J. Phycol. 53, 32–43 (2017) © 2016 Phycological Society of America DOI: 10.1111/Jpy.12472

Total Page:16

File Type:pdf, Size:1020Kb

J. Phycol. 53, 32–43 (2017) © 2016 Phycological Society of America DOI: 10.1111/Jpy.12472 J. Phycol. 53, 32–43 (2017) © 2016 Phycological Society of America DOI: 10.1111/jpy.12472 ANALYSIS OF THE COMPLETE PLASTOMES OF THREE SPECIES OF MEMBRANOPTERA (CERAMIALES, RHODOPHYTA) FROM PACIFIC NORTH AMERICA1 Jeffery R. Hughey2 Division of Mathematics, Science, and Engineering, Hartnell College, 411 Central Ave., Salinas, California 93901, USA Max H. Hommersand Department of Biology, University of North Carolina at Chapel Hill, CB# 3280, Coker Hall, Chapel Hill, North Carolina 27599- 3280, USA Paul W. Gabrielson Herbarium and Department of Biology, University of North Carolina at Chapel Hill, CB# 3280, Coker Hall, Chapel Hill, North Carolina 27599-3280, USA Kathy Ann Miller Herbarium, University of California at Berkeley, 1001 Valley Life Sciences Building 2465, Berkeley, California 94720-2465, USA and Timothy Fuller Division of Mathematics, Science, and Engineering, Hartnell College, 411 Central Ave., Salinas, California 93901, USA Next generation sequence data were generated occurring south of Alaska: M. platyphylla, M. tenuis, and used to assemble the complete plastomes of the and M. weeksiae. holotype of Membranoptera weeksiae, the neotype Key index words: Ceramiales; Delesseriaceae; holo- (designated here) of M. tenuis, and a specimen type; Membranoptera; Northeast Pacific; phylogenetic examined by Kylin in making the new combination systematics; plastid genome; plastome; rbcL M. platyphylla. The three plastomes were similar in gene content and length and showed high gene synteny to Calliarthron, Grateloupia, Sporolithon, and Vertebrata. Sequence variation in the plastome Freshwater and Rueness (1994) were the first to coding regions were 0.89% between M. weeksiae and use gene sequences to address species-level taxo- M. tenuis, 5.14% between M. weeksiae and nomic problems in the Florideophyceae. Since then, M. platyphylla, and 5.18% between M. tenuis and other investigators have analyzed nuclear, plastid, M. platyphylla. We were unable to decipher the and mitochondrial DNA markers to resolve both complete mitogenomes of the three species due to higher level and species-level problems in red algae. low coverage and structural problems; however, we The major limitation of current markers is the assembled and analyzed, the cytochrome oxidase I, requirement for complete or nearly complete DNA II, and III loci and found that M. weeksiae and sequences to infer phylogenetic relationships. M. tenuis differed in sequence by 1.3%, M. weeksiae Although this is not an issue with fresh or silica gel- and M. platyphylla by 8.4%, and M. tenuis and dried material that contains large amounts of intact M. platyphylla by 8.1%. Evaluation of standard nucleic acids, DNA from historically important marker genes indicated that sequences from the herbarium specimens, including type specimens, is rbcL, RuBisCO spacer, and CO1 genes closely degraded and present only in low concentrations approximated the pair-wise genetic distances (Hughey and Gabrielson 2012). The correct applica- observed between the plastomes of the three tion of any name requires genetic analysis of type species of Membranoptera. A phylogenetic tree based material (Hughey et al. 2001, 2002, Gabrielson on rbcL sequences showed that M. tenuis and 2008a,b, Gabrielson et al. 2011, Lindstrom et al. M. weeksiae were sister taxa. Short rbcL sequences 2011, 2015a,b, Martone et al. 2012, Hind et al. were obtained from type specimens of M. dimorpha, 2014a,b, 2015, Sissini et al. 2014, Adey et al. 2015, M. multiramosa, and M. edentata and confirmed their Hernandez-Kantun et al. 2015, van der Merwe et al. conspecificity with M. platyphylla. The data support 2015). In these studies, however, targeted PCR the recognition of three species of Membranoptera methods were used to acquire small hypervariable sequences, which due to their length are not suit- 1Received 3 December 2015. Accepted 12 August 2016. 