An Annotated Bibliography of the Benthic Marine Algae of Alaska

Total Page:16

File Type:pdf, Size:1020Kb

An Annotated Bibliography of the Benthic Marine Algae of Alaska ADF&G JECHN ICAL DATA REPORT NO. 31 STATE OF A.LAS KA (Lirn ited Distribution) Jay S. Hammond, Governor AN ANNOTATED BIBLIOGRAPHY OF THE BENTHIC MARINE ALGAE OF ALASKA By: Sandra C. Lindstrom ALASKA DEPARTMENT OF F ISH ATID GAME James W. Brooks Subport Building, Juneau, Alaska 99801 Commissioner ADF&G TECHNICAL DATA REPORTS This series of reports is designed to facilitate prompt reporting of data from studies conducted by the Alaska Department of Fish and Game, especially studies which may be of direct and immediate interest to scientists of other agencies. The primary purpose of these reports is presentation of data. Descri ption of programs and data col 1ecti on methods is included only to the extent required for interpretation of the data. Analysis is general 1y 1 imited to that neces- sary for clarification of data collection methods and interpretation of the basic data. No attempt is made in these reports to present analysis of the data relative to its ultimate or intended use. Data presented in these reports is intended to be final , however, some revisions may occasional ly be necessary. Minor revision will be made via errata sheets. Major revisions will be made in the form of revised reports. AN ANNOTATED BIBLIOGRAPHY OF THE BENTHIC MARINE ALGAE OF ALASKA Sandra C . Lindstrom Alaska Department of Fish and Game Division of Commercial Fisheries Juneau, Alaska TABLE OF CONTENTS Acknowledgments ...................................... .,. ................ 1 Introduction ............................................................. 1 Content of Bibliography ................................................. 3 Systematic List of Alaska Algae Chlorophyta .......................................................... 5 Phaeophyta .......................................................... 7 Rhodophyta ..........................................................10 Species Bibliographies Chlorophyta ..........................................................18 Phaeophyta ..........................................................44 Rhodophyta ..........................................................86 Literature Bibliography ................................................158 Index ..................................................................166 ACKNOWLEDGMENTS I would like to thank the following people who provided information for this bibliography: N. I. Calvin, J. H. Gnagy, D. Howe, H. W. Johansen, K. V. Koski, P. A. Lebednik, D. Lunsford, J. F. Palmisano, R. F. Scagel, and M. J. Wynne. I particularly appreciated the critical comments of P. A. Lebednik and M. J. Wynne *om their perusal of the first draft of the manu- script. I would also like to acknowledge the help of the following people who provided identifications of specimens I sent them from Alaska: I. A. Abbott, M. D. Guiry, H. W. Johansen, and T. F. Mumford, Jr. Finally, I would like to thank the following people for their help: D. C. Barilotti, for his encouragement; R. E. Foreman, for inviting me to spend a summer at the University of British Columbia; and C. L. Rosier, for believing in seaweeds. INTRODUCTION . .A Brief History For anyone interested in studying the marine algae of Alaska, the lack of a single reference work to the flora of the area is an immediate and almost over- whelming handicap. This volume attempts to fill that void on an interim basis by providing within one cover references to all of the published and some of the unpublished work on the seaweeds of this area. Records of seaweed collections in Alaska before the turn of the century are described by Setchell and Gardner (1903). Their account of these early collections is utilized in the following narrative. Papenfuss (in Abbott and Hollenberg, 1976) also provides a very readable phycological history of Pacific North America. The first collection made in the vicinity of Alaska was by Steller, who visited the shores of Kamchatka between 1742 and 1745. Algae collected by him were described by Gmelin in 1768. The first algae collected in the area popularly known as the Pacific Northwest were taken by Menzies, who visited this area in a trading ship between 1779 and 1786 and later accompanied Vancouver on his exploratory voyages in the Northwest, including Alaska, between April 1791 and October 1795. Menzies' collections were figured and described by Turner in publications which appeared between 1808 and 1819. Several species collected by Menzies were named and imperfectly described by Esper in 1802 from fragments sent him by Turner without the latter's suspicion of how they were to be used. Chamisso collected many algal specimens on Von Kotzebue's expedition between 1816 and 1817, which included a stop at Unalaska, and these specimens were described chiefly by C . Agardh in 1821 and 1822. In 1826 to 1829, Postels and Mertens accompanied Lutke to the Northwest coast. Mertens made notes, some of which were published in 1829. Postels made a series of magnificent drawings which were later published with Ruprecht in 1840. Kastalsky, on another of Lutke's ships, also collected material which was utilized by Postels and Ruprecht in their Illustrationes Algarum. Collections were made at Sitka, the Alaska Peninsula, Unalaska, the Pribilof Islands, and Kamchatka . One of the most valuable phycology references to Alaska and the Northwest coast came from a 1851 publication by Ruprecht on collections made in the Sea of Okhotsk by Redovski as well as by M~osnessenskiand Middendorf and also by Steller. Although dealing with another area, this work contains valuable references to species and specimens from Alaska and the Northwest with notes on their occur- rence there and comparisons with similar or identical species from other areas. In 1889, Kjellman enumerated the algae collected during Nordenskjold's voyage in 1880 through the Bering Strait to Port Clarence and St. Lawrence Island. In 1899, Setchell brought together and published records of algae collected in the Pribilof Islands by a variety of people. Many of the records of Alaska algae from the 1903 paper by Setchell and Gardner came from an extensive collecting trip made in 1899 by the University of California and including Jepson, Hunt, Lawson, and Setchell . This group collected at St. Michael, Cape Nome, Unalaska Bay, Delarof Harbor on Unga Island, Karluk, Uyak Bay, St. Paul (Kodiak Island) , Orca, Juneau, and Sitka. Setchell and Gardner also utilized collections made by private individuals and commercial com- panies in Alaska that had been deposited in the University of California herbarium. These collections came from various areas in the territory, including the eastern Bering Sea, St. Paul Island, Norton Sound, Morzhovoi Bay, Agattu and Kiska Islands in the Aleutians, Yakutat Bay and Sitka. In June and July of 1899, the Harriman expedition also visited Alaska. Marine algae were collected at Annette Island, Wrangell, Juneau, Sitka, Glacier Bay, Prince William Sound (near Orca and in Virgin Bay), Cook Inlet, Kukak Bay, Kodiak Island, and Popof and Unga Islands in the Shumagin group. These specimens were identified by Saunders, who was also a member of the expedition, in 1901. Between 1913 and 1915, the U . S . Bureau of Soils sent two expeditions to Alaska to assess the availability of commercial quantities of the kelps Alaria fistulosa , Macrocystis integrifolia , and Nereocystis luetkeana . Reports of these two expeditions were written by Frye (1915) and Rigg (1915). Several collections by Japanese phycologists have also been made in Alaska (Okamura, 1933; Tatewake and Kobayashi, 1934; Chihara, 1967) . Collections made during the summers of 1959-1960, 1962-1966, and 1968-1969 under the direction of Dr. Robert F . Scagel of the University of British Columbia have included both intertidal and subtidal sites in Alaska from Dixon Entrance to the Gulf of Alaska, including Kodiak Island, and through the inner Aleutian Islands as far as Attu Island. Publications from these collections are currently limited to papers on Laminaria and the distribution of the Laminariales by Druehl (1968, 1970) and on Hedophyllum and Alaria by Widdowson (1965, 1971), and a paper on Porphyra by Conway, Mumford, and Scagel (1975). Another collecting trip sponsored by the University of British Columbia was made to Southeastern Alaska in January 1971. Markham, McBride, and Newroth (1972) report on the species collected during that voyage. Following the Good Friday earthquake in 1964, the National Academy of Sciences sponsored a biological expedition to Prince William Sound in the late spring and early summer of 1965. Algal specimens from the 33 stations were collected and identified by Johansen and