Delesseriaceae, Rhodophyta), Based on Hypoglossum Geminatum Okamura

Total Page:16

File Type:pdf, Size:1020Kb

Delesseriaceae, Rhodophyta), Based on Hypoglossum Geminatum Okamura Phycologia Volume 55 (2), 165–177 Published 12 February 2016 Wynneophycus geminatus gen. & comb. nov. (Delesseriaceae, Rhodophyta), based on Hypoglossum geminatum Okamura 1 1 3 1,2 SO YOUNG JEONG ,BOO YEON WON ,SUZANNE FREDERICQ AND TAE OH CHO * 1Department of Life Science, Chosun University, Gwangju 501-759, Korea 2Marine Bio Research Center, Chosun University, Wando, Jeollanam-do 537-861, Korea 3Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70504-3602, USA ABSTRACT: Wynneophycus gen. nov. (Delesseriaceae, Ceramiales) is a new monotypic genus based on Hypoglossum geminatum Okamura, a species originally described from Japan. Wynneophycus geminatus (Okamura) comb. nov.is characterized by a discoid holdfast, erect or decumbent monostromatic blades with percurrent midribs, production of new blades from the midrib axial cells and absence of microscopic veins. In addition, it has apical cell division, several orders of lateral cell rows and paired transverse periaxial cells and formation of second-order cell rows from lateral cells with all forming third-order cell rows, with the midrib becoming corticated and forming a subterete stipe below as the blade wings are lost. Distinctive features of the new genus include tetrasporangia initiated from and restricted to single rows of second-order cells arranged in a single layer, cover cells developing prior to the tetrasporangia and an absence of intercalary cell divisions. Phylogenetic analyses of rbcL and large-subunit rDNA sequence data support the separation of Wynneophycus from Hypoglossum. We herein report on W. geminatus gen. & comb. nov. and delineate the new tribe Wynneophycuseae within the subfamily Delesserioideae of the family Delesseriaceae. KEY WORDS: Delesserioideae, LSU rDNA, Morphology, Phylogeny, rbcL, Rhodophyta, Wynneophycus, Wynneophycus geminatus, Wynneophycuseae INTRODUCTION Zheng 1998; Wynne & De Clerck 2000; Stegenga et al. 2001; Wynne 2014). Of these, H. geminatum Okamura (1908) was The Delesseriaceae are a large worldwide family of nearly 100 originally described from Japan. It is distinct by having a genera composed of the three subfamilies: Delesserioideae, small thallus, with the primary frond creeping over other Nitophylloideae and Phycodryoideae (Lin et al.2001).The algae by forming holdfasts at several points, pairs of blades subfamily Delesserioideae (as Delesserieae) was originally arising from the dorsal side of the midrib. It also has ovate to recognized by Kylin (1924) based on the procarps being elongate elliptical shaped spermatangial sori and tetraspor- restricted to primary cell rows, the presence of midribs with angia cut off adaxially from the cells of second-order cell rhizoidal filaments and the absence of intercalary cell divisions rows including lateral pericentral cells (Okamura 1908; in the primary cell rows. The Delesserioideae comprise 12 Yoshida & Mikami 1986). tribes based on molecular and morphological evidence (Kylin We collected several red algal plants that we identified as 1924, 1956; Lin et al. 2001; Wynne 1983, 1996, 2014). Lin et H. geminatum from the subintertidal zone in Wan-do, Chuja- al. (2001) evaluated the phylogenetic relationships at the do and Youngdeok, Korea. In this study, we propose that subfamily, tribal and generic levels based on rbcLandlarge- this species does not conform with the concept of Hypo- subunit (LSU) rDNA data and morphological evidence. glossum but that it instead forms the basis of a new genus, The genus Hypoglossum was established by Ku¨tzing (1843, Wynneophycus gen. nov. The new genus is assigned to the p. 444, pl. 65, I) based on H. woodwardii Ku¨tzing, a Delesserioideae on the basis of comparative morphological taxonomic synonym of H. hypoglossoides (Stackhouse) F.S. evidence and phylogenetic analysis of the chloroplast- Collins & Hervey, with the lectotype locality of Cornwall, encoded rbcL gene and the nuclear LSU rDNA. United Kingdom (Wynne 1984a). Hypoglossum is charac- terized by having branches developed endogenously along the midrib, absence of intercalary cell divisions, formation of MATERIAL AND METHODS tetrasporangia from second- and third-order cell rows, pericentral cells, cortical cells and tetrasporangia usually We collected our samples at Chuja-do (33857054.7300 N, produced in multiple layers (Womersley & Shepley 1982; 126817045.2400 E), Wan-do (34817044.9700 N, 126842004.7300 E) Wynne 2014). Hypoglossum has 31 species and is well and Youngdeok (36829014.0100 N, 129826027.5200 E) in Korea represented in both northern and southern hemispheres, from 2008 to 2014. We also collected the materials of H. primarily in warm temperate to tropical waters throughout hypoglossoides from Portsmouth (50846025.7900 N, 0 00 the world (Wynne & Kraft 1985; