARI World Shale Gas and 1. Area extend (km2) Shale Oil Resource Assessment, Offshore From Euoga map analysis Technically Recoverable Shale Oil Onshore and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries Shallow marine shelf environment Outside the United States with a structural complicated http://www.eia.gov/analysis/stud 2. Thickness (gross, m) 30 180 80 Triangular 9 history ies/worldshalegas/pdf/fullreport. 2a. Thickness (net, m) 30 180 80 Triangular 9 pdf 2b. Net/Gross (%) 90 100 95 3. H.-M. Schulz, M. Krüger, N. Straaten, A. Bechtel, R. Wirth, S. Biermann, E. T. Arning, W. van Uncertain overpressure status of Berk, N. H. Schovsbo, S. Crabtree, 3. Depth (m) 1500 7000 4250 Triangular 6 Alum with geological history risk` BGR Hannover, GEUS, Gripen Gas, Sweden Biogenic gas in the 4. Density (g/cm3) 2,3 2,5 2,45 Triangular 10 Brittle lithology Cambrian-Ordovician Alum Shale (Denmark and Sweden), April Porosity increases with TOC - Alum 2013 4. Gautier, D.L., Charpentier, R.R., Shale (Schovsbo) TOC loss with Gaswirth, S.B., Klett, T.R., Pitman, maturity - Immature TOC - 8-12% J.K., Schenk, C.J., Tennyson, M.E., (H/C high), Dry gas TOC - 6-8% (H/C and Whidden, K.J., 2013, 5. TOC (%) 2 17 9 Triangular 5, 3 low). Undiscovered Gas Resources in the Alum Shale, Denmark, 2013: 6. Porosity (%) 3 12 6 Triangular 7 U.S. Geological Survey Fact Sheet 2013–3103, 4 p., 7. Maturity (%VR) or Vitrnite Vitrinite-like particles calibrated to http://dx.doi.org/10.3133/fs2013 equivalent (for graptolite) 1,2 3 2 Triangular 7, 8 H/C index - graptolite %Ro 3103 5. Matus Gasparik, Pieter Bertier, Yves Gensterblum, Amin Mean Pressure gradient (Baltic Ghanizadeh, Bernhard M. Krooss, region) 0.453 psi/ft, but Alum is Ralf Littke, Geological controls on the methane storage capacity in 8. Reservoir pressure (psi) 2945 8300 7106 2, 7 over pressured 0.510 psi/ft. organic-rich shales - April 2013 6. Schovsbo, N.H., Nielsen, A.T., Mean Geothermal gradient in Gautier, D.L., 2014. The Lower 9. Reservoir Temperature (°C) 64 202 135 2 Denmark 26 °C / km Palaeozoic shale gas play in Denmark. Geological Survey of Both adsorbed and free gas in the Denmark and Greenland Bulletin 10. Gas saturation (%)(Sg) 15 80 50 1 pore system 31, 19–22. 7. A., Gasparik, M., Amann- 11. Oil saturation (%)(So) 0,00 0,00 0,00 2, 4 Hildenbrand, A., Gensterblum, Y., Krooss, B.M., Experimental study Immature Alum is H rich (Sweden) of fluid transport processes in the to 500 mgHC/g TOC; Bornholm`s matrix system of the European organic-rich shales: I. 12. Gas generation mgHC/g TOC overmature section is 10 times Scandinavian Alum Shale, Marine (Hydrogen index) 02010 3lower (50 mg HC/g TOC) and Petroleum Geology (2013), doi: 13. Kerogen type I , II 8 Oil precursor for gas 10.1016/j.marpetgeo.2013.10.01 3. Furongian unit of Alum with high 8. Schovsbo, N.H., Nielsen, A.T., TOC is expected to have high gas Gautier, D.L., 2014. The Lower 14. Sorption capacity VReq. (mmol/g) 0,12 0,31 0,2 5 volume Palaeozoic shale gas play in Denmark. Geological Survey of 15. Matrix permeability (nDarcy) 74540 7- Denmark and Greenland Bulletin 31, 19–22. 16. Adsorbed gas storage capacity Average canister gas content - 30 9. Buchardt, B., Nielsen, A.T., (scf/ton) 30 75 50 1 scf/ton - 20% free gas Schovsbo, N.H., 1997. Alun Skiferen i Skandinavien. Geologisk Tidsskrift 3, 1-30. 17. Compressibility factor (z) 0,76 1,1 1,01 10. Average solid shale density - http://www.aqua- PV = ZnRT - Calculating deviation calc.com/page/density- factor (Ideal Gas) Bg = 0.2829zT/P table/substance/shale-coma-and- 18. Bg - Gas formation volume factor 0,009 0,018 0,0133 2 & 11 - FVF calculation blank-solid 11. EIA and online-calculating Rate of adsorbed gas on the method for Bg - 3 factors for organics in the shale matrix different reservoir temperatures releasing as function of decrease of and pressures 19. Langmuir Pressure (pL, psi) 432 700 435 5 P http://petrowiki.org/Calculating_ gas_properties#.UzRf-s70fm5

Langmuir volume is a function of organic richness and thermal 20. Langmuir Volume (nL, scf/ton) 20 63 36 5 maturity of shale gas Compiled from critical parameter sheet 1015, 1016, 1019 Mineral *Not Mean - Gasparik et al., 2013 Bulk mineral constituents XRD % Source ogy (actual value for mean resources)

Average clay content (%) 40 Average quartz-feldspars content (%) 30 Average carbonate content (%) 8

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 132 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix C Shale layer characteristics for reference shales Overview of shale layers characteristics in Europe

EUOGA Critical Parameter (Screening References criteria) Min Max Mean Distribution Source (Ref.list) Comments 1. Jarvie, D.M., 2012. 2002 Shale resource Shale Name: Marcellus systems for oil and gas: Part 1—Shale- gas resource systems. Age: Devonian AAPG Memoir 97, 69–87. Basin: Appalachian

Structural setting:

Facies variability: Country: North America 1. Area extend (km2) 246049 Offshore Onshore 246049

2. Thickness (gross, m) 58 2a. Thickness (net, m) 46 2b. Net/Gross (%) 79

3. Depth (m) 3810

4. Density (g/cm3)

5. TOC (%) 2 13 4,0

6. Porosity (%) 4 12 6,2

7. Maturity (%VR) or graptolite equivalent 1,50

8. Reservoir pressure (psi) 0.61 psi/ft

9. Reservoir Temperature (°C)

10. Gas saturation (%)(Sg) 55

11. Oil Saturation (%) So) 1

12. Gas generation mgHC/g TOC (Hydrogen index) 0 70 20

13. Kerogen type II

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy) 20

16. Adsorbed gas storage capacity (scf/ton)

17. Compressibility factor (z)

18. Bg - Gas formation volume factor

19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton)

Sourc Bulk mineral constituents XRD % e

Average clay content (%) 36 38 Average quartz-feldspars content (%) Mineralogy Average carbonate content (%) 26

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 133 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix C Shale layer characteristics for reference shales Overview of shale layers characteristics in Europe

EUOGA Critical Parameter (Screening References criteria) Min Max Mean Distribution Source (Ref.list) Comments Jarvie, D.M., 2012. Shale resource 2003 systems for oil and Shale Name: Haynesville gas: Part 1—Shale- gas resource systems. AAPG Memoir 97, Age: Late Jurrassic 69–87.

Basin: East Texas - North Louisiana

Structural setting:

Facies variability: Country: North Louisiana 1. Area extend (km2) 23310 Offshore Onshore 23310

2. Thickness (gross, m) 79 2a. Thickness (net, m) 79 2b. Net/Gross (%) 100

3. Depth (m) 3658

4. Density (g/cm3)

5. TOC (%) 0,5 4 3,0

6. Porosity (%) 4 14 8,3

7. Maturity (%VR) or graptolite equivalent 1,2 2,4 1,50

8. Reservoir pressure (psi) 0,8 psi/ft

9. Reservoir Temperature (°C)

10. Gas saturation (%)(Sg) 75

11. Oil Saturation (%) So) 1

12. Gas generation mgHC/g TOC (Hydrogen index) 14

13. Kerogen type II

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy) 0 5000 350

16. Adsorbed gas storage capacity (scf/ton)

17. Compressibility factor (z)

18. Bg - Gas formation volume factor

19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton)

Sourc Bulk mineral constituents XRD % e

Average clay content (%) 38 38 Average quartz-feldspars content (%) Mineralogy Average carbonate content (%) 25

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 134 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix C Shale layer characteristics for reference shales Overview of shale layers characteristics in Europe

EUOGA Critical Parameter (Screening References criteria) Min Max Mean Distribution Source (Ref.list) Comments Jarvie, D.M., 2012. Shale resource 2004 systems for oil and Shale Name: Bossier gas: Part 1—Shale- gas resource systems. AAPG Memoir 97, Age: Late Jurrassic 69–87.

Basin: East Texas - North Louisiana

Structural setting: Salt Basin

Facies variability: Country: North Louisiana 1. Area extend (km2) 23310 Offshore Onshore 23310

2. Thickness (gross, m) 85 2a. Thickness (net, m) 75 2b. Net/Gross (%) 88

3. Depth (m) 3551

4. Density (g/cm3)

5. TOC (%) 0,5 4,2 1,6

6. Porosity (%) 7,5

7. Maturity (%VR) or graptolite equivalent 1,1 2,4 1,50

8. Reservoir pressure (psi) 0.78 psi/ft

9. Reservoir Temperature (°C)

10. Gas saturation (%)(Sg) 45

11. Oil Saturation (%) So)

12. Gas generation mgHC/g TOC (Hydrogen index) 15

13. Kerogen type II

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy) 0 100 10

16. Adsorbed gas storage capacity (scf/ton)

17. Compressibility factor (z)

18. Bg - Gas formation volume factor

19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton)

Sourc Bulk mineral constituents XRD % e

Average clay content (%) 51 32 Average quartz-feldspars content (%) Mineralogy Average carbonate content (%) 18

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 135 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix C Shale layer characteristics for reference shales Overview of shale layers characteristics in Europe

EUOGA Critical Parameter (Screening References criteria) Min Max Mean Distribution Source (Ref.list) Comments Jarvie, D.M., 2012. Shale resource 2005 systems for oil and Shale Name: Barnett gas: Part 1—Shale- gas resource systems. AAPG Memoir 97, Age: Missisipian 69–87.

Basin: Forth Worth

Structural setting:

Facies variability: Country: Fort Worth, Texas 1. Area extend (km2) 12950 Offshore Onshore 12950

2. Thickness (gross, m) 244 2a. Thickness (net, m) 91 2b. Net/Gross (%) 38

3. Depth (m) 2286

4. Density (g/cm3)

5. TOC (%) 3 12 3,7

6. Porosity (%) 4 6 5,0

7. Maturity (%VR) or graptolite equivalent 1,60

8. Reservoir pressure (psi) 0.48 psi/ft

9. Reservoir Temperature (°C)

10. Gas saturation (%)(Sg) 45

11. Oil Saturation (%) So) 10

12. Gas generation mgHC/g TOC (Hydrogen index) 45

13. Kerogen type II

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy) 0 100 50

16. Adsorbed gas storage capacity (scf/ton)

17. Compressibility factor (z)

18. Bg - Gas formation volume factor

19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton)

Sourc Bulk mineral constituents XRD % e

Average clay content (%) 29 53 Average quartz-feldspars content (%) Mineralogy Average carbonate content (%) 18

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 136 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix C Shale layer characteristics for reference shales Overview of shale layers characteristics in Europe

EUOGA Critical Parameter (Screening References criteria) Min Max Mean Distribution Source (Ref.list) Comments Jarvie, D.M., 2012. Shale resource 2006 systems for oil and Shale Name: Fayetteville gas: Part 1—Shale- gas resource systems. AAPG Memoir 97, Age: Missisipian 69–87.

Basin: Arkoma

Structural setting: Facies variability:

Country: Arkansas, North America 1. Area extend (km2) 23310 Offshore Onshore 23310

2. Thickness (gross, m) 55 2a. Thickness (net, m) 41 2b. Net/Gross (%) 75

3. Depth (m) 1737

4. Density (g/cm3)

5. TOC (%) 2 10 3,8

6. Porosity (%) 2 8 6,0

7. Maturity (%VR) or graptolite equivalent 2 4,5 2,50

8. Reservoir pressure (psi) 0,44 psi/ft

9. Reservoir Temperature (°C)

10. Gas saturation (%)(Sg) 50 70 60

11. Oil Saturation (%) So) 0 1 1

12. Gas generation mgHC/g TOC (Hydrogen index) 15

13. Kerogen type II

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy) 50

16. Adsorbed gas storage capacity (scf/ton)

17. Compressibility factor (z)

18. Bg - Gas formation volume factor

19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton)

Sourc Bulk mineral constituents XRD % e

Average clay content (%) 45

Average quartz-feldspars content (%) 41 Mineralogy Average carbonate content (%) 14

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 137 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix C Shale layer characteristics for reference shales Overview of shale layers characteristics in Europe

EUOGA Critical Parameter (Screening References criteria) Min Max Mean Distribution Source (Ref.list) Comments Jarvie, D.M., 2012. Shale resource 2007 systems for oil and Shale Name: Muskwa gas: Part 1—Shale- gas resource systems. AAPG Memoir 97, Age: Devonian 69–87.

Basin: Horn River

Structural setting: Facies variability:

Country: British Columbian, Canada 1. Area extend (km2) 38850 Offshore Onshore 38850

2. Thickness (gross, m) 128 2a. Thickness (net, m) 122 2b. Net/Gross (%) 95

3. Depth (m) 2438

4. Density (g/cm3)

5. TOC (%) 1 10 2,2

6. Porosity (%) 1 9 4,0

7. Maturity (%VR) or graptolite equivalent 1,4 2,2 2,00

8. Reservoir pressure (psi)

9. Reservoir Temperature (°C)

10. Gas saturation (%)(Sg) 80

11. Oil Saturation (%) So) 0 1 1

12. Gas generation mgHC/g TOC (Hydrogen index) 10

13. Kerogen type II

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy) 20

16. Adsorbed gas storage capacity (scf/ton)

17. Compressibility factor (z)

18. Bg - Gas formation volume factor

19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton)

Sourc Bulk mineral constituents XRD % e

Average clay content (%) 22

Average quartz-feldspars content (%) 67 Mineralogy Average carbonate content (%) 11

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 138 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix C Shale layer characteristics for reference shales Overview of shale layers characteristics in Europe

EUOGA Critical Parameter (Screening References criteria) Min Max Mean Distribution Source (Ref.list) Comments Jarvie, D.M., 2012. Shale resource 2008 systems for oil and Shale Name: Woodford gas: Part 1—Shale- gas resource systems. AAPG Memoir 97, Age: Devonian 69–87.

Basin: Arkoma

Structural setting:

Facies variability:

Country: Oklahoma, North America 1. Area extend (km2) 28490 Offshore Onshore 28490

2. Thickness (gross, m) 152 2a. Thickness (net, m) 50 2b. Net/Gross (%) 33

3. Depth (m) 2896

4. Density (g/cm3)

5. TOC (%) 3 12 5,3

6. Porosity (%) 3 9 5,0

7. Maturity (%VR) or graptolite equivalent 0,7 4 1,50

8. Reservoir pressure (psi) 0.52 psi/ft

9. Reservoir Temperature (°C)

10. Gas saturation (%)(Sg) 40

11. Oil Saturation (%) So) 5

12. Gas generation mgHC/g TOC (Hydrogen index) 60

13. Kerogen type II

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy) 0 700 25

16. Adsorbed gas storage capacity (scf/ton)

17. Compressibility factor (z)

18. Bg - Gas formation volume factor

19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton)

Sourc Bulk mineral constituents XRD % e

Average clay content (%) 25

Average quartz-feldspars content (%) 69 Mineralogy Average carbonate content (%) 6

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 139 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix C Shale layer characteristics for reference shales Overview of shale layers characteristics in Europe

EUOGA Critical Parameter (Screening References criteria) Min Max Mean Distribution Source (Ref.list) Comments Jarvie, D.M., 2012. Shale resource 2009 systems for oil and Shale Name: Eagle Ford gas: Part 1—Shale- gas resource systems. AAPG Memoir 97, Age: Cretaceous 69–87.

Basin: Eagle Ford

Structural setting:

Facies variability: Country: Texas, North America 1. Area extend (km2) 19424 Offshore Onshore 19424

2. Thickness (gross, m) 70 2a. Thickness (net, m) 69 2b. Net/Gross (%) 98

3. Depth (m) 2134

4. Density (g/cm3)

5. TOC (%) 2 8,5 2,8

6. Porosity (%) 6 14 10,0

7. Maturity (%VR) or graptolite equivalent 0,8 1,6 1,20

8. Reservoir pressure (psi) 0,49 psi/ft

9. Reservoir Temperature (°C)

10. Gas saturation (%)(Sg) 75

11. Oil Saturation (%) So) 15

12. Gas generation mgHC/g TOC (Hydrogen index) 80

13. Kerogen type II

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy) 700 3000 1000

16. Adsorbed gas storage capacity (scf/ton)

17. Compressibility factor (z)

18. Bg - Gas formation volume factor

19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton)

Sourc Bulk mineral constituents XRD % e

Average clay content (%) 17 17 Average quartz-feldspars content (%) Mineralogy Average carbonate content (%) 67

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 140 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix C Shale layer characteristics for reference shales Overview of shale layers characteristics in Europe

EUOGA Critical Parameter (Screening References criteria) Min Max Mean Distribution Source (Ref.list) Comments Jarvie, D.M., 2012. Shale resource 2010 systems for oil and Shale Name: Utica gas: Part 1—Shale- gas resource systems. AAPG Memoir 97, Age: Ordovician 69–87.

Basin: St Lawrence

Structural setting: Facies variability:

Country: Quebec, North America 1. Area extend (km2) 6475 Offshore Onshore 6475

2. Thickness (gross, m) 229 2a. Thickness (net, m) 152 2b. Net/Gross (%) 67

3. Depth (m) 1311

4. Density (g/cm3)

5. TOC (%) 0,8 5 1,3

6. Porosity (%)

7. Maturity (%VR) or graptolite equivalent 0,8 3 2,00

8. Reservoir pressure (psi) 0,52 psi/ft

9. Reservoir Temperature (°C)

10. Gas saturation (%)(Sg) 60

11. Oil Saturation (%) So) 5

12. Gas generation mgHC/g TOC (Hydrogen index) 27

13. Kerogen type II

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy) 0 50 10

16. Adsorbed gas storage capacity (scf/ton)

17. Compressibility factor (z)

18. Bg - Gas formation volume factor

19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton)

Sourc Bulk mineral constituents XRD % e

Average clay content (%) 27 41 Average quartz-feldspars content (%) Mineralogy Average carbonate content (%) 32

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 141 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix C Shale layer characteristics for reference shales Overview of shale layers characteristics in Europe

EUOGA Critical Parameter (Screening References criteria) Min Max Mean Distribution Source (Ref.list) Comments Jarvie, D.M., 2012. Shale resource 2011 systems for oil and Shale Name: Montney gas: Part 1—Shale- gas resource systems. AAPG Memoir 97, Age: Triassic 69–87.

Basin: Western Canada

Structural setting:

Facies variability: Country: British Columbia, Alberta. North America 1. Area extend (km2) 64750 Offshore Onshore 64750

2. Thickness (gross, m) 366 2a. Thickness (net, m) 107 2b. Net/Gross (%) 29

3. Depth (m) 1829

4. Density (g/cm3)

5. TOC (%) 0,2 11 2,0

6. Porosity (%) 4 6 5,0

7. Maturity (%VR) or graptolite equivalent 0,9 2,5 1,60

8. Reservoir pressure (psi) 0,45 psi/ft

9. Reservoir Temperature (°C)

10. Gas saturation (%)(Sg) 90

11. Oil Saturation (%) So) 1

12. Gas generation mgHC/g TOC (Hydrogen index) 17

13. Kerogen type II

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy) 30

16. Adsorbed gas storage capacity (scf/ton)

17. Compressibility factor (z)

18. Bg - Gas formation volume factor

19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton)

Sourc Bulk mineral constituents XRD % e

Average clay content (%) 18 47 Average quartz-feldspars content (%) Mineralogy Average carbonate content (%) 35

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 142 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix C Shale layer characteristics for reference shales Overview of shale layers characteristics in Europe

EUOGA Critical Parameter (Screening References criteria) Min Max Mean Distribution Source (Ref.list) Comments 1. Ladage, S. and others, 2016. 2012 Schieferöl und Shale Name: Posidonia Schiefergas in Deutschland - Potenziale und Age: L- Jurassic Umweltaspekte. Bundesanslt für Basin: Niedersachen, N. Germany, Rhine Geowissenschaften Graben und Rohstoffe (BGR) Fachbereich B1.3. 231 p. Structural setting:

Facies variability: Country: Germany 1. Area extend (km2) Offshore Onshore

2. Thickness (gross, m) 2a. Thickness (net, m) 20 100 60 1 2b. Net/Gross (%)

3. Depth (m)

4. Density (g/cm3) 2,40 1

5. TOC (%) 1 16,2 4,3 1

6. Porosity (%) 11,8 1

7. Maturity (%VR) or graptolite equivalent 1,17 1

8. Reservoir pressure (psi)

9. Reservoir Temperature (°C)

10. Gas saturation (%)(Sg)

11. Oil Saturation (%) So)

12. Gas generation mgHC/g TOC (Hydrogen index) 179 1

13. Kerogen type II 1

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy)

16. Adsorbed gas storage capacity (scf/ton)

17. Compressibility factor (z)

18. Bg - Gas formation volume factor

19. Langmuir Pressure (pL, psi) 1290 1 8.9 Mpa

20. Langmuir Volume (nL, scf/ton) 169,5 1 4.8 m3/t

Sourc Bulk mineral constituents XRD % e

Average clay content (%) 53 19 Average quartz-feldspars content (%) Mineralogy Average carbonate content (%) 28

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 143 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix C Shale layer characteristics for reference shales Overview of shale layers characteristics in Europe

EUOGA Critical Parameter (Screening References criteria) Min Max Mean Distribution Source (Ref.list) Comments 1. Ladage, S. and others, 2016. 2013 Schieferöl und Shale Name: Alaunschifer, Kulm Faceis Schiefergas in Deutschland - Potenziale und Age: L- Carboniferous Umweltaspekte. Bundesanslt für Geowissenschaften Basin: Germany und Rohstoffe (BGR) Fachbereich B1.3. 231 p. Structural setting:

Facies variability: Country: Germany 1. Area extend (km2) Offshore Onshore

2. Thickness (gross, m) 2a. Thickness (net, m) 20 500 260 1 2b. Net/Gross (%)

3. Depth (m)

4. Density (g/cm3) 2,70 1

5. TOC (%) 1,3 5,2 3,0 1

6. Porosity (%) 10,1 1

7. Maturity (%VR) or graptolite equivalent 2,21 1 Tmax 475 1 8. Reservoir pressure (psi)

9. Reservoir Temperature (°C)

10. Gas saturation (%)(Sg)

11. Oil Saturation (%) So)

12. Gas generation mgHC/g TOC (Hydrogen index) 58 1

13. Kerogen type

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy)

16. Adsorbed gas storage capacity (scf/ton)

17. Compressibility factor (z)

18. Bg - Gas formation volume factor

19. Langmuir Pressure (pL, psi) 3916 1 2.7 Mpa

20. Langmuir Volume (nL, scf/ton) 98 1 2.8 m3/t

Sourc Bulk mineral constituents XRD % e

Average clay content (%) 33 46 Average quartz-feldspars content (%) Mineralogy Average carbonate content (%) 21

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 144 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix C Shale layer characteristics for reference shales Overview of shale layers characteristics in Europe

References EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution Source (Ref.list) Comments Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2014 2017. Overview of relevant shale Shale Name: Mean EUOGA shale layers characteristics in Europe - Delivery T6b of the EUOGA study Age: (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET. Basin:

Structural setting:

Facies variability: Country: 1. Area extend (km2) 39 20792 6490 Offshore 0 11813 3561 Onshore 39 8979 8226

2. Thickness (gross, m) 30 650 461 2a. Thickness (net, m) 8 650 143 2b. Net/Gross (%) 8,5 100 47

3. Depth (m) 465 5500 2372

4. Density (g/cm3) 2,15 2,65 2,45

5. TOC (%) 0,95 20 3,40

6. Porosity (%) 4,2 11,8 4,69

7. Maturity (%VR) or graptolite equivalent 0,6 1,2 1,34

8. Reservoir pressure (psi) 4786,1 13900 4093

9. Reservoir Temperature (°C) 78 150 94

10. Gas saturation (%)(Sg) 23 50 28

11. Oil Saturation (%) So) 13,94

12. Gas generation mgHC/g TOC (Hydrogen index) 6,19 570 246

13. Kerogen type II

14. Sorption capacity VReq. - 1,9 % (mmol/g) 0,18

15. Matrix permeability (nDarcy) 5,1 5 89

16. Adsorbed gas storage capacity (scf/ton) 81 81 47

17. Compressibility factor (z) 0,98

18. Bg - Gas formation volume factor 0,020 0,0195 0,0112

19. Langmuir Pressure (pL, psi) 1290 1290 1230

20. Langmuir Volume (nL, scf/ton) 169,5 170 69

Bulk mineral constituents XRD % Source

Average clay content (%) 47 Average quartz-feldspars content (%) 32

Average carbonate content (%) 21 Mineralogy

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 145 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix C Shale layer characteristics for reference shales Overview of shale layers characteristics in Europe

References EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution Source (Ref.list) Comments Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2015 2017. Overview of relevant shale Shale Name: Mean N. American shale layers characteristics in Europe - Delivery T6b of the EUOGA study Age: (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET. Basin:

Structural setting:

Facies variability: Country: 1. Area extend (km2) Offshore Onshore 6475 246049 48692

2. Thickness (gross, m) 55 366 147 2a. Thickness (net, m) 41 152 83 2b. Net/Gross (%) 29 100 70

3. Depth (m) 1311 3810 2565

4. Density (g/cm3)

5. TOC (%) 1,33 5,34 2,97

6. Porosity (%) 4106,33

7. Maturity (%VR) or graptolite equivalent 1,2 2,5 1,69

8. Reservoir pressure (psi)

9. Reservoir Temperature (°C)

10. Gas saturation (%)(Sg) 40 90 63

11. Oil Saturation (%) So) 0,5 15 3,90

12. Gas generation mgHC/g TOC (Hydrogen index) 10 80 30

13. Kerogen type II

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy) 10 1000 157

16. Adsorbed gas storage capacity (scf/ton)

17. Compressibility factor (z)

18. Bg - Gas formation volume factor

19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton)

Bulk mineral constituents XRD % Source

Average clay content (%) 31 Average quartz-feldspars content (%) 44

Average carbonate content (%) 25 Mineralogy

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 146 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix C Shale layer characteristics for reference shales Overview of shale layers characteristics in Europe

References EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution Source (Ref.list) Comments Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2016 2017. Overview of relevant shale Shale Name: Mean Lower Palaeozoic shale layers characteristics in Europe - Delivery T6b of the EUOGA study Age: (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET. Basin:

Structural setting:

Facies variability: Country: 1. Area extend (km2) 500 30669 9773 Offshore 0 15902 4668 Onshore 106 30669 7439

2. Thickness (gross, m) 20 2296 353 2a. Thickness (net, m) 16 1503,5 192 2b. Net/Gross (%) 23 100 68

3. Depth (m) 30 4430 2195

4. Density (g/cm3) 2,15 2,7 2,51

5. TOC (%) 1,115 11 4,67

6. Porosity (%) 2 7 4,79

7. Maturity (%VR) or graptolite equivalent 0,5 3 1,71

8. Reservoir pressure (psi) 435 7106 3926

9. Reservoir Temperature (°C) 15 135 74

10. Gas saturation (%)(Sg) 20,6 67 56

11. Oil Saturation (%) So) 0 6 4,59

12. Gas generation mgHC/g TOC (Hydrogen index) 55 513 255

13. Kerogen type II

14. Sorption capacity VReq. - 1,9 % (mmol/g) 0,2 0,2 0,20

15. Matrix permeability (nDarcy) 40 100 70

16. Adsorbed gas storage capacity (scf/ton) 44 50 45

17. Compressibility factor (z) 1 1,01 1,00

18. Bg - Gas formation volume factor 0,003 0,0133 0,0061

19. Langmuir Pressure (pL, psi) 435 435 435

20. Langmuir Volume (nL, scf/ton) 36 36 36

Bulk mineral constituents XRD % Source

Average clay content (%) 53 Average quartz-feldspars content (%) 39

Average carbonate content (%) 8 Mineralogy

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 147 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix C Shale layer characteristics for reference shales Overview of shale layers characteristics in Europe

References EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution Source (Ref.list) Comments Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017 2017. Overview of relevant shale Shale Name: Mean Carbonifeous shale layers characteristics in Europe - Delivery T6b of the EUOGA study Age: (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET. Basin:

Structural setting:

Facies variability: Country: 1. Area extend (km2) 16 21232 4662 Offshore 12703 12703 4234 Onshore 16 13179 5489

2. Thickness (gross, m) 50 2800 622 2a. Thickness (net, m) 30 495 140 2b. Net/Gross (%) 6 100 40

3. Depth (m) 1016 4500 1875

4. Density (g/cm3) 2,30 2,71 2,50

5. TOC (%) 1,00 8,20 2,97

6. Porosity (%) 1,50 10,10 3,76

7. Maturity (%VR) or graptolite equivalent 1,10 3,09 1,67

8. Reservoir pressure (psi) 370 6527 3302

9. Reservoir Temperature (°C) 62 125 97

10. Gas saturation (%)(Sg) 35514

11. Oil Saturation (%) So) 0,00 0,00

12. Gas generation mgHC/g TOC (Hydrogen index) 30 346 155

13. Kerogen type II-II/III

14. Sorption capacity VReq. - 1,9 % (mmol/g) 0,15 0,15 0,15

15. Matrix permeability (nDarcy) 0 340 143

16. Adsorbed gas storage capacity (scf/ton) 33 45 43

17. Compressibility factor (z) 0,85 1,00 0,93

18. Bg - Gas formation volume factor 0,0046 0,0212 0,0155

19. Langmuir Pressure (pL, psi) 395 3916 1739

20. Langmuir Volume (nL, scf/ton) 30 98 58

Bulk mineral constituents XRD % Source

Average clay content (%) 50 Average quartz-feldspars content (%) 39

Average carbonate content (%) 11 Mineralogy

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 148 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix C Shale layer characteristics for reference shales Overview of shale layers characteristics in Europe

References EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution Source (Ref.list) Comments Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2018 2017. Overview of relevant shale Shale Name: Mean Jurassic shale layers characteristics in Europe - Delivery T6b of the EUOGA study Age: (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET. Basin:

Structural setting:

Facies variability: Country: 1. Area extend (km2) 39 20792 6025 Offshore 0 11813 2579 Onshore 39 8979 19712

2. Thickness (gross, m) 30 650 165 2a. Thickness (net, m) 8 650 162 2b. Net/Gross (%) 8,5 100 35

3. Depth (m) 465 5500 2783

4. Density (g/cm3) 2,15 2,65 2,50

5. TOC (%) 0,95 20 4,94

6. Porosity (%) 1,5 11,8 7,1

7. Maturity (%VR) or graptolite equivalent 0,6 1,2 0,81

8. Reservoir pressure (psi) 4786 13900 8189

9. Reservoir Temperature (°C) 78 150 126

10. Gas saturation (%)(Sg) 23 50 37

11. Oil Saturation (%) So)

12. Gas generation mgHC/g TOC (Hydrogen index) 6,19 570 373

13. Kerogen type II

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy) 5,1 5,1 5

16. Adsorbed gas storage capacity (scf/ton) 81 81 81

17. Compressibility factor (z)

18. Bg - Gas formation volume factor 0,02 0,0195 0,0195

19. Langmuir Pressure (pL, psi) 1290 1290 1290

20. Langmuir Volume (nL, scf/ton) 169,5 170 170

Bulk mineral constituents XRD % Source

Average clay content (%) 34 Average quartz-feldspars content (%) 28

Average carbonate content (%) 39 Mineralogy

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 149 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix C Shale layer characteristics for reference shales Overview of shale layers characteristics in Europe

Ref EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution Source (Ref.list) Comments 1. Curtis, J.B., 2009, Shale gas: From Onerous Stepchild to 2019 Premier Resource. Power point Shale Name: Antrim presentation available from: http://www.rpsea.org/media/files/ Age: Devonian project/41335de2/07122-16-RT- New_Albany_Shale_Gas_Appendic es_Part_IV-09-30-09.pdf 2. Hill, D.G., Nelson, C.R., 2000, Basin: Michigan - Biogenic Gas productive fractured shales: An overview and update. GasTIPS Natural fractures are critical Summer 2000, 4-13. Structural setting: to productivity

Facies variability: Country: North America 1. Area extend (km2) Offshore Onshore

2. Thickness (gross, m) 2a. Thickness (net, m) 21 49 37 1,2 2b. Net/Gross (%)

3. Depth (m) 152,4 762 458

4. Density (g/cm3)

5. TOC (%) 51510 1

6. Porosity (%) 5128,5 1

7. Maturity (%VR) or graptolite equivalent 0,6 0,7 0,65 1

8. Reservoir pressure (psi) 400 1,2 gradient 0,35-0,43 psi/ft

9. Reservoir Temperature (°C) 24

10. Gas saturation (%)(Sg) 44

11. Oil Saturation (%) So)

12. Gas generation mgHC/g TOC (Hydrogen index)

13. Kerogen type

14. Sorption capacity VReq. - 1,9 % (mmol/g)

15. Matrix permeability (nDarcy)

16. Adsorbed gas storage capacity (scf/ton)

17. Compressibility factor (z)

18. Bg - Gas formation volume factor

19. Langmuir Pressure (pL, psi)

20. Langmuir Volume (nL, scf/ton) y

Bulk mineral constituents XRD % Source

Average clay content (%) 40 Average quartz-feldspars content (%) 40 1

Average carbonate content (%) 20 Mineralog

Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Page 150 Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS.

Overview of shale layers characteristics in Europe

Appendix D Bibliography of European shale layer relevant literature

Delivery T6b. Appendix Volume A-D February 2017 151

Overview of shale layers characteristics in Europe

A Aciep, G., 2013, Evaluación preliminar de los recursos prospectivos de hidrocarburos convencionales y no convencionales en España. Perspectivas económicas en la exploración y producción de Hidrocarburos en España. ACIEP, 1-16. (In Spanish).

Albrycht, I., Bigaj, W., Dvorakova, V., Francu, J., Garpiel, R., Osicka, J., Mathews, A., Sikora, A., Sikorski, M., Smith, K. C., Tarnawski, M., Wagner, A., 2014, The development of the shale gas sector in Poland and its prospects in the Czech Republic - analysis and recommendations. The Kosciuszko Institute, 96 p.

Allanic, C., 2009, Evaluation du potentiel « Gas shales » dans l’est de la France. Note technique confidentielle BRGM. (In French).

Alvarez, R., Menendez, R., Ordoñez, A., Cienfuegos, P., 2012, Preliminary study of the potential for natural-gas recovery and geological CO2-sequestration in lutite from de Cantabrian Basin. Seguridad y Medio Ambiente. Year 32 N 128 Fourth Quarter 2012. Fundación MAPFRE.

Andersson, A., Dahlman, B., Gee, D.G., Snäll, S., 1985, The Scandinavian Alum Shales. Sveriges geologiska undersökning Ca 56, 50 pp.

Andrè, P., Doulcet, A., 1991, Rospo Mare Field – Italy , Apulian Platform, Adriatic Sea. AAPG Treatise of Petroleum Geology, Atlas of Oil and Gas Fields A-06, 29-54.

Andrews, I.J., 2013, The Carboniferous Bowland Shale gas study: geology and resource estimation. British Geological Survey for Department of Energy and Climate Change, London, UK.

Andrews, I.J., 2014, The Jurassic shales of the Weald Basin: geology and shale oil and shale gas resource estimation. British Geological Survey for Department of Energy and Climate Change, London, UK.

Armands, G., 1972, Geochemical studies of uranium, molybdenum and vanadium in Swedish alum shale. Stockholm Contributions in Geology 27, 1-148.

Arsiriy, Yu.A., Bilyk, A.A., et al (Eds), 1984, - Kyiv: Atlas of geological structure and oil-gas-bearing of Dniprovsko-Donetska Depression. Ministry of Geology of Ukrainian SSR, UkrNIGRI. - 190 p. (In Russian).

Arthur, M., Silva, I.P., 1982, Development of widespread organic carbon-rich strata in the Mediterranean Tethys. In: Schlanger, S.O. and Cita, M.B. (eds), Nature and Origin of Cretaceous Carbon-Rich Facies. Academic Press (London), 7-54.

Atanasov, A., Bokov, P., (eds.) 1987, Geology and oil-gas prospects of Moesian Platform in Central North Bulgaria. Sofia, Technika, 287 p., (In Bulgarian).

Atlas of Geothermal Resources in Europe, 2002, Slovenia (by Rajver, D., Ravnik, D., Premru, U., Mioč, P, Kralj, P.) Plates 74-76. - Editors: Hurter, S., Haenel, R. - Leibniz Institute for Applied Geosciences (GGA), Hannover. B

Badics, B., Vető, I., 2012, Source rocks and petroleum systems in the Hungarian part of the Pannonian Basin: The potential for shale gas and shale oil plays: Marine and Petroleum Geology 31, 53-69

Delivery T6b. Appendix Volume A-D February 2017 152

Overview of shale layers characteristics in Europe

Balen, R.T. van, van Bergen, F., De Leeuw, C., Pagnier, H., Simmelink, H., van Wees, J.D., Verweij, J.M., 2000, Modelling the hydrocarbon generation and migration in the West Netherlands Basin, the Netherlands. Geologie en Mijnbouw / Netherlands Journal of Geosciences 79, 29-44.

Barnolas, A., Pujalte, V., 2004, La Cordillera Pirenaica. In: Geología de España (J. A. Vera, Ed.), SEG-IGME, Madrid, 282 (In Spanish).

Bavec, M. and 17 co-authors, 2005, Overview of geological data for deep repository for radioactive waste in argillaceous formations in Slovenia. Geological Survey of Slovenia, 131 p.

Bechtel, A., Hámor-Vidó, M., Gratzer, R., Sachenhofer, R.F., Püttmann, W., 2012, Facies evolution and stratigraphic correlation in the early Oligocene Tard Clay of Hungary as revealed by maceral, biomarker and stable isotope composition: Marine and Petroleum Geology 35, 55-74

Bencini, R., Bianchi, E., De Mattia, R., Martinuzzi, A., Rodorigo, S., Vico, G., 2012, Unconventional Gas in Italy: the Ribolla Basin. AAPG, Search and Discovery Article #80203.

Bergen, F. van, Zijp, M.H.A.A., Nelskamp, S., Kombrink, H., 2013, Shale gas evaluation of the Early Jurassic Posidonia Shale Formation and the Carboniferous Epen Formation in the Netherlands. AAPG Hedberg Memoir, 103, 1–24.

Bessereau, G., Guillocheau, F., 1994, Sequence stratigraphy and organic matter distribution of the Lias of the Paris Basin. In: Mascle, A. (Ed.) Hydrocarbon and Petroleum Geology of France – EAPG Special Publication 4. Springer, Berlin, 107-119.

Blažeković Smojić, S., 2011, Application of Artificial Maturation by Hydrous Pyrolysis to Mesozoic Source Rocks of Dinarides in Evaluation of Maturity, Generative Potential and Genetic Correlations, Doctoral Thesis, University of Zagreb, Faculty of Science, Department of Geology, 285.

Blažeković Smojić, S., Smajlović, J., Koch, G., Bulić, J., Trutin, M., Oreški, E., Alajbeg, A., Veseli, V., 2009, Source potential and palynofacies of Late Jurrasic "Lemeš facies", Croatia. - Organic Geochemistry, 40, 833-845.

Bokov, P., Tchemberski, H. (eds.) 1987, Geological preconditions for oil-gas bearing capacity of NE Bulgaria. Sofia, Technika, 332 p., (in Bulgarian).

Bongiorni, D., 1987, The hydrocarbon exploration in the Mesozoic structural highs of the Po Valley: the example of Gaggiano. Atti Tic. Sc. Terra, 31, 125-141.

Botor, D., Papiernik, B., Maćkowski, T., Reicher, B., Kosakowski, P, Marzowski, G., Górecki, W., 2013, Gas generation in Carboniferous source rocks of the Variscan foreland basin: implications for a charge history of Rotliegend deposits with natural gases. Annales Societatis Geologorum Poloniae 83, pp. 353-383

Bouw, S., Lutgert, J., 2012, Shale Plays in The Netherlands. SPE/EAGE European Unconventional Resources Conference and Exhibition, SPE 152644. BRGM, 1980, Synthèse géologique du Bassin de Paris. Mém. n° 101, 102, 103. (In French).

Delivery T6b. Appendix Volume A-D February 2017 153

Overview of shale layers characteristics in Europe

BRGM, 1984, Synthèse géologique du Sud-Est de la France. Mém. BRGM n°125. (In French).

BRGM, ELF-Re, ESSO Rep, SNPA, 1974, Géologie du bassin d’Aquitaine. Atlas de 26 planches. (In French).

Brosse, E., Loreau, J.P., Huc, A.Y., Frixa, A., Martellini, L., Riva, A., 1988, The organic matter of interlayered carbonates and clays sediments — Trias/Lias, Sicily. Org. Geochem. 13, 433–443.

Bruckner-Wein, A., Vető, I., 1986, Preliminary organic geochemical study of an anoxic Upper Triassic sequence from W. Hungary: Organic Geochemistry 10, 113-118.

Brukner-Wein, A., Hetényi, M., Vető, I., 1990, Organic geochemistry of an anoxic cycle: a case history from the Oligocene section, Hungary. Organic Geochemistry 15, 123-130.

Buchardt, B., Cederberg, T., 1987, Stabil isotop geokemi i moderbjergarter, olie og gas i Danmark. Afsluttende rapport, EFP-83 projekt, København, 33 p. (In Danish)

Buchardt, B., Lewan, M.D., 1990, Reflectance of vitrinite-like macerals as a thermal maturity index for Cambrian-Ordovician alum shale, southern Scandinavia. AAPG Bulletin 74, 394-406.

Buchardt, B., Nielsen, A.T., Schovsbo, N., Wilken, U.G., 1994, Source rock potential and thermal maturity of Lower Paleozoic black shales in Baltoscandia. PREWSOR- Project Group, Geological Institute, University of Copenhagen, Copenhagen, 58 pp.

Buchardt, B., Nielsen, A.T., Schovsbo, N.H., 1997, Alun Skiferen i Skandinavien. Geologisk Tidskrift 3, 1-30 (In Danish).

C Caja, M.A., Permanyer, A., 2008, Significance of organic matter in Eocene turbidite sediments (SE Pyrenees, Spain). Naturwissenschaften 95.1073–1077.

Calner, M., Erlström, M., Eriksson, M., Ahlberg, P., Lehnert, O., 2013, The Lower Palaeozoic of southern Sweden and the Oslo Region, Norway. Filed Guide for the 3rd Annual Meeting of the IGCP project 591. SGU, Rapporter och meddelanden 133, 96 pp.

Châteauneuf, J.J., Farjanel, G., (coord), 1989, Synthèse des bassins permiens français. Mémoire BRGM n°128, 309 p. (In French).

Cichini, H., 1985, Drilling the Zistersdorf UET 2A – the Deepest in Austria – to 8553m.- In: Erdöl, Erdgas, Kohle; 101 (1985), S.118-126, Wien, 1985.

Clayton, J.L., Koncz, I., 1994, Petroleum geochemistry of the Zala Basin, Hungary: American Association of Petroleum Geologists Bulletin 78, 1-22.

Coccioni, R., Jovane, L., Bancalà, G., Bucci, C., Fauth, G., Frontalini, F., Janikian, L., Savian, J., Paes de Almeida, R., Mathias, G.L., Ferreira da Trindade, R.I., 2012, Umbria-Marche Basin, Central Italy: A Reference Section for the Aptian-Albian Interval at Low Latitudes. Sci. Dril., 13, 42-46.

Delivery T6b. Appendix Volume A-D February 2017 154

Overview of shale layers characteristics in Europe

Colţoi, O., 2011, Processes of forming and evolution of the diapiric structures and their roles in the hydrocarbon accumulation. Unpublish. PhD Thesis, University of Bucharest. 131 p., Bucharest (in Romanian).

Curtis, J.B., 2009, Shale gas: From Onerous Stepchild to Premier Resource. Power point presentation available from: www.rpsea.org.

D

Dahl, J., Hallberg, R., Kaplan, I.R., 1988, The effects of radioactive decay of uranium on elemental and isotope ratios of Alum Shale kerogen. Applied Geochemistry 3, 583- 589.

Dahlman, B., 1977, Öands Alunskiffer. Sveriges geologiska undersökning rapport DOCNO 31188 (in Swedish).

Dank, V., 1988, Petroleum geology of the Pannonian Basin, Hungary - An overview. In: Royden, L.H., Horváth, F. (Eds.), The Pannonian Basin: A Study in Basin Evolution. American Association of Petroleum Geologists Memoir, vol. 45, pp. 319-331.

Delmas, J., Houel, P., Vially, R., 2002, Paris Basin, Petroleum potential. IFP regional report.

Delmer, A., 1968, Le Sondage d'Epinois. Professional Paper, Geological Survey of Belgium, 1968 n°8, 90 p. + 1 plate.

Delmer, A., 1977, Le Bassin du Hainaut et le sondage de St-Ghislain. Professional Paper, Geological Survey of Belgium, 1977/6 n°143, 14 p. + 8 plates.

Delmer, A., 2004, Tectonique du front varisque en Hainaut et dans le Namurois. Memoirs of the Geological Survey of Belgium n°50, 62 p. + 16 plates.

Dimitrov, H., 2003, Seismic stratigraphic analysis (sequence, lithofacies architecture) related to assessment of hydrocarbon potential of Lower Kamchiya basin – offshore. PhD thesis, Sofia University.

Dimitrov, H., Georgiev, G., 2005, Lithofacies analyses of sedimentary sequences in Lower Kamchiya basin (offshore). – Proceedings of Mining-Geology university “St. Ivan Rilski”, t. 48, book I, Geology and Geophisics, 47-52.

Djurasek, S., 1988, Rezultati suvremenih geofizičkih istraživanja u SR Sloveniji (1985- 1987) [Results of geophysical exploration in Slovenia (1985-1987)]. Nafta, 39, 311- 326. (In Slovenia).

Dolton, G.L., 2006, Pannonian Basin Province, Central Europe (Province 4808) - Petroleum Geology, Total Petroleum Systems, and Petroleum Resource Assessment. In: U.S. Geological Survey Bulletin, 2204-B, 47.

Dövényi, P., Horváth, F., 1988, A review of temperature, thermal conductivity, and heat flow data for the Pannonian basin. In: Royden, L., Horváth, F. (Eds.), The Pannonian Basin: A Study in Basin Evolution. American Association of Petroleum Geologists Memoir, vol. 45, pp. 195-233.

Delivery T6b. Appendix Volume A-D February 2017 155

Overview of shale layers characteristics in Europe

Dövényi, P., Horváth, F., Liebe, P., Gálfy, J., Erki, I., 1983, Magyarország Geotermikus viszonyai (Geothermal conditions of Hungary): Geophysical Transactions, 29/1, 3-114. Eötvös Lorand Geophysical Inst., Budapest.

Dusar, M., 2006, Chokierian. Geologica Belgica 9/1-2, 177-187

Dusar, M., Bless, M.J.M., Burger, K., Demaret, M., Hardy, M., Langenaeker, V., Fan, L.S., Paproth, E., Piérart, P., Somers, Y., Streel, M., Wouters, L., 1998, De steenkoolverkennings-boring Hechtel-Hoef. Geological Survey of Belgium - Professional Paper 1998/1 286, 1-129.

Dusar, M., Piessens, K., Vandewijngaerde, W., 2013, Black shales in Belgium. Geologica Belgica: Black shales in Belgium? Namur, 11-12/10/13.

E

EIA/ARI 2013/2015 World Shale Gas and Shale Oil Resource Assessment, Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 countries outside the United States.

Erlström, M., Sivhed, U., Wikman, H., Kornfält, K.-A., 2004, Beskrivning till berggrundskartorna 2D Tomelilla NV, NO, SV, SO, 2E Simrishamn NV, SV, 1D Ystad NV, NO och 1E Örnahusen NV. Sveriges geologiska undersökning serie Af 212-214, 141 s.

F

Fiet, N., 1998, Les black shales, un outil chronostratigraphique haute resolution. Exemple del' Albien du bassin de Marches-Ombrie (ltalie centrale). Bull. Soc. Geol. France, 169, 221-231.

Francu, E., 2000, Optical properties of organic matter in Devonian and Lower Carboniferous black shales in the northern Drahany Upland, Bull. of Czech Geol. Soc., 75, 2, 115–120.

Francu, J., Radke, M., Schaefer, R.G., Poelchau, H.S., Caslavsky, J., Bohacek, Z., 1996, Oil-oil and oil-source rock correlation in the northern Vienna basin and adjacent Flysch Zone. In: Oil and Gas in Alpidic Thrustbelts and Basins of Central and Eastern Europe. G. Wessely and W. Liebl, eds., EAPG Spec. Publ. No. 5, Geological Society Publishing House, Bath, pp. 343-354.

Franců, E., Franců, J., Kalvoda J., 1999, Illite crystallinity and vitirnite reflectance in Paleozoic siliciclastics in the SE Bohemian Massif as evidence of thermal history. Geologica Carpathica, 50, 5, 365-672, ISSN 1335-0552.

Francu, E., Francu, J., Kalvoda, J., Poelchau, H.S., Otava, J., 2002, Burial and uplift history of the Palaeozoic Flysch in the Variscan foreland basin (SE Bohemian Massif, Czech Republic) In: Bertotti G., Schulmann K., Cloetingh S., eds.: Continental collision and the tectono-sedimentary evolution of forelands. European Geophysical Society - Stephan Mueller Special Publication Series, Vol. 1, European Geosciences Union Stephan Mueller Special Publication Series, 1, 167–179.

Francu, E., Francu, J., Martinec, P., Krejčí, O., 2002, Coal rank and pyrolitic characteristics in the boreholes in the Upper Silesian Basin. In -: Documenta Geonica,

Delivery T6b. Appendix Volume A-D February 2017 156

Overview of shale layers characteristics in Europe

The 5th Czech and Polish Conference Geology of the Upper Silesian Basin, s. 65-68. – Ústav geoniky AV ČR. Ostrava. ISBN 80-7275-024-0.

Frixa, A., Bertamoni, M., Catrullo, D., Trinicianti, E., Miuccio, G., 2000, Late Norian — Hettangian palaeogeography in the area between wells Noto 1 and Polpo 1 (S-E Sicily). Mem. Soc. Geol. Ital. 55, 279–284.

G

Gaetani, M., Gnaccolini, M., Poliani, G., Grignani, D., Gorza, M., Martellini, L., 1992, An anoxic intraplatform basin in the Middle Triassic of Lombardy (southern Alps, Italy): anatomy of a Hydrocarbon source. Riv. It. Paleont. Strat., 97 (3-4), 329-354.

García-Lobón, J.L., Rey-Moral, C., Ayala, L.M., Martín-Parra, J., Matas, M.I., Reguera, 2014, Regional structure of the southern segment of Central Iberian Zone (Spanish Variscan Belt) interpreted from potential field images and 2.5 D modelling of Alcudia gravity transect. Tectonophysics 614, 185–202.

Gasparik, M., Amann-Hildenbrand, A., Gensterblum, Y., Krooss, B.M., 2013, Experimental study of fluid transport processes in the matrix system of the European organic-rich shales: I. Scandinavian Alum Shale, Marine and Petroleum Geology, doi: 10.1016/j.marpetgeo.2013.10.013.

Gautier, D.L., Charpentier, R.R., Gaswirth, S.B., Klett, T.R., Pitman, J.K., Schenk, C.J., Tennyson, M.E., Whidden, K.J., 2013, Undiscovered Gas Resources in the Alum Shale, Denmark, 2013. U.S. Geological Survey Fact Sheet 2013–3103, 4 p.

Georgiev, G., 2012, Geology and Hydrocarbon Systems in the Western Black Sea. Turkish Journal of Earth Sciences 21, pp 723-754.

Georgiev, G., 1983, Geological Preconditions for Oil and Gas Prospects of Lower-Middle Jurassic Sediments from Southern Moesian Platform zone in NE Bulgaria. Petroleum and Coal Geology 18, 20-32 (in Bulgarian).

Georgiev, G., 2000, Oil-oil and oil-source correlation for the major crude oils in Bulgaria. Annuaire de l’Universite de Sofia “St. Kliment Ohridski”, Faculte de Geologie et Geographie, livre 1 - Geologie, t. 92, p. 39-60.

Georgiev, G., Bechtel, A., Sachsenhofer, R., Gratzer, R., 2001, Petroleum Play- Concept for Main Oil/Gas Fields in the Southern Moesian Platform (Bulgaria). - In: EAGE 63rd Conference & Technical Exhibition, Amsterdam-The Netherlands, Extended Abstracts Volume (CD-ROM) (P-512).

Georgiev, G., Dabovski, C., Stanisheva-Vassileva, G., 2001, East Srednogorie-Balkan Rift zone. - In: P. A. Ziegler, W. Cavazza, A. H. F. Robertson, S. Crasquin-Soleau (eds.), Peri-Tethys Memoir 6: PeriTethyan Rift/Wrench Basins and Passive Margins. Mem. Mus. natn. Hist.nat., 186: 259-293.

Georgiev, G., Dabovski, H., 1997, Alpine structure and Petroleum Geology of Bulgaria. Geology and Mineral resources, 8-9, 3-7.

Georgiev, G., Dimitrov, H., 2013, Geological structure and evolution of Lower Kamchiya depression - Proceedings of the IV International scientific and technical

Delivery T6b. Appendix Volume A-D February 2017 157

Overview of shale layers characteristics in Europe

conference "Geology and Hydrocarbon potential of the Balkan-Black Sea Region", 11 - 15 Sept. 2013, Varna – Bulgaria, 64-72.

Georgiev, G., Ilieva, A., 2007, Selanovtsi oil accumulation – geological and genetic model. – Annuaire de l’Universite de Sofia “St. Kliment Ohridski”, Fac. Geol., Geogr., livre 1 – Geologie, t. 100, 67 -96 (in Bulgarian).

Georgiev, G.V., 1996. Hydrocarbon generation in the Tertiary filling (above the Illyrian unconformity) of the Kamchiya depression-offshore.- 4th International Conference “Gas in Marine Sediments”, Varna, Extended Abstracts.

Geršlová, E., Opletal, V., Sýkorová, I., Sedláková, I., Geršl,, M., 2015, A geochemical and petrographical characterization of organic matter in the Jurassic Mikulov Marls from the Czech Republic, International Journal of Coal Geology 141–142, 42–50

Geršlová, E., Goldbach, M., Gersl, M., Skupien, P., 2016, Heat flow evolution, subsidence and erosion in Upper Silesian Coal Basin, Czech Republic. International Journal of Coal Geology, 2016, roč. 154-155, č. 1, s. 30-42. ISSN 0166-5162.

Gheorghe, S., Barbuliceanu, N., Raschitor, G., Burneiu, L., 2004, Comparative study of the carbonate and clay source rocks in the Bibesti - Bulbuceni, Malu Mare, Fauresti and Mitrofani perimeter. Romanian National Oil and Gas Symposium brochure, 1-12 (In Romanian)

Górecki, W. (ed.), 2006, Atlas of geothermal resources of Paleozoic formations in the Polish Lowlands. AGH, 2006, Kraków

Grimani, I., Šikić, K., Šimunić, A., 1972, Basic geological map, L -33-141, KNIN.

H

Haas, J., 1993, Formation and evolution of the Kössen Basin in the Transdanubian Range: Földtani Közlöny 123, 34-54.

Haas, J., Budai, T., Csontos, L., Fodor, L., Konrád, Gy, 2010, PreCenozoic Geological Map of Hungary, 1:500 000. Geological Institute of Hungary.

Haas, J., Hámor, G., Jámbor, Á, Kovács, S., Nagymarosy, A., Szederkényi, T., 2012, Geology of Hungary. Springer, London, p.244

Hasenhüttl, C., Kraljić, M., Sachsenhofer, R.F., Jelen, B., Rieger, R., 2001, Source rocks and hydrocarbon generation in Slovenia (Mura Depression, Pannonian Basin). Marine and Petroleum Geology 18, 115-132.

Hertelendi, E., Vető, I., 1991, The marine photosynthetic carbon isotopic fractionation remained constant during Early Oligocene. Palaeogeography, Palaeoclimatology, Palaeoecology 83, 333-339.

Hartley, A. J. and Otava, J., 2001, Sediment provenance and dispersal in a deep marine foreland basin: the Lower Carboniferous Culm basin, Czech Republic, J. Geol. Soc., 158, 137–150.

Hessland, I., Armands, G., 1978, Alunskiffer. Utredning från Statens industriverk, SIND PM 1978:3, 1-94.

Delivery T6b. Appendix Volume A-D February 2017 158

Overview of shale layers characteristics in Europe

Hetényi, M., 1989, Hydrocarbon generative features of the upper Triassic Kössen Marl from W. Hungary: Acta Mineralogica-Petrographica Szeged XXX, 137-147.

Hill, D.G., Nelson, C.R., 2000, Gas productive fractured shales: An overview and update. GasTIPS Summer 2000, 4-13.

Hu, X., Jansa L., Sarti, M., 2006, Mid-Cretaceous oceanic red beds in the Umbria– Marche Basin, central Italy: Constraints on paleoceanography and paleoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology 233 (3), 163-186.

Humblet, E., 1941, Le bassin houiller de Liège. Extrait de la Revue Universelle des Mines, 8e Série, t. XVII, n°12, Liège, 21 p.

I

IGME, 1981, Estudio de las posibilidades de explotación de energía geotérmica en almacenes profundos de baja y media entalpía del territorio nacional.

Ilinskaya, V.V., 1985, Comparative study of hydrocarbons in OM and Oils in Mesozoic sediments of Northern Bulgaria. – In: Genetic correlation of hydrocarbons in OM and Oils, Moscow, Nedra, 83-110 (in Russian).

Iordan, M., 1988, Biostratipraphy of the Devonian in Romania. Devonian of the World. Proc. 2nd Intern. Symp. Devonian System, Calgary – 1987, Canada, vol. 14 (1). Canadian Society of Petroleum Geologists, Calgary

Iordan, M., 1990, Biostratigraphic guide marks in the Lower Palaeozoic strata of the Moesian Platform, Romania. Abstract. IGCP Programme, Project 216 and 303 – Global Biological Events. Precambrian – Cambrian Event Stratigraphy, Oxford

Iordan, M., 1992, Biostratigraphic age indicators in the Lower Palaeozoic succesion of the Moesian Platform of Romania. Geologica Carpathica 43 (4), 231 – 233

J

Jadoul, F., Tintori, A., 2012, The Middle-Late Triassic of Lombardy (I) and Canton Ticino (CH). In “Pan-European Correlation of the Triassic - 9th International Field Workshop”. September 1-5, 2012.

Jager, J. de, Geluk, M.C., 2007, Petroleum Geology. In Wong, T. E., Batjes, D. A. J. and De Jager, J. (Eds): Geology of the Netherlands. Royal Dutch Academy of Arts and Sciences, Amsterdam, 237–260.

Jarvie, D.M., 2012, Shale resource systems for oil and gas: Part 1—Shale-gas resource systems. In J. A. Breyer (ed.): Shale reservoirs—Giant resources for the 21st century. AAPG Memoir 97, 69–87.

Jelen, B., 1985/86, Poizkus iskanja organskih parametrov terciarnih sedimentnih kamenin v vzhodni Sloveniji (Attempting to search for organic parameters Tertiary sedimentary rocks in eastern Slovenia). Geologija 28/29, 183—197, (In Slovenian).

Jelen, B., Rifelj, H., 2011, Surface litostratigraphic and tectonic structural map of T- JAM project area, northeastern Slovenia 1: 100.000 Geological Survey of Slovenia (In Slovenian).

Delivery T6b. Appendix Volume A-D February 2017 159

Overview of shale layers characteristics in Europe

Juranov, S., 1991, Stratigraphy of the Upper Cretaceous series and the Paleogene System in the marine borehole sections at the village of Samotino. Review of the Bulgarian Geological Society 52 (3), 19-29 (In Bulgarian).

Juranov, S., Pimpirev, H., 1989, Lithostratigraphy of the Upper Cretaceous and the Paleogene in the coastal part of East Stara Planina. Review of the Bulgarian Geological Society 50(2), 1-16 (In Bulgarian).

K

Kalinko, M.K. (ed.), 1976, Geology and oil-gas bearing capacity of Bulgaria. Moscow, Nedra, 242 p., (in Russian).

Kanev, S., Margulis, L., Bojesen-Koefoed, J.A., Weil, W.A., Merta, H., Zdanaviciute, O., 1994, Oil and hydrocarbon source rocks of the Baltic Syneclise. Oil & Gas Journal, July 11.

Kanev, S.V., 1995, Geochemical Studies.Hydrocarbon Sector Support Project, Phase IIa (HSSP/IIa).

Katz, B.J., Dittmar, E.I., Ehret, G.E., 2000, Geochemical review of carbonate source rocks in Italy. Journal of Petroleum Geology 23(4), 399-424.

Kiesl, W., Koeberl, C., Goetzinger, M.A, 1990, Geochemistry and Mineralogy of a Marl Sample (Late Jurassic) from 8552,1 m Depth of Exploratory Well Zistersdorf ÜT 2A.- In: Erdöl, Erdgas, Kohle 106, 193-196

Kochereshko, P., 2015, Correlating geophysical well-log data and cored intervals for amending incomplete data from the Chokier Formation, Campine Basin. MSc Geology thesis at University of Ghent. Promotor: Prof. Dr. Van Rooi D; Copromotor: Dr. Piessens K.

Kókai, J., Pogácsás, G., 1991, Tectono-stratigraphical evolution and hydrocarbon habitat of the Pannonian Basin. In: Spencer, A.M. (Ed.), Generation, Accumulation and Production of Europe’s Hydrocarbons. Special Publication of the European Association of Petroleum Geoscientists 1, 307-317.

Koncz, I., 1990, The origin of the oil at the Nagylengyel and nearby fields: General Geological Review Journal of the Hungarian Geological Society 25, 55-82 (In Hungarian with English abstract).

Körössy, L., 1988, Hydrocarbon geology of the Zala Basin, Hungary: General Geological Review Journal of the Hungarian Geological Society 23, 3-162 (In Hungarian with English abstract).

Kőrössy, L., 2004, Hydrocarbon geology of the Palaeogene Basin, northern Hungary. General Geological Review Journal of the Hungarian Geological Society 28, 9-121 (In Hungarian with English abstract).

Krejci, O., Francu, J., Poelchau, H.S., Müller, P., Stranik, Z., 1996, Tectonic evolution and oil and gas generation model in the contact area of the North European Platform with the West Carpathians. In: Oil and Gas in Alpidic Thrustbelts and Basins of Central and Eastern Europe. G. Wessely and W. Liebl (eds), EAPG Spec Publ. No. 5, Geological Society Publishing House, Bath, 177-186.

Delivery T6b. Appendix Volume A-D February 2017 160

Overview of shale layers characteristics in Europe

Krüger, M., van Berk, W., Arning, E.T., Jimenéz, N., Schovsbo, N.H., Straaten, N., Schultz, H.M., 2014, The biogenic methane potential of European gas shale analogues: Results from incubation experiments and thermodynamic modelling. International Journal of Coal Geology 136, 59-74.

Kulaksazov, G., Tenchov, Y., 1973, Lower Carboniferous stratigraphy in Dobrudja coal basin. Bulletin of Geological Institute, series of stratigraphy & lithology 22, 39-53, (in Bulgarian).

L

Ladage, S. and others, 2016, Schieferöl und Schiefergas in Deutschland - Potenziale und Umweltaspekte. Bundesanslt für Geowissenschaften und Rohstoffe (BGR) Fachbereich B1.3. 231 p.

Ladwein, H.W., 1988, Organic Geochemistry of Vienna Basin: Model for Hydrocarbon Generation in Overthrust Belts. AAPG Bulletin 72, 1-6, 586-599.

Ladwein, H.W., Schmidt, F., Seifert, P., Wessely, G., 1991, Geodynamics and generation of hydrocarbons in the region of the Vienna basin, Austria. In A. M. Spencer (ed.): Generation, accumulation and production of Europe's hydrocarbons (Variant.). Special publications of the European association of petroleum geoscientists 1. Oxford, 289-305.

Lapinskas, P., 2000, Structure and petroleum potential of the Silurian in Lithuania. Vilnius, 203 p. (In Lithuanian).

Lazaruk, Ja.G., 2015, Prospects and problems of development of sources of unconventional hydrocarbon of the Volyn-Podolia oil and gas field of Ukraine- Paper 1, Perspectives of shale gas of Oleska site. Geological Journal (Ukraine) 1, 7-16.

Lazauskiene, J., et al., 2014, Investigations of structure and composition of shaley Lower Paleozoic succession in Lithuanian part of the Baltic Sedimentary Basin. Report of Lithuanian Geological Survey, 132 pp (In Lithuanian).

Licourt, L., 2015, Understanding the Thermal-induced Flow in the Carbonate and Sulphate Karstic Reservoir of Hainaut (South Belgium) Proceedings World Geothermal Congress 2015. Melbourne, Australia, 19-25 April 2015.

Lindquist, S.J., 1999, Petroleum Systems of the Po Basin Province of Northern Italy and Northern Adriatic Sea: Porto Garibaldi (Biogenic), Meride/Riva di solto (Thermal), and Marnoso Arenacea (Thermal). USGS Open-File Report 99-50-M.

Lukin, A.E., 2010, Shale gas and its production prospects in Ukraine. Paper 2. Black shale complexes of Ukraine and the prospects for their gas content in the Volyn- Podolia and the North-Western Black Sea region. Geological Journal (Ukraine) 4, 7-24

Lukin, A.E., 2010, Shale gas and perspectives of its exploitation in Ukraine. Paper 1: Shale gas problem state-of-art (based on its resources development in USA). Geological Journal (Ukraine), 1, 17-33 (In Russian).

Lukin, A.E., 2011, On the nature and gas-bearing perspectives of the low-permeable rocks in the sedimentary layer of the Earth. Proceedings of the National Academy of Sciences of Ukraine 3, 114-123 (In Russian).

Delivery T6b. Appendix Volume A-D February 2017 161

Overview of shale layers characteristics in Europe

Lukin, A.E., 2011, Perspectives of shale gas in Dniprovsko-Donetskiy Aulacogene. Geological Journal (Ukraine) 1, 21-41 (In Russian).

M

Maio, F., Aramburu, C., Underwood, J., 2011, Geochemistry of Ordovician and Silurian Black Shales, Cantabrian Zone, Asturias and Leon Provinces, Northwest Spain. Adapted from poster presentation at AAPG International Conference and Exhibition, Milan, Italy, October 23-26, 2011.

Makos M., 2014, Activities of PGNiG in exploration of unconventional hydrocarbon resources in Poland. “Science for Industry: Necessity is the mother of invention” Third Networking Event dedicated to the Polish experience in the field of shale gas exploration, ING, Warsaw, Poland (presentation)

Marinov, E., 1994, Geology and oil-gas potential of zones with thrust structure (case study: Southern slope of Lower Kamchiya depression). PhD thesis, Sofia University.

Marteau, P., Bourrat, M., Châteauneuf, J.J., Clozier, L., Farjanel, G., Feys, R., Valentin, J., 1982, Les schistes bitumineux du bassin d’Autun, Etude géologique et estimation des réserves. BRGM report 82 SGN 484 GEO, 86 p. (In French).

Maros, G. - with 31 co-authors from Hungary, Austria, Slovakia and Slovenia, 2012, Summary report of geological models - Transenergy Project. MFGI Budapest, GBA Vienna, ŠGÚDŠ Bratislava, GeoZS Ljubljana, 189 p.

Mazzuca, N., Bruni, A., Jopen, T., 2015, Exploring the potential of deep targets in the South Adriatic Sea: insight from 2D basin modeling of the Croatian offshore. Geologia Croatica, 68/3, 237–246.

McWhorter, S., Torguson,W., McWhoter, R., 2014, Characterization of the Lias of the Lusitanian Basin, Portugal, as an Unconventional Resource Play. AAPG 2014 Annual Convention and Exhibition, Houston, Texas, April 6-9, 2014, AAPG 2014.

Milan, G., Sauer, R., 1996, Ultra-deep drilling in the Vienna basin— A review of geological results. In G. Wessely and W. Liebl (eds): Oil and Gas in Alpidic thrust belts and basins of Central and Eastern Europe: European Association of Petroleum Geoscientists and Engineers Special Publication 5, p. 109-117.

Milota, K., Kovács, A., Galicz, Zs, 1995, Petroleum potential of the north Hungarian Oligocene sediments. Petroleum Geoscience 1, 81-87.

Mioč, P., Marković, S., 1998, Tolmač za geološko karto list Čakovec 1:100 000 (Guidebook to the Geological map - Sheet Čakovec 1:100 000; in Slovene). Inštitut za geologijo, geotehniko in geofiziko Ljubljana in Institut za geološka istraživanja Zagreb, 84 p.

Modliński, Z., (ed.), 2010, Paleogeological atlas of the sub-Permian Paleozoic of the East-European Craton in Poland and neighboring areas. PGI-NRI, Warsaw, Poland.

N Nielsen, A.T., Schovsbo, N.H., 2006, Cambrian to basal Ordovician lithostratigraphy in southern Scandinavia. Bulletin of the Geological Society of Denmark 53, 47-92.

Delivery T6b. Appendix Volume A-D February 2017 162

Overview of shale layers characteristics in Europe

Nielsen, A.T., Schovsbo, N.H., 2011, The Lower Cambrian of Scandinavia: Depositional environment, sequence stratigraphy and palaeogeography. Earth Science Reviews 107, 207-310.

Nielsen, A.T., Schovsbo, N.H., 2015, The regressive Early - Mid Cambrian 'Hawke Bay Event' in Baltoscandia: Epeirogenic uplift in concert with eustasy. Earth Science Reviews 151, 288–350.

Nikolov, K., 2014, Bulgarian unconventional hydrocarbon resources with a focus on the Carboniferous strata. – In: Geological characteristics of continuous petroleum resources and resources abundance evaluation assessment methodology for shale gas/oil in some European countries, MsC thesis, Aalborg University Esbjerg, 73-93.

Nikolov, Z. (ed.), 1988, Geology of Dobrudja coal basin. Sofia, Thechnica, 150 p.

Nikolov, Z., Popova, K., Popov, A., 1990, Coal-bearing Upper Paleozoic sediments in R-1 Novacene (Central North Bulgaria). Review of the Bulgarian Geological Society 51, 1, 39-47 (in Bulgarian).

Novelli, L., Welte, D.H., Mattavelli, L., Yalçin, M.N., Cinelli, D., Schmitt, K.J., 1988, Hydrocarbon generation in southern Sicily. A three dimensional computer aided basin modeling study. Organic Geochemistry 13 (1-3), 153–164.

O

P

Paproth, E., Dusar, M., Bless, M.J.M., Bouckaert, J., Delmer, A., Fairon-Demaret, M., Houlleberghs, E., Laloux, M., Pierart, P., Somers, Y., Streel, M., Thorez, J., Tricot, J. 1983, Bio- and lithostratigraphic subdivisions of the Silesian in Belgium, a review. Annales de la Société géologique de la Belgique 106, 241 – 283.

Parisi, G., Huertas, O., Nocchi, M., Palomo, M., Monaco, P., Martinez, F., 1996, Stratigraphy and geochemical anomalies of the early Toarcian oxygen-poor interval in the Umbria-Marche Apennines (Italy). GEOBIOS 29 (4), 469-484.

Pedersen, J.H., Karlsen, D.A., Lie, J.E., Brunstad, H., di Primio, R., 2006, Maturity and source-rock potential of Palaeozoic sediments in the NE European Norhtern Permian Basin. Petroleum Geoscience 12, 13-28.

Pene, C., 1996, Hydrocarbon generation modelling in the west of the Moesian Platform, Romania. Petroleum Geoscience 2, 241-248

Pene, C., Colţoi, O., 2005, Study of the salt movement mechanisms in the Transylvanian basin. Journal of the Balkan Geophysical Society 8, Suppl. 1, 513-516.

Pene, C., Colţoi, O., 2006, Relationships between gas accumulation and salt diapirism in the Transylvanian Basin. In Proceedings of the 68st EAGE Conference & Exhibition, Extended Abstracts.

Petersen, H.I., Schovsbo, N.H., Nielsen, A.T., 2013, Reflectance measurements of zooclasts and solid bitumen in Lower Palaeozoic shales, southern Scandinavia: correlation to vitrinite reflectance. International Journal of Coal Petrology 114, 1–18.

Delivery T6b. Appendix Volume A-D February 2017 163

Overview of shale layers characteristics in Europe

PGI, 2012, Assessment of Shale Gas and Shale Oil Resources of the Lower Paleozoic Baltic-Podlasie-Lublin Basin in Poland, First Report. Warsaw, Poland). Report PGI.

PGI, 2014, (Wójcicki A., Kiersnowski H., Dyrka I., Adamczak-Biały T., Becker A., Głuszyński A., Janas M., Kozłowska A., Krzemiński L., Kuberska M., Pacześna J., Podhalańska T., Roman M., Skowroński L., Waksmundzka M.I.,) Assessment of undiscovered gas resources in selected tight gas reservoirs of Poland. Report Polish Geological Institute. PGI-NRI, Warsaw (in Polish with English summary).

Pieri, M., Mattavelli, L., 1986, Geologic framework of Italian petroleum resources. AAPG Bull., 70, 2, 103-130.

Placer, L., Vrabec, M., Celarc, B., 2010, The bases for understanding of the NW Dinarides and Istria Peninsula tectonics. Geologija 53/1, 55-86.

Pool, W., Geluk, M., Abels, J., Tiley, G., 2012, Assessment of an unusual European Shale Gas play—The Cambro-Ordovician Alum Shale, southern Sweden: Proceedings of the Society of Petroleum Engineers/European Association of Geoscientists and Engineers Unconventional Resources Conference, Vienna, Austria, March 20–22, 2012, 152339.

Popescu, B.M., 1995, Romania’s petroleum systems and their remaining potential. Petroleum Geoscience 1, 337-350

Poprawa, P., 2010, Shale Gas Potential of the Lower Palaeozoic Complex in the Baltic and Lublin-Podlasie Basins (Poland). Przegląd Geologiczny, volume 58, p. 226–249 (in Polish with English summary)

Q

Quesada, S., Robles, S., Dorronsoro, C., 1996, Caracterización de la roca madre del Lías y su correlación con el petróleo del Campo de Ayoluengo en base a análisis de cromatografía de gases e isótopos de carbono (Cuenca Vasco-Cantábrica, España). Geogaceta, 20 (1) (1996), 176-179.

R

Ramos, A., Sopeña, A., Sanchez-Moya, Y., Muñoz, A., 1996, Subsidence analysis, maturity modelling and hydrocarbon generation of the Alpine sedimentary sequence in the NW of the Iberian Ranges (Central Spain). Cuadernos de Geología Iberica, num. 21, pp. 23-53, Servicio de Publicaciones. Universidad Complutense, Madrid, 1996.

Ringhofer, W., 1986, Geological interpretation of drilling parameters for ultra deep exploration in the Vienna Basin.- In:Erdöl, Erdgas, Kohle ; 102 (1986) S.116-122, Wien, 1986.

Riva, A., Salvatori, T., Cavaliere, R., Ricchiuto, T., Novelli, L., 1986, Origin of oils in Po Basin, Northern Italy. Org. Geochem., 10, 391-400.

S

Sachsenhofer, R.F., Jelen, B., Hasenhüttl C., Dunkl, I., Rainer, T., 2001, Thermal history of Tertiary basins in Slovenia (Alpine-Dinaride-Pannonian junction). Tectonophysics, 334/2, 77-99.

Delivery T6b. Appendix Volume A-D February 2017 164

Overview of shale layers characteristics in Europe

Sachsenhofer, R.F., Shymanovskyy, V.A., Bechtel, A., Gratzer, R., Horsfield, B., Reischenbacher, D., 2010, Paleozoic source rocks in the Dnieper-Donets Basin (in Ukraine) / Pet. Geosci., v. 16, p. 377-399.

Sachsenhofer, R.F., Stummer, B., Georgiev, G., Bechtel, A., Gratzer, R., Coric, S., Dellmour, R., 2009, Depositional environment and source potential of the Oligocene Ruslar Formation (Western Black Sea). Marine and Petroleum geology, 26, 57-84.

San Leon Energy web page http://www.sanleonenergy.com/operations-and- assets/spain-cantabarian-ebro.aspx

San Leon Energy, 2012 (San Leon Energy provides Siciny-2 update. News Release, 26 June 2-12).

Sanei, H., Petersen, H.I., Schovsbo, N.H., Jiang, C., Goodsite, M.E., 2014, Petrographic and geochemical com-position of kerogen in the Furongian (U. Cambrian) Alum Shale, central Sweden: reflections on the petroleum generation potential. International Journal of Coal Petrology 158-169.

Sapunov, I., 1983, Jurassic system. - In: Geology and oil-gas prospects of Moesian Platform in Central North Bulgaria (Atanasov, A., Bokov, P. - eds.). Sofia, Technika, 18-28 (in Bulgarian).

Sapunov, I., Tchoumatchenc, P., Atanasov, A., Marinkov, A., 1991, Central North Bulgaria during the Jurassic. Geologica Balcanica, 21, 5, 3-68 (in Russian).

Sapunov, I., Tchoumatchenco, P., 1987, Geological development of NE Bulgaria during the Jurassic. Paleontology, stratigraphy & lithology, 24, 3-59 (in Bulgarian).

Sapunov, I., Tchoumatchenco, P., 1989, Some new concepts on the lithostratigraphy of the Middle Jurassic marine sediments in West and Central Bulgaria. Review of the Bulgarian Geological Society, 50, 1, 15-25 (in Bulgarian).

Sapunov, I., Tchoumatchenco, P., Chopov, V., 1967, Some peculiarities of Early Jurassic paleogeography in Teteven area. Bulletin of Geological Institute, series of geotectonics, stratigraphy & lithology, 20, 33-62 (in Bulgarian).

Sapunov, I., Tchoumatchenco, P., Chopov, V., 1976, Early Jurassic paleoecology and stratigraphy in part of Western Bulgaria. Annuaire de l’Universite de Sofia “St. Kliment Ohridski”, Fac. Geol. & Geogr., livre 1 – Geologie, t. 67, 101-149 (in Bulgarian).

Sapunov, I., Tchoumatchenco, P., Mitov, P., 1988, Jurassic development of NW. Geologica Balcanica, 18, 1, 3-82 (in Russian).

Schovsbo, N.H., 2002, Uranium enrichment shorewards in balck shales: A case study from the Scandinavian Alum Shale. GFF 124, 107-115.

Schovsbo, N.H., 2003, Geochemical composition and provenance of Lower Palaeozoic shales deposited at the margins of Baltica. Bulletin of the Geological Society of Denmark 50, 11-27.

Schovsbo, N.H., Nielsen, A.T., Gautier, D.L., 2014, The Lower Palaeozoic shale gas play in Denmark. Geological Survey of Denmark and Greenland Bulletin 31, 19–22.

Delivery T6b. Appendix Volume A-D February 2017 165

Overview of shale layers characteristics in Europe

Schovsbo, N.H., Nielsen, A.T., Klitten, K., Mathiesen, A., Rasmussen, P., 2011, Shale gas investigations in Denmark: Lower Palaeozoic shales on Bornholm. Geological Survey of Denmark and Greenland Bulletin 23, 9-12.

Schovsbo, N.H., Nielsen, A.T., Nicolas, G., Petersen, H.I., Stouge, S., 2012, Thermal maturity of Lower Palaeozoic shales in north-western Europe: Calibration of proxies. EAGE Meeting in Copenhagen 2012. Extended abstract.

Schulz, H.-M., Biermann, S., van Berk, W., Krüger, M., Straaten, N., Bechtel, A., Wirth, R., Lüders, V., Schovsbo, N.H., Crabtree, S., 2015, From shale oil to biogenic shale gas: retracing organic-inorganic inter-actions in the Alum Shale (Middle Cambrian-Lower Ordovician) in southern Sweden. AAPG Bulletin 99, 927–956.

Seghedi, A., Vaida, M., Iordan, M., Verniers, J., 2005, Paleozoic evolution of the Romanian part of the Moesian Platform: On overview. Geologica Belgica 8/4, 99-120

Serrano, O., Delmas, J., Hanot, F., Vially, R., Herbin, .JP., Huel, P., Tourlière, B., 2006, Le Bassin d’Aquitaine : valorisation des données sismiques, cartographie structurale et potentiel pétrolier. Ed. BRGM, 245 p., 142 figures, 17 tableaux, 17 annexes. (In French).

Shale Gas Research Group, 2011, Hydrocarbon Potential and Prospects of NE Bulgaria and Offshore Black Sea – An Overview.”Sofia, Bulgaria, 26 January, 41 p.

Shell exploration. Documentation from exploration activites in Skåne 2008-2011, Sveriges geologiska undersökning. Dnr 212-924-2011.

Sivhed, U., Wikman, H., Erlström, M., 1999, Beskrivning till berggrundskartorna 1C Trelleborg NV och NO samt 2C Malmö SV, SO, NV och NO. Sveriges geologiska undersökning, Af 191-196, 198. 143 p.

Spasov, H., 1989, Litho-stratigraphy of Ordovician-Silurian deposits in Bulgaria. XIV congress CBGA – Extended Abstracts, Sofia, 648-651.

Šram, D., Rman, N., Rižnar, I., Lapanje, A., 2015, The three-dimensional regional geological model of the Mura-Zala Basin, northeastern Slovenia = Tridimenzionalni regionalni geološki model Mursko-zalskega bazena, severovzhodna Slovenija. Geologija, 58/2: 139-154.

Stefani, M., Burchell, M., 1990, Upper Triassic (Rhaetic) argillaceous sequences in northern Italy: depositional dynamics and source potential, in Huc, A.Y., ed., Deposition of Organic Facies, AAPG Studies in Geology, 30, American Association of Petroleum Geologists, p. 93-106.

Szalay, Á., Koncz, I., 1991, Genetic relations of hydrocarbons in the Hungarian part of the Pannonian Basin. In: Spencer, A.M. (Ed.), Generation, Accumulation and Production of Europe’s Hydrocarbons. Special Publication of the European Association of Petroleum Geoscientists, vol. 1, pp. 317-322.

Szántó, Zs., Tóth, M., 2002, Variations in organic geochemistry and lithology of a carbonate sequence deposited in a backplatform Basin (Triassic, Hungary): Organic Geochemistry 33, 1571-1591.

Delivery T6b. Appendix Volume A-D February 2017 166

Overview of shale layers characteristics in Europe

T

Tari, G., Báldi, T., Báldi-Beke, M., 1993, Paleogene retroarc flexural basin beneath the Neogene Pannonian Basin d A geodynamic model. Tectonophysics 226, 433-455

Tari, G., Dicea, O., Faulkerson, J., Georgiev, G., Popov, S., Stefanescu, M., Weir, G. 1997, Cimmerian and Alpine Stratigraphy and Structural Evolution of the Moesian Platform (Romania/Bulgaria). – In: A. G. Robinson, ed., Regional and Petroleum geology of the Black Sea and Surrounding regions: AAPG Memoir 68, p. 63-90.

Tenchov, Y. (ed.), 1993, Glossary of the Formal Lithostratigraphic units in Bulgaria (1882-1992). Sofia, BAS, 397 p. (in Bulgarian).

Thomsen, E., 1984, A coalification study of Lower Palaeozoic deposits from Denmark and Sweden. GEUS report 36.

Tišljar, J., Vlahović, I., Velić, I., Sokač, B., 2002, Carbonate Platform megafacies of the Jurassic and Cretaceous Deposits of the Karst Dinarides.– Geologia Croatica, 55/2, 139–170.

Todorov, I., 1990, Integrity maturity assessment of Carboniferous organic matter in Dobrudja coal basin. PhD thesis, Sofia University, 195 p.

Todorov, I., Mandova, E., Siakov, G., 1992, Paleotemperature models from vitrinite reflectance data in Upper Carboniferous strata of Dobrudja coal basin. Annuaire de l’Universite de Sofia “St. Kliment Ohridski”, Fac. Geol. & Geogr., livre 1 – Geologie, t. 82, 131 -147 (in Bulgarian).

Todorov, I., Schegg, R., Chochov, S., 1992, Maturity studies in the Carboniferous Dobroudja coal basin (NE Bulgaria) – coalification, clay diagenesis and thermal modeling. International Journal of Coal Geology, 161-185.

Tornaghi, M.E., Premoli Silva, I., Ripepe, M., 1989, Lithostratigraphy and planktonic foraminiferal biostratigraphy of the Aptian-Albian ‘‘Scisti a Fucoidi’’ in the Piobbico core, Marche, Italy: Background for cyclostratigraphy. Riv.Ital. Paleont. Strat., 95:223–264.

Trabucho-Alexandre, A., Dirkx, R., Veld H., Klaver G., de Boer, P.L. 2012, Toarcian black shales in the Dutch Central Graben; record of energetic, variable depositional conditions during an oceanic anoxic event. Journal of Sedimentary Research, 82(2), 104–120.

U

V

Vaida, M., Seghedi, A., Verniers, J., 2005, Northern Gondwanan affinity of the East Moesian Terrane based on chitinozoans. Tectonophysics special Issue on the Carpathians/Pannonian System. Tectonophysics, 410, 379-387

Vaida, M., Verniers, J., 2005, Biostratigraphy and paleogeography of Lower Devonian chitinozoans, from East and West Moesia, Romania. Geologica Belgica 8/4, 121-130

Delivery T6b. Appendix Volume A-D February 2017 167

Overview of shale layers characteristics in Europe

Vaida, M., Verniers, J., 2006, Chitinozoan implications in the palaeogeography of the East Moesia, Romania. Palaeogeography, Palaeoclimatology, Palaeoecology, 241, 561- 571

Van Hulten, F.F.N., 2012, Devono-carboniferous carbonate platform systems of The Netherlands. Geologica Belgica 15, 284- 296.

Vandenberghe, N., Dusar, M., Boone, P., Fan, L.S., Voets, R., Bouckaert J., 2000, The Merksplas-Beerse Geothermal Well (17W265) and the Dinantian Reservoir. Geologica Belgica 3/3-4 349-367

Vandewijngaerde, W., Nzekwe, O., Piessens, K., Dusar, M., 2013, The potential of organic rich roof shales in coal sequences: evaluation of Westphalian samples in well KB174, Campine Basin, Belgium.

Vandewijngaerde, W., Piessens, K., Krooss, B., Bertier, P., Swennen, R. 2014, Influence ofpalaeoenvironment and palaeogeography on source rock potential and theoretical gas storage capacity of roof shales (drilling KB174), Hechtel-Hoef, Campine Basin, Belgium. Conference paper, MECC 2014.

Védrine, S., Lasseur, E., 2011, 3D paleogeography and facies distribution of the Lias deposits in the Paris Basin, France: Study to evaluate the Shale Oil Potential in the Paris Basin. Confidential report, RP-59611-FR, 334p.

Verreussel, R.M.C.H., Zijp, M.H.A.A., Nelskamp, S., Wasch,L., de Bruin, G., ter Heege J., ten Veen, J., 2013, Pay-zone identification workflow for shale gas in the Posidonia Shale Formation, the Netherlands, First Break Volume 31, February 2013.

Vető, I., Hetényi, M., 1991, Fate of organic carbon and reduced sulphur in dysoxic- anoxic Oligocene facies of the central Paratethys (Carpathian Mountains and Hungary). In: Tyson, R.V., Pearson, T.H. (Eds.), Modern and Ancient Continental Shelf Anoxia. Geological Society Special Publication, vol. 58, pp. 449-460.

Vető, I., Hetényi, M., Hámor-Vidó, M., Hufnagel, H., Haas, J., 2000, Anaerobic degradation of organic matter controlled by productivity variation in a restricted late Triassic Basin: Organic Geochemistry 31, 439-452.

Vető, I., Nagymarosy A., Brukner-Wein, A., Hetényi, M., Sajgó, Cs., 1999, Salinity changes control, isotopic composition and preservation of the organic matter: the Oligocene Tard Clay, Hungary, revisited. In: 19th International Meeting on Organic Geochemistry, Abstract Vol., pp. 411-412.

Vinogradov, C., Sindilar, V., Olaru, R., Stan, L., Popescu, M., Arsene, S., 1999, Sequences of the source rocks from the central part of the Moesian Platform. Implications in the hydrocarbons accumulation. Romanian oil review, p. 13-22 (in Romanian)

Vlahović, I., Tišljar, J., Velić, I., Matičec, D., 2005, Evolution of the Adriatic Carbonate Platform: Palaeogeography, main events and depositional dynamics. - Palaeogeography, Palaeoclimatology, Palaeoecology, 220, 333-360.

Völgyi, et al., 1985, Oil and gas occurences of Hungary (in Hungarian): Manuscript, GEOS, Budapest

Delivery T6b. Appendix Volume A-D February 2017 168

Overview of shale layers characteristics in Europe

W

Weniger, P., Francu, J., Krooss, B.M., Buzek F., Hemza, P., Littke, R., 2012, Geochemical and stable carbon isotopic composition of coal-related gases from the SW Upper Silesian Coal Basin, Czech Republic. Organic Geochemistry, 53, 153-165 (IF 2,79)

Wenselaers, P., Dusar, M., van Tongeren, P.C.H., 1996, Steenkoollaag methaangaswinning in het Kempisch kolenbekken – Het proefproject te Peer. Report of the Ministry of the Flemisch Community (EWBL). 67p.

Wessely, G., Beitr, V., Draxler, I., Gangl, P., Gottschling, P., Heinrich, M., Hofmann, Th., Lenhardt, W., Matura, A., Pavuza, R., Peresson, H., Sauer, R., 2006, Niederösterreich. Geologie der österreichischen Bundesländer. Geol. Bundesanstalt, 416 S., ill., Wien.

Więcław, D., Kotarba, M.J., Kosakowski, P., Kowalski, A., Grotek, I., 2010, Habitat and hydrocarbon potential of the lower Paleozoic source rocks in the Polish part of the Baltic region. Geol. Quart., 54 (2): 159-182. Warszawa.

Wrang, P., 1984, Organic Geochemical Investiation of Selected Palaeozoic Samples from Sweden. GEUS report 43.

X

Y

Yanev, S., 2000, Paleozoic terranes of the Balkan Peninsula in the framework of Pangea assembly. Paleogeography, Paleoclimatology, Paleoecology, 161, 151-177.

Yans, J., Dusar, M., Swennen, R., Delcambre, B., Cornet, C., Rippen, D., Goemaere, E., 2013, Shale Gas in Belgium? Proceedings. Geologica Belgica: Black shales in Belgium? Namur: 11-12/10/13.

Z

Zdanavičiūtė, O., Lazauskienė, J., 2007, The Petroleum potential of the Silurian succession in Lithuania. Journal of Petroleum Geology. 325-337.

Zdanavičiūtė, O., Lazauskienė, J., 2009, Organic matter of Early Silurian succession – the potential source of unconventional gas in Lithuania. Baltica. Vol. 22, No. 2. 89-98.

Zdanavičiūtė, O., Sakalauskas, K., (eds.) 2001, Petroleum Geology of Lithuania and Southeastern Baltic. Vilnius. 204 p.

Zijp, M., ten Veen, J., Ventra, D., Verreussel, R., van Laerhoven, L., Boxem, T., 2014, New Insights From Jurassic Shale Characterization: Strenghten Subsurface Data With Outcrop Analogues.

Zijp, M.H.A.A., Nelskamp, S., Verreussel, R., ter Heege, J., 2015, The Geverik Member of the Carboniferous Epen Formation, Shale Gas Potential in Western Europe, IPTC- 18410-MS.

Delivery T6b. Appendix Volume A-D February 2017 169

Overview of shale layers characteristics in Europe

Zijp, M.H.A.A., Nelskamp, S.N., Schavemaker, Y.A., ten Veen, J.H., ter Heege, J.H., 2013, Multidisciplinary Approach for Detailed Characterization of Shale Gas Reservoirs, a Netherlands Showcase. Offshore Technology Conference, Brasil, OTC-2483-MS.

Zijp, M.H.A.A., ten Veen J., Verreussel, R., ter Heege, J., Ventra, D., Martin, J., 2015, Shale gas formation research: from well logs to outcrop - and back again. First Break Volume 33, February 2015.

Zijp, M.H.A.A., ter Heege, J., 2014, Shale gas in the Netherlands: current state of play. International Shale Gas & Oil Journal, Volume 2, Issue 1, February 2014.

Zilahi-Sebess, l., Gyuricza, Gy., et al. 2012, Gödöllő geothermal concession report: Eötvös Lorand Geophys. Inst.

Delivery T6b. Appendix Volume A-D February 2017 170