reported in 1971. A biological assessment program preceding and following the two atomic bomb tests on Amchitka Island provided extensive information on seaweed distri- butions and biological interactions on this island between 1967 and 1973 (Burgner, --et al., 1968, 1969, 1971a, 1971b, 1972; Dayton, 1975; Estes, 1974; Estes and Palmisano, 1974; Lebednik, 1973; Lebednik and Tutmark, 1970; Lebednik, et-- al., 1971; Nakatani, --et al., 1973, 1974; Palmisano, 1975; Weinmann, 1969; Wynne, 1969, 1970a, 1970b, 1971a, 1971b) . Lebednik (personal communication) has collected seaweeds in Alaska both under the auspices of the Amchitka program and on his own. Results of a seaweed survey made by the University of Alaska in northern Southeastern Alaska and on the north side of the Alaska Peninsula in 1970 were published the following year (McRoy, --et al., 1971). The university has also been involved
Recommended publications
  • Algae & Marine Plants of Point Reyes
    Algae & Marine Plants of Point Reyes Green Algae or Chlorophyta Genus/Species Common Name Acrosiphonia coalita Green rope, Tangled weed Blidingia minima Blidingia minima var. vexata Dwarf sea hair Bryopsis corticulans Cladophora columbiana Green tuft alga Codium fragile subsp. californicum Sea staghorn Codium setchellii Smooth spongy cushion, Green spongy cushion Trentepohlia aurea Ulva californica Ulva fenestrata Sea lettuce Ulva intestinalis Sea hair, Sea lettuce, Gutweed, Grass kelp Ulva linza Ulva taeniata Urospora sp. Brown Algae or Ochrophyta Genus/Species Common Name Alaria marginata Ribbon kelp, Winged kelp Analipus japonicus Fir branch seaweed, Sea fir Coilodesme californica Dactylosiphon bullosus Desmarestia herbacea Desmarestia latifrons Egregia menziesii Feather boa Fucus distichus Bladderwrack, Rockweed Haplogloia andersonii Anderson's gooey brown Laminaria setchellii Southern stiff-stiped kelp Laminaria sinclairii Leathesia marina Sea cauliflower Melanosiphon intestinalis Twisted sea tubes Nereocystis luetkeana Bull kelp, Bullwhip kelp, Bladder wrack, Edible kelp, Ribbon kelp Pelvetiopsis limitata Petalonia fascia False kelp Petrospongium rugosum Phaeostrophion irregulare Sand-scoured false kelp Pterygophora californica Woody-stemmed kelp, Stalked kelp, Walking kelp Ralfsia sp. Silvetia compressa Rockweed Stephanocystis osmundacea Page 1 of 4 Red Algae or Rhodophyta Genus/Species Common Name Ahnfeltia fastigiata Bushy Ahnfelt's seaweed Ahnfeltiopsis linearis Anisocladella pacifica Bangia sp. Bossiella dichotoma Bossiella
    [Show full text]
  • Colpomenia Sinuosa (Mertens Ex Roth) Derbès & Solier, 1851
    Colpomenia sinuosa (Mertens ex Roth) Derbès & Solier, 1851 AphiaID: 145857 . Chromista (Reino) > Harosa (Subreino) > Heterokonta (Infrareino) > Ochrophyta (Filo) > Phaeista (Subfilo) > Limnista (Infrafilo) > Fucistia (Superclasse) > Phaeophyceae (Classe) > Ectocarpales (Ordem) > Scytosiphonaceae (Familia) © Vasco Ferreira Sinónimos Asperococcus sinuosus (Mertens ex Roth) Bory de Saint-Vincent, 1832 Asperococcus sinuosus (C.Agardh) Zanardini, 1841 Colpomenia sinuosa f. typica Setchell & N.L.Gardner, 1925 Encoelium sinuosum (Mertens ex Roth) C.Agardh, 1820 Encoelium vesicatum (Harvey) Kützing, 1849 1 Hydroclathrus sinuosus (Mertens) ex Roth) Zanardini, 1843 Soranthera leathesiformis P.Crouan & H.Crouan, 1865 Stilophora sinuosa (Mertens ex Roth) C.Agardh, 1827 Stilophora vesicata Harvey, 1834 Tremella cerina Clemente, 1807 Tremella rugosula Clemente, 1807 Ulva sinuosa Mertens ex Roth, 1806 Referências additional source Guiry, M.D. & Guiry, G.M. (2019). AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. , available online at http://www.algaebase.org [details] basis of record Guiry, M.D. (2001). Macroalgae of Rhodophycota, Phaeophycota, Chlorophycota, and two genera of Xanthophycota, in: Costello, M.J. et al. (Ed.) (2001). European register of marine species: a check-list of the marine species in Europe and a bibliography of guides to their identification. Collection Patrimoines Naturels, 50: pp. 20-38[details] additional source Silva, P.C.; Basson, P.W.; Moe, R.L. (1996). Catalogue of the Benthic Marine Algae of the Indian Ocean. University of California Publications in Botany. 79, xiv+1259 pp. ISBN 0–520–09810–2., available online athttps://books.google.com/books?id=vuWEemVY8WEC&pg=PA5 [details] additional source Fredericq, S., T. O. Cho, S. A. Earle, C. F. Gurgel, D. M. Krayesky, L.
    [Show full text]
  • Belgian Register of Marine Species
    BELGIAN REGISTER OF MARINE SPECIES September 2010 Belgian Register of Marine Species – September 2010 BELGIAN REGISTER OF MARINE SPECIES, COMPILED AND VALIDATED BY THE VLIZ BELGIAN MARINE SPECIES CONSORTIUM VLIZ SPECIAL PUBLICATION 46 SUGGESTED CITATION Leen Vandepitte, Wim Decock & Jan Mees (eds) (2010). Belgian Register of Marine Species, compiled and validated by the VLIZ Belgian Marine Species Consortium. VLIZ Special Publication, 46. Vlaams Instituut voor de Zee (VLIZ): Oostende, Belgium. 78 pp. ISBN 978‐90‐812900‐8‐1. CONTACT INFORMATION Flanders Marine Institute – VLIZ InnovOcean site Wandelaarkaai 7 8400 Oostende Belgium Phone: ++32‐(0)59‐34 21 30 Fax: ++32‐(0)59‐34 21 31 E‐mail: [email protected] or [email protected] ‐ 2 ‐ Belgian Register of Marine Species – September 2010 Content Introduction ......................................................................................................................................... ‐ 5 ‐ Used terminology and definitions ....................................................................................................... ‐ 7 ‐ Belgian Register of Marine Species in numbers .................................................................................. ‐ 9 ‐ Belgian Register of Marine Species ................................................................................................... ‐ 12 ‐ BACTERIA ............................................................................................................................................. ‐ 12 ‐ PROTOZOA ...........................................................................................................................................
    [Show full text]
  • Plant Life Magill’S Encyclopedia of Science
    MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D.
    [Show full text]
  • BROWN ALGAE [147 Species] (
    CHECKLIST of the SEAWEEDS OF IRELAND: BROWN ALGAE [147 species] (http://seaweed.ucg.ie/Ireland/Check-listPhIre.html) PHAEOPHYTA: PHAEOPHYCEAE ECTOCARPALES Ectocarpaceae Acinetospora Bornet Acinetospora crinita (Carmichael ex Harvey) Kornmann Dichosporangium Hauck Dichosporangium chordariae Wollny Ectocarpus Lyngbye Ectocarpus fasciculatus Harvey Ectocarpus siliculosus (Dillwyn) Lyngbye Feldmannia Hamel Feldmannia globifera (Kützing) Hamel Feldmannia simplex (P Crouan et H Crouan) Hamel Hincksia J E Gray - Formerly Giffordia; see Silva in Silva et al. (1987) Hincksia granulosa (J E Smith) P C Silva - Synonym: Giffordia granulosa (J E Smith) Hamel Hincksia hincksiae (Harvey) P C Silva - Synonym: Giffordia hincksiae (Harvey) Hamel Hincksia mitchelliae (Harvey) P C Silva - Synonym: Giffordia mitchelliae (Harvey) Hamel Hincksia ovata (Kjellman) P C Silva - Synonym: Giffordia ovata (Kjellman) Kylin - See Morton (1994, p.32) Hincksia sandriana (Zanardini) P C Silva - Synonym: Giffordia sandriana (Zanardini) Hamel - Only known from Co. Down; see Morton (1994, p.32) Hincksia secunda (Kützing) P C Silva - Synonym: Giffordia secunda (Kützing) Batters Herponema J Agardh Herponema solitarium (Sauvageau) Hamel Herponema velutinum (Greville) J Agardh Kuetzingiella Kornmann Kuetzingiella battersii (Bornet) Kornmann Kuetzingiella holmesii (Batters) Russell Laminariocolax Kylin Laminariocolax tomentosoides (Farlow) Kylin Mikrosyphar Kuckuck Mikrosyphar polysiphoniae Kuckuck Mikrosyphar porphyrae Kuckuck Phaeostroma Kuckuck Phaeostroma pustulosum Kuckuck
    [Show full text]
  • Getative Tissues; the GDBH Predicts Metabolic Costs Associated with Them
    J. Phycol. 35, 483±492 (1999) PHLOROTANNIN ALLOCATION AMONG TISSUES OF NORTHEASTERN PACIFIC KELPS AND ROCKWEEDS1 Kathryn L. Van Alstyne2 Department of Zoology, Oregon State University, Corvallis, Oregon 97331 James J. McCarthy III, Cynthia L. Hustead, and Laura J. Kearns Department of Biology, Kenyon College, Gambier, Ohio 43022 Optimal defense theory (ODT) predicts antiher- Abbreviations: DM, dry mass; GDBH, growth±dif- bivore defensive compounds will be allocated so ferentiation balance hypothesis; ODT, optimal de- that the most valuable or most susceptible tissues fense theory will be best defended. The growth±differentiation balance hypothesis (GDBH) predicts that defense al- location will be a result of