2Author for correspondence: e-mail: [email protected]. able for phylogenetic analysis. Hughey et al. (2014) Editorial Responsibility: C. Lane (Associate Editor) proposed a solution to the limitation of working 32 COMPLETE PLASTOMES OF MEMBRANOPTERA 33 with degraded DNA by analyzing the plastid and mitochondrial genomes from 12 archival herbarium MATERIALS AND METHODS specimens (including nine type specimens) of Ban- DNA extractions and PCR. DNA was isolated from herbar- giaceae using next generation sequencing method- ium specimens at Hartnell College following the precaution- ologies. Herein, we extended this methodology to ary contamination guidelines outlined by Hughey and closely and more distantly related species of North- Gabrielson (2012) and the protocol in Lindstrom et al. east Pacific florideophytes in the genus Membra- (2011). Silica gel-preserved contemporary specimens were processed at the University of North Carolina, Chapel Hill noptera Stackhouse (Delesserioideae, Delesseriaceae) following the protocol in Hughey et al. (2001). DNA from to evaluate the efficacy of plastid markers, particu- herbarium type and nontype specimens was PCR amplified larly the most commonly used marker rbcL. using the primer pair F753 (Freshwater and Rueness 1994) On the basis of morpho-anatomical characters, and R900 (50-GCGAGAATAAGTTGAGTTACCTG-30) follow- Gabrielson et al. (2012) recognized six species of ing the thermocycling methods in Lindstrom et al. (2011). Membranoptera in the Northeast Pacific: M. dimorpha This primer pair represents nucleotide positions 774–895 of N.L.Gardner (type locality: Neah Bay, Clallam the rbcL gene. Silica gel-preserved material was amplified with primer pairs F57/R753 and F753/RrbcS (Freshwater and County, Washington, USA); M. multiramosa Rueness 1994) based on the protocols in Hughey et al. N.L.Gardner (type locality: Moss Beach, San Mateo (2001). County, California, USA); M. platyphylla (Setchell & Phylogenetic analysis. Alignment of the rbcL sequences was N.L.Gardner) Kylin (type locality: Pleasant Beach, accomplished using the G-INS-1 Progressive Method in Kitsap County, Washington, USA); M. spinulosa MAFFT (Katoh and Standley 2013). Maximum likelihood (Ruprecht) Kuntze (syntype localities: Sea of analysis of the 13 Membranoptera sequences (Table 1) was per- Okhotsk and St. Paul Island, Bering Sea); M. tenuis formed using RAxML (Stamatakis 2014) with 1,000 bootstrap replicates and default parameters in Galaxy (Giardine et al. Kylin (type locality: Canoe Island, San Juan 2005, Blankenberg et al. 2010, Goecks et al. 2010) with Phy- County, Washington, USA, dredged 10–20 m codrys rubens (Linnaeus) Batters as the outgroup. Sequences depth); and M. weeksiae N.L.Gardner (type locality: of Grinnellia americana (C.Agardh) Harvey, Delesseria sanguinea Pacific Grove, Monterey County, California, USA). (Hudson) J.V.Lamouroux, Cumathamnion sympodophyllum They queried the distinctions between M. tenuis M.J.Wynne & K. Daniels, and C. decipiens (J.Agardh) and M. weeksiae and among M. multiramosa, M.J.Wynne & G.W.Saunders were included in the analysis for phylogenetic context. Bayesian analysis was executed with M. platyphylla, and M. spinulosa. Recently, on the MrBayes 3.2.1 (Huelsenbeck et al. 2001, Ronquist and basis of their analyses of mitochondrial cytochrome Huelsenbeck 2003) using the search parameters in Lindstrom oxidase 1 (COI-5P), nuclear internal transcribed et al. (2015a). The phylogenetic trees were visualized with spacers (ITS), large subunit of the ribosomal cis- TreeDyn 198.3 at Phylogeny.fr (Dereeper et al. 2008). tron (LSU), and RUBISCO large subunit (rbcL) Genomics. Genomic libraries were constructed following DNA sequences, Wynne and Saunders (2012) rec- the protocol outlined in Hughey et al. (2014) that was devel- ognized only one species, M. platyphylla, distributed oped by the High-Throughput Genomics Center (Seattle, Washington, USA). The genomic analysis was performed from British Columbia, Canada to central Califor- using standard Illumina 36 base pairs (bp) paired-end nia. All but two of their samples came from British sequencing methods. Data were assembled with default de Columbia, one from Monterey County, California novo settings in CLC Cell 4.3.0 (â2015 CLC bio, a QIAGEN and another identified as M. weeksiae from Boiler Company, Valencia, California, USA) and Velvet 1.2.08 (Zer- Bay, Oregon, USA (GenBank rbcL sequence- bino and Birney 2008) on the Bio-Linux platform (Field AF257384). et al. 2006) following the assembly steps in Hughey et al. (2014). The M. weeksiae plastome was assembled by perform- Our preliminary analysis of Membranoptera rbcL ing a Standard Nucleotide Blast search of the assembly con- sequences from northern Washington (San Juan tigs against the complete plastid genomes of Calliarthron County) to San Diego, California indicated the pres- tuberculosum (Postels & Ruprecht) E.Y.Dawson (GenBank ence of three species. To determine the correct accession KC153978), Grateloupia taiwanensis S.M.Lin & application of names and to compare rbcL H.Y.Liang (KC894740), and Chondrus crispus Stackhouse sequences with those of the entire plastid genome (HF562234). The 13 resulting contigs were oriented and as a diagnostic marker for red algal species, we joined via targeted PCR and direct Sanger sequencing. The plastid genomes of M. platyphylla and M. tenuis were assem- sequenced the plastomes from the holotype of bled by aligning the contigs from M. platyphylla and M. weeksiae, the neotype of M. tenuis collected by N. M. tenuis to the M. weeksiae plastome using a Standard L. Gardner in the absence of the type collection at Nucleotide Blast
Recommended publications
  • Newsletter 4
    PHYCOLOGICAL NEWSLETTER A PUBLICATION OF THE PHYCOLOGICAL SOCIETY OF AMERICA WINTER INSIDE THIS ISSUE: 2008 PSA Meeting 1 SPRING 2008 Meetings and Symposia 2 Editor: Courses 5 Juan Lopez-Bautista VOLUME 44 Job Opportunities 11 Department of Biological Sciences Trailblazer 28: Sophie C. Ducker 12 University of Alabama Island to honor UAB scientists 18 Tuscaloosa, AL 35487 Books 19 [email protected] Deadline for contributions 23 ∗Dr. Karen Steidinger (Florida Fish and 1 2008 Meeting of Wildlife Research Institute) presenting The Phycological Society of America a plenary talk entitled “Harmful algal blooms in North America: Common risks.” New Orleand, Louisiana, USA NUMBER 27-30 July The associated mini-symposium speakers will be Dr. Leanne Flewelling (Florida Fish he Phycological Society of America (PSA) will and Wildlife Research Institute) present- hold its 2008 annual meeting on July 27-30, ing a talk entitled “Unexpected vectors of 1 T2008 in New Orleans, Louisiana, USA. The brevetoxins to marine mammals” and Dr. meeting will be held on the campus of Loyola Jonathan Deeds (US FDA Center for Food University and is being hosted by Prof. James Wee Safety and Applied Nutrition) present- (Loyola University). The meeting will kick-off with ing a talk entitled “The evolving story of an opening mixer on the evening of Sunday, 27 July Gyrodinium galatheanum = Karlodinium and the scientific program will be Monday through micrum = Karlodinium veneficum. A ten- Wednesday, 28-30 July. The PSA banquet will be year perspective.” Wednesday evening at the Louisiana Swamp Ex- hibit at the Audubon Zoo. Optional field trips are *Dr. John W.
    [Show full text]
  • Constancea 83.15: SEAWEED COLLECTIONS, NATURAL HISTORY MUSEUM 12/17/2002 06:57:49 PM Constancea 83, 2002 University and Jepson Herbaria P.C
    Constancea 83.15: SEAWEED COLLECTIONS, NATURAL HISTORY MUSEUM 12/17/2002 06:57:49 PM Constancea 83, 2002 University and Jepson Herbaria P.C. Silva Festschrift Marine Algal (Seaweed) Collections at the Natural History Museum, London (BM): Past, Present and Future Ian Tittley Department of Botany, The Natural History Museum, London SW7 5BD ABSTRACT The specimen collections and libraries of the Natural History Museum (BM) constitute an important reference centre for macro marine algae (brown, green and red generally known as seaweeds). The first collections of algae were made in the sixteenth and seventeenth centuries and are among the earliest collections in the museum from Britain and abroad. Many collectors have contributed directly or indirectly to the development and growth of the seaweed collection and these are listed in an appendix to this paper. The taxonomic and geographical range of the collection is broad and a significant amount of information is associated with it. As access to this information is not always straightforward, a start has been made to improve this through specimen databases and image collections. A collection review has improved the availability of geographical information; lists of countries for a given species and lists of species for a given country will soon be available, while for Great Britain and Ireland geographical data from specimens have been collated to create species distribution maps. This paper considers issues affecting future development of the seaweed collection at the Natural History Museum, the importance and potential of the UK collection as a resource of national biodiversity information, and participation in a global network of collections.
    [Show full text]
  • Ceramiales, Rhodophyta) from the Southwestern Atlantic Ocean
    Phytotaxa 100 (1): 41–56 (2013) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Article PHYTOTAXA Copyright © 2013 Magnolia Press ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.100.1.5 Osmundea sanctarum sp. nov. (Ceramiales, Rhodophyta) from the southwestern Atlantic Ocean RENATO ROCHA-JORGE1,6, VALÉRIA CASSANO2, MARIA BEATRIZ BARROS-BARRETO3, JHOANA DÍAZ-LARREA4, ABEL SENTÍES4, MARIA CANDELARIA GIL-RODRÍGUEZ5 & MUTUE TOYOTA FUJII6,7 1Post-Graduate Program “Biodiversidade Vegetal e Meio Ambiente”, Instituto de Botânica, Av. Miguel Estéfano, 3687, 04301-902 São Paulo, SP, Brazil. 2 Departamento de Botânica, Universidade de São Paulo, Rua do Matão 277, 05508-900 São Paulo, SP, Brazil. 3Departamento de Botânica, Universidade Federal do Rio de Janeiro, Av. Prof. Rodolpho Rocco 211, CCS, bloco A, subsolo, sala 99, 21941-902 Rio de Janeiro, RJ, Brazil. 4Departamento de Hidrobiología, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-535, 09340 Mexico, D.F. 5Departamento de Biología Vegetal (Botánica), Universidad de La Laguna, 38071. La Laguna, Tenerife, Islas Canarias, Spain. 6Núcleo de Pesquisa em Ficologia, Instituto de Botânica, Av. Miguel Estéfano, 3687, 04301-902 São Paulo, SP, Brazil. 7Author for correspondence. E-mail: [email protected] Abstract An ongoing phycological survey in the Laje de Santos Marine State Park (LSMSP) of São Paulo in southeastern Brazil revealed a previously undescribed species of Osmundea (Rhodophyta, Rhodomelaceae), which was found in the subtidal zone at a depth of 7 to 20 m. Morphological studies conducted on Osmundea specimens collected in the LSMSP revealed characteristics typical of the genus Osmundea, including two pericentral cells per each axial segment and tetrasporangia cut off randomly from cortical cells.
    [Show full text]
  • Notes on Ceramium (Rhodophyta: Ceramiales) from the Hawaiian Islands!
    Pacific Science (1995), vol. 49, no. 2: 165-174 © 1995 by University of Hawai'i Press. All rights reserved Notes on Ceramium (Rhodophyta: Ceramiales) from the Hawaiian Islands! ISABEL MENESES 2 ABSTRACT: Ceramium is widely distributed and recorded from the coasts of the North Pacific Ocean. Thus, it is not surprising to find new species and new records of this genus among the numerous islands spread in this oceanic region. Extensive examination ofmaterial collected around O'ahu and other Hawaiian Islands has yielded two new records: Ceramium aduncum Nakamura (pre­ viously known from Japan), Ceramium clarionensis Setchell & Gardner (pre­ viously recorded for the Pacific coast of Mexico), and a new species, Ceramium cingulum Meneses. APPROXIMATELY 55 SPECIES of the genus Cer­ the island of O'ahu, Hawai'i, appearing in amium (Ceramiaceae) have been reported almost any collection made, mainly as epi­ for the tropical and subtropical North phytes. Recently, four new species were re­ Pacific Ocean, representing about one-half of corded (Norris and Abbott 1992). The goal the known species worldwide. Detailed de­ of the study reported here was to include all scriptions as well as passing references in possible morphological variations in the marine floras of this region describe species Ceramium taxa collected. Thus, intensive mainly from the Pacific coast of North and collections were made around O'ahu, and Central America (Setchell and Gardner 1924, collections from other Hawaiian Islands were 1930, 1937, Dawson 1944, 1945a,b, 1954a,b,c, examined. As a result three new records and 1957b, 1961, 1962, Hollenberg 1948) and one new species of Ceramium are reported.
    [Show full text]
  • Delesseriaceae, Rhodophyta), Based on Hypoglossum Geminatum Okamura
    Phycologia Volume 55 (2), 165–177 Published 12 February 2016 Wynneophycus geminatus gen. & comb. nov. (Delesseriaceae, Rhodophyta), based on Hypoglossum geminatum Okamura 1 1 3 1,2 SO YOUNG JEONG ,BOO YEON WON ,SUZANNE FREDERICQ AND TAE OH CHO * 1Department of Life Science, Chosun University, Gwangju 501-759, Korea 2Marine Bio Research Center, Chosun University, Wando, Jeollanam-do 537-861, Korea 3Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70504-3602, USA ABSTRACT: Wynneophycus gen. nov. (Delesseriaceae, Ceramiales) is a new monotypic genus based on Hypoglossum geminatum Okamura, a species originally described from Japan. Wynneophycus geminatus (Okamura) comb. nov.is characterized by a discoid holdfast, erect or decumbent monostromatic blades with percurrent midribs, production of new blades from the midrib axial cells and absence of microscopic veins. In addition, it has apical cell division, several orders of lateral cell rows and paired transverse periaxial cells and formation of second-order cell rows from lateral cells with all forming third-order cell rows, with the midrib becoming corticated and forming a subterete stipe below as the blade wings are lost. Distinctive features of the new genus include tetrasporangia initiated from and restricted to single rows of second-order cells arranged in a single layer, cover cells developing prior to the tetrasporangia and an absence of intercalary cell divisions. Phylogenetic analyses of rbcL and large-subunit rDNA sequence data support the separation of Wynneophycus from Hypoglossum. We herein report on W. geminatus gen. & comb. nov. and delineate the new tribe Wynneophycuseae within the subfamily Delesserioideae of the family Delesseriaceae. KEY WORDS: Delesserioideae, LSU rDNA, Morphology, Phylogeny, rbcL, Rhodophyta, Wynneophycus, Wynneophycus geminatus, Wynneophycuseae INTRODUCTION Zheng 1998; Wynne & De Clerck 2000; Stegenga et al.