trade-offs between growth Plants allocate materials and energy among criti- and defense. Thus, these two theories predict op- cal functions such as maintenance, growth, repro- posite allocation patterns with respect to ``valuable,'' duction, and defense (Bazazz and Grace 1997 and actively growing meristematic and reproductive tis- citations therein). It is widely assumed the total sues. ODT predicts that meristems and reproductive amount of resources available for these functions is tissues should have higher defense levels than non- limited and all of these functions have signi®cant meristematic vegetative tissues; the GDBH predicts metabolic costs associated with them. Consequently, the defense levels of meristems and reproductive over evolutionary time there should be selection for tissues will be lower than vegetative tissues. We ex- individuals to distribute resources among functions amined allocation patterns of phlorotannins in 21 in ways that maximize overall ®tness, assuming that species of kelps (Order Laminariales) and rock- allocation strategies are not limited by physiological weeds (Order Fucales) from nine sites on the west or other constraints.
    [Show full text]
  • A Comprehensive Kelp Phylogeny Sheds Light on the Evolution of an T Ecosystem ⁎ Samuel Starkoa,B,C, , Marybel Soto Gomeza, Hayley Darbya, Kyle W
    Molecular Phylogenetics and Evolution 136 (2019) 138–150 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A comprehensive kelp phylogeny sheds light on the evolution of an T ecosystem ⁎ Samuel Starkoa,b,c, , Marybel Soto Gomeza, Hayley Darbya, Kyle W. Demesd, Hiroshi Kawaie, Norishige Yotsukuraf, Sandra C. Lindstroma, Patrick J. Keelinga,d, Sean W. Grahama, Patrick T. Martonea,b,c a Department of Botany & Biodiversity Research Centre, The University of British Columbia, 6270 University Blvd., Vancouver V6T 1Z4, Canada b Bamfield Marine Sciences Centre, 100 Pachena Rd., Bamfield V0R 1B0, Canada c Hakai Institute, Heriot Bay, Quadra Island, Canada d Department of Zoology, The University of British Columbia, 6270 University Blvd., Vancouver V6T 1Z4, Canada e Department of Biology, Kobe University, Rokkodaicho 657-8501, Japan f Field Science Center for Northern Biosphere, Hokkaido University, Sapporo 060-0809, Japan ARTICLE INFO ABSTRACT Keywords: Reconstructing phylogenetic topologies and divergence times is essential for inferring the timing of radiations, Adaptive radiation the appearance of adaptations, and the historical biogeography of key lineages. In temperate marine ecosystems, Speciation kelps (Laminariales) drive productivity and form essential habitat but an incomplete understanding of their Kelp phylogeny has limited our ability to infer their evolutionary origins and the spatial and temporal patterns of their Laminariales diversification. Here, we
    [Show full text]
  • Taxonomic and Molecular Phylogenetic Studies in The
    Taxonomic and molecular phylogenetic studies in the Scytosiphonaceae (Ectocarpales, Phaeophyceae) [an abstract of Title dissertation and a summary of dissertation review] Author(s) Santiañez, Wilfred John Eria Citation 北海道大学. 博士(理学) 甲第13137号 Issue Date 2018-03-22 Doc URL http://hdl.handle.net/2115/70024 Rights(URL) https://creativecommons.org/licenses/by-nc-sa/4.0/ Type theses (doctoral - abstract and summary of review) Additional Information There are other files related to this item in HUSCAP. Check the above URL. File Information Wilfred_John_Eria_Santiañez_abstract.pdf (論文内容の要旨) Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Abstract of Doctoral Dissertation Degree requested Doctor of Science Applicant’s name Wilfred John Eria Santiañez Title of Doctoral Dissertation Taxonomic and molecular phylogenetic studies in the Scytosiphonaceae (Ectocarpales, Phaeophyceae) 【カヤモノリ科(褐藻綱シオミドロ目)の分類学的および分子系統学的研究】 The systematics of the brown algal family Scytosiphonaceae poses an interesting question due to the inconsistencies between the taxonomies and molecular phylogenies of its members. The complexity of the Scytosiphonaceae is also highlighted in the discovery of several new species possessing morphological characters that were intermediate to at least two genera, consequently blurring generic boundaries. As such, it has been widely accepted that traditional characters used to define genera in the family (e.g., thallus morphology, thallus construction, and shape and nature of plurangial sori) were unreliable. In this study, I attempted to resolve some of the glaring problems in the taxonomy and molecular phylogeny of several genera in the Scytosiphonaceae by integrating information on their morphologies, molecular phylogenies, and life histories. I focused my studies on the relatively under-examined representatives from tropical to subtropical regions of the Indo-Pacific as most studies have been conducted on the subtropical to temperate members of the family.
    [Show full text]
  • Ectocarpus: an Evo‑Devo Model for the Brown Algae Susana M
    Coelho et al. EvoDevo (2020) 11:19 https://doi.org/10.1186/s13227-020-00164-9 EvoDevo REVIEW Open Access Ectocarpus: an evo-devo model for the brown algae Susana M. Coelho1* , Akira F. Peters2, Dieter Müller3 and J. Mark Cock1 Abstract Ectocarpus is a genus of flamentous, marine brown algae. Brown algae belong to the stramenopiles, a large super- group of organisms that are only distantly related to animals, land plants and fungi. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity. For many years, little information was available concerning the molecular mechanisms underlying multicellular development in the brown algae, but this situation has changed with the emergence of Ectocarpus as a model brown alga. Here we summarise some of the main questions that are being addressed and areas of study using Ectocarpus as a model organism and discuss how the genomic information, genetic tools and molecular approaches available for this organism are being employed to explore developmental questions in an evolutionary context. Keywords: Ectocarpus, Life-cycle, Sex determination, Gametophyte, Sporophyte, Brown algae, Marine, Complex multicellularity, Phaeoviruses Natural habitat and life cycle Ectocarpus is a cosmopolitan genus, occurring world- Ectocarpus is a genus of small, flamentous, multicellu- wide in temperate and subtropical regions, and has been lar, marine brown algae within the order Ectocarpales. collected on all continents except Antarctica [1]. It is pre- Brown algae belong to the stramenopiles (or Heter- sent mainly on rocky shores where it grows on abiotic okonta) (Fig. 1a), a large eukaryotic supergroup that (rocks, pebbles, dead shells) and biotic (other algae, sea- is only distantly related to animals, plants and fungi.
    [Show full text]
  • Constancea 83.15: SEAWEED COLLECTIONS, NATURAL HISTORY MUSEUM 12/17/2002 06:57:49 PM Constancea 83, 2002 University and Jepson Herbaria P.C
    Constancea 83.15: SEAWEED COLLECTIONS, NATURAL HISTORY MUSEUM 12/17/2002 06:57:49 PM Constancea 83, 2002 University and Jepson Herbaria P.C. Silva Festschrift Marine Algal (Seaweed) Collections at the Natural History Museum, London (BM): Past, Present and Future Ian Tittley Department of Botany, The Natural History Museum, London SW7 5BD ABSTRACT The specimen collections and libraries of the Natural History Museum (BM) constitute an important reference centre for macro marine algae (brown, green and red generally known as seaweeds). The first collections of algae were made in the sixteenth and seventeenth centuries and are among the earliest collections in the museum from Britain and abroad. Many collectors have contributed directly or indirectly to the development and growth of the seaweed collection and these are listed in an appendix to this paper. The taxonomic and geographical range of the collection is broad and a significant amount of information is associated with it. As access to this information is not always straightforward, a start has been made to improve this through specimen databases and image collections. A collection review has improved the availability of geographical information; lists of countries for a given species and lists of species for a given country will soon be available, while for Great Britain and Ireland geographical data from specimens have been collated to create species distribution maps. This paper considers issues affecting future development of the seaweed collection at the Natural History Museum, the importance and potential of the UK collection as a resource of national biodiversity information, and participation in a global network of collections.