    [Show full text]
  • Rhodomelaceae, Rhodophyta) Based on Molecular Analyses and Morphological Observations of Specimens from the Type Locality in Western Australia
    Phytotaxa 324 (1): 051–062 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2017 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.324.1.3 The phylogenetic position of Polysiphonia scopulorum (Rhodomelaceae, Rhodophyta) based on molecular analyses and morphological observations of specimens from the type locality in Western Australia JOHN M. HUISMAN1, BYEONGSEOK KIM2 & MYUNG SOOK KIM2* 1Western Australian Herbarium, Department of Biodiversity, Conservation and Attractions, Locked Bag 104, Bentley Delivery Centre, Western Australia 6983, Australia; and School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia 2Department of Biology, Jeju National University, Jeju 63243, Korea *Author for correspondence. Email: [email protected] Abstract Considerable uncertainty surrounds the phylogenetic position of Polysiphonia scopulorum, a species with an apparently cos- mopolitan distribution. Here we report, for the first time, molecular phylogenetic analyses using plastid rbcL gene sequences and morphological observations of P. scopulorum collected from the type locality, Rottnest Island in Western Australia. Mor- phological characteristics of the Rottnest Island specimens allowed unequivocal identification, however, the sequence analy- ses uncovered discrepancies in previous molecular studies that included specimens identified as P. scopulorum from other locations. The phylogenetic evidence clearly revealed that P. scopulorum from Rottnest Island formed a sister clade with P. caespitosa from Spain (JX828149 as P. scopulorum) with moderate support, but that it differed from specimens identified as P. scopulorum from the U.S.A. (AY396039, EU492915). In light of this, we suggest that P. scopulorum be considered an endemic species with a distribution restricted to Australia.
    [Show full text]
  • Have Elevated Substitution Rates and 12 Extreme Gene Loss in the Plastid Genome 1 13 14
    1 2 DR. MAREN PREUSS (Orcid ID : 0000-0002-8147-5643) 3 DR. HEROEN VERBRUGGEN (Orcid ID : 0000-0002-6305-4749) 4 DR. GIUSEPPE C. ZUCCARELLO (Orcid ID : 0000-0003-0028-7227) 5 6 7 Article type : Regular Article 8 9 10 The organelle genomes in the photosynthetic red algal parasite Pterocladiophila 11 hemisphaerica (Florideophyceae, Rhodophyta) have elevated substitution rates and 12 extreme gene loss in the plastid genome 1 13 14 15 Maren Preuss2 16 School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 17 6140, New Zealand 18 19 Heroen Verbruggen 20 School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia 21 and 22 Giuseppe C. Zuccarello 23 School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 24 6140, New Zealand 25 26 27 Author Manuscript 28 Running title: Pterocladiophila organelle genomes 29 This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/JPY.12996-20-002 This article is protected by copyright. All rights reserved 30 1 Received Accepted ___________ 31 2 Corresponding author: [email protected] 32 33 34 Editorial Responsibility: M. Coleman (Associate Editor) 35 36 37 ABSTRACT 38 Comparative organelle genome studies of parasites can highlight genetic changes that occur 39 during the transition from a free-living to a parasitic state. Our study focuses on a poorly 40 studied group of red algal parasites, which are often closely related to their red algal hosts and 41 from which they presumably evolved.
    [Show full text]
  • 758 the Ultrastructure of an Alloparasitic Red Alga Choreocolax
    PHYCOLOGIA 12(3/4) 1973 The ultrastructure of an alloparasitic red alga Choreocolax polysiphoniae I PAUL KUGRENS Department of Botany and Plant Pathology, Colorado State University, Fort Collins, Colorado 80521, U.S.A. AND JOHN A. WEST Department of Botany, University of California, Berkeley, California 94720, U.S.A. Accepted June 18, 1973 An alloparasite, Choreocolax polysipiloniae, apparently represents one of the most evolved parasitic red algae. Chlo�oplasts are highly redu�ed and consist of dOl!ble membrane limited organelles lacking any inter­ nal thylako!� developmen!. The unInucleate cells have thick walls, an absence of starch in cortical cells and larg� quantIties of starch In meduII ary cells. Host-para�ite connections are made by typical red algal pit con­ . nectIOns. G.eneral effects of t�e InfectIOn on the host .Include cell hypertrophy, decrease in floridean starch granules, dispersed cytoplasmiC matrIces, and contorsJOn of chloroplasts. Phycologia, 12(3/4): 175-186, 1973 Introduction of the host, Cryptopleura. Her decision was The paraSItIc red algae constitute a unique based on the similarity in reproductive struc­ 1?irou of organisms about which surprisingly tures between the host and parasite, and she � suggested bacteria as causal agents for such lIttle IS known, although their distinctive nature . has been recognized since the late nineteenth proliferatIons. Chemin (1937) also indicated century. There are approximately 40 genera, that bacteria might be causal agents since bac­ unknown numbers of species, and all are ex­ teria were isolated from surface-sterilized thalli clusively florideophycean, belonging to all of Callocolax neglectus. Observations on Lobo­ orders except the Nemaliales.
    [Show full text]
  • Organellar Genome Evolution in Red Algal Parasites: Differences in Adelpho- and Alloparasites
    University of Rhode Island DigitalCommons@URI Open Access Dissertations 2017 Organellar Genome Evolution in Red Algal Parasites: Differences in Adelpho- and Alloparasites Eric Salomaki University of Rhode Island, [email protected] Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss Recommended Citation Salomaki, Eric, "Organellar Genome Evolution in Red Algal Parasites: Differences in Adelpho- and Alloparasites" (2017). Open Access Dissertations. Paper 614. https://digitalcommons.uri.edu/oa_diss/614 This Dissertation is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. ORGANELLAR GENOME EVOLUTION IN RED ALGAL PARASITES: DIFFERENCES IN ADELPHO- AND ALLOPARASITES BY ERIC SALOMAKI A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BIOLOGICAL SCIENCES UNIVERSITY OF RHODE ISLAND 2017 DOCTOR OF PHILOSOPHY DISSERTATION OF ERIC SALOMAKI APPROVED: Dissertation Committee: Major Professor Christopher E. Lane Jason Kolbe Tatiana Rynearson Nasser H. Zawia DEAN OF THE GRADUATE SCHOOL UNIVERSITY OF RHODE ISLAND 2017 ABSTRACT Parasitism is a common life strategy throughout the eukaryotic tree of life. Many devastating human pathogens, including the causative agents of malaria and toxoplasmosis, have evolved from a photosynthetic ancestor. However, how an organism transitions from a photosynthetic to a parasitic life history strategy remains mostly unknown. Parasites have independently evolved dozens of times throughout the Florideophyceae (Rhodophyta), and often infect close relatives. This framework enables direct comparisons between autotrophs and parasites to investigate the early stages of parasite evolution.
    [Show full text]
  • Martensia Fragilis Harv. (Delesseriaceae): a New Record to Seaweed Flora of Karnataka Coast, India
    J. Algal Biomass Utln. 2018, 9(2): 55-58 Martensia fragilis: A New record to seaweed flora of Karnataka Coast eISSN: 2229 – 6905 Martensia fragilis Harv. (Delesseriaceae): A New record to seaweed flora of Karnataka Coast, India. S.K. Yadav and M Palanisamy* Botanical Survey of India, Southern Regional Centre, Coimbatore - 641 003, Tamil Nadu, India.* Corresponding author: [email protected] Abstract Comprehensive marine macro algal explorations conducted in Karnataka coast during the years 2014-2017 revealed new distributional record of a red algae Martensia fragilis Harv. (Delesseriaceae). A complete description, nomenclatural citations and notes on its occurance have been provided. Keywords: New Record, Martensia fragilis Harv., Karnataka coast, Seaweeds, Rhodophyceae. Introduction The marine macro algae, also known as seaweeds, are the important component of the marine floral diversity. The red seaweed genus Martensia K. Hering belongs to the family Delesseriaceae under the order Ceramiales of class Rhodophyceae. Presently, this genus is represented with 18 taxa in the world (Guiry & Guiry, 2018), and 2 taxa in India (Rao & Gupta, 2015). It is mostly distributed in the tropical to subtropical regions of the world and is characterised by membranous thallus with flabellate lobes. Martensia fragilis Harv. was first described by Harvey in 1854 from the Belligam Bay, Ceylon (now Weliagama, Sri Lanka). Silva & al. (1996) reported this species from the Maldives. Later, it was reported by various workers from other parts of the world like Australia (Huisman, 1997), Africa (Ateweberhan & Prud’homme 2005), South Korea (Lee, 2006), Pacific islands (Skelton & South, 2007), China (Zheng & al., 2008), New Zealand (Nelson, 2012), Vietnam (Nguyen & al., 2013), Taiwan (Lin, 2013), Philippines (Kraft & al.