    [Show full text]
  • Ceramiales, Rhodophyta) from the Southwestern Atlantic Ocean
    Phytotaxa 100 (1): 41–56 (2013) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Article PHYTOTAXA Copyright © 2013 Magnolia Press ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.100.1.5 Osmundea sanctarum sp. nov. (Ceramiales, Rhodophyta) from the southwestern Atlantic Ocean RENATO ROCHA-JORGE1,6, VALÉRIA CASSANO2, MARIA BEATRIZ BARROS-BARRETO3, JHOANA DÍAZ-LARREA4, ABEL SENTÍES4, MARIA CANDELARIA GIL-RODRÍGUEZ5 & MUTUE TOYOTA FUJII6,7 1Post-Graduate Program “Biodiversidade Vegetal e Meio Ambiente”, Instituto de Botânica, Av. Miguel Estéfano, 3687, 04301-902 São Paulo, SP, Brazil. 2 Departamento de Botânica, Universidade de São Paulo, Rua do Matão 277, 05508-900 São Paulo, SP, Brazil. 3Departamento de Botânica, Universidade Federal do Rio de Janeiro, Av. Prof. Rodolpho Rocco 211, CCS, bloco A, subsolo, sala 99, 21941-902 Rio de Janeiro, RJ, Brazil. 4Departamento de Hidrobiología, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-535, 09340 Mexico, D.F. 5Departamento de Biología Vegetal (Botánica), Universidad de La Laguna, 38071. La Laguna, Tenerife, Islas Canarias, Spain. 6Núcleo de Pesquisa em Ficologia, Instituto de Botânica, Av. Miguel Estéfano, 3687, 04301-902 São Paulo, SP, Brazil. 7Author for correspondence. E-mail: [email protected] Abstract An ongoing phycological survey in the Laje de Santos Marine State Park (LSMSP) of São Paulo in southeastern Brazil revealed a previously undescribed species of Osmundea (Rhodophyta, Rhodomelaceae), which was found in the subtidal zone at a depth of 7 to 20 m. Morphological studies conducted on Osmundea specimens collected in the LSMSP revealed characteristics typical of the genus Osmundea, including two pericentral cells per each axial segment and tetrasporangia cut off randomly from cortical cells.
    [Show full text]
  • Climate-Ocean Effects on AYK Chinook Salmon
    SAFS-UW-1003 2010 Arctic Yukon Kuskokwim (AYK) Sustainable Salmon Initiative Project Final Product1 Climate-Ocean Effects on AYK Chinook Salmon Chukchi Sea by Katherine W. Myers2, Robert V. Walker2, Nancy D. Davis2, Janet L. Armstrong2, Wyatt J. Fournier2, Nathan J. Mantua2, and Julie Raymond-Yakoubian 3 2High Seas Salmon Research Program, School of Aquatic & Fishery Sciences (SAFS), University of Washington (UW), Box 355020, Seattle, WA 98195-5020, USA 3Kawerak, Inc., PO Box 948, Nome, AK 99762, USA November 2010 1Final products of AYK Sustainable Salmon Initiative (SSI) research are made available to the Initiatives partners and the public in the interest of rapid dissemination of information that may be useful in salmon management, research, or administration. Sponsorship of the project by the AYK SSI does not necessarily imply that the findings or conclusions are endorsed by the AYK SSI. ABSTRACT A high-priority research issue identified by the Arctic-Yukon-Kuskokwim (AYK) Sustainable Salmon Initiative (SSI) is to determine whether the ocean environment is a more important cause of variation in the abundance of AYK Pacific salmon (Oncorhynchus spp.) populations than marine fishing mortality. At the outset of this project, however, data on ocean life history of AYK salmon were too limited to test hypotheses about the effects of environmental conditions versus fishing on marine survival. Our goal was to identify and evaluate life history patterns of use of marine resources (habitat and food) by Chinook salmon (O. tshawytscha) and to explore how these patterns are affected by climate-ocean conditions, including documentation of local traditional knowledge (LTK) of this high-priority issue.
    [Show full text]