    [Show full text]
  • 2014, Newport, RI
    53rd Annual Northeast Algal Symposium Newport, RI 25-27 April 2014 2014 Northeast Algal Symposium Sponsors The 2014 NEAS logos were designed by Kathryn Hurley. Hurley graduated from Roger Williams University in 2012 with a B.A. in Marine Biology and a minor in Visual Arts, focusing on scientific illustration. Directly after graduation, she became an Aquarist and Trainer at the Maritime Aquarium in Norwalk, Connecticut. She has recently moved back to Plymouth Massachusetts where she is an Assistant Biologist for Smithers Viscient. http://kathrynhurleyartwork.blogspot.com. 2 Table of Contents Welcome from Conveners …………………………………………………………..…......... 4 2013-2014 Executive Committee Officers…………………………..…..……………… 5 2013-2014 NEAS election ballot…………………………………………………………..…. 7 2013-2014 Candidates for Nominations Committee Chair……………………… 8 General program …………………………………………………………..………………………. 9 Oral abstracts (in order of presentation, Saturday) …….…………………………. 15 Mini-symposium: Algae as Model Systems……………………………………………… 28 Oral abstracts (in order of presentation, Sunday) …….……………………………. 32 Poster abstracts (numbered presentation boards) ……..……….………………… 35 List of symposium participants……………………………………………………………….. 48 Maps & Directions to Meeting Venues…………………………………………………… 51 Acknowledgements The co-conveners acknowledge the generous support of our sponsors for this event, Salve Regina University, Roger Williams University (Feinstein School of Arts & Sciences, and the Department of Biology, Marine Biology & Environmental Science), and FMC (Erick Ask).
    [Show full text]
  • Characterization of Martensia (Delesseriaceae; Rhodophyta) from Shallow and Mesophotic Habitats in the Hawaiian Islands: Description of Four New Species
    European Journal of Phycology ISSN: 0967-0262 (Print) 1469-4433 (Online) Journal homepage: https://www.tandfonline.com/loi/tejp20 Characterization of Martensia (Delesseriaceae; Rhodophyta) from shallow and mesophotic habitats in the Hawaiian Islands: description of four new species Alison R. Sherwood, Showe-Mei Lin, Rachael M. Wade, Heather L. Spalding, Celia M. Smith & Randall K. Kosaki To cite this article: Alison R. Sherwood, Showe-Mei Lin, Rachael M. Wade, Heather L. Spalding, Celia M. Smith & Randall K. Kosaki (2020) Characterization of Martensia (Delesseriaceae; Rhodophyta) from shallow and mesophotic habitats in the Hawaiian Islands: description of four new species, European Journal of Phycology, 55:2, 172-185, DOI: 10.1080/09670262.2019.1668062 To link to this article: https://doi.org/10.1080/09670262.2019.1668062 © 2019 The Author(s). Published by Informa View supplementary material UK Limited, trading as Taylor & Francis Group. Published online: 29 Oct 2019. Submit your article to this journal Article views: 700 View related articles View Crossmark data Citing articles: 1 View citing articles Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tejp20 British Phycological EUROPEAN JOURNAL OF PHYCOLOGY 2020, VOL. 55, NO. 2, 172–185 Society https://doi.org/10.1080/09670262.2019.1668062 Understanding and using algae Characterization of Martensia (Delesseriaceae; Rhodophyta) from shallow and mesophotic habitats in the Hawaiian Islands: description of four new species Alison R. Sherwood a,e, Showe-Mei Lin b, Rachael M. Wadea,c, Heather L. Spaldinga,d, Celia M. Smitha,e and Randall K. Kosakif aDepartment of Botany, 3190 Maile Way, University of Hawaiʻi, Honolulu, HI 96822, USA; bInstitute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, R.O.C.; cDepartment of Biological Sciences, 3209 N.
    [Show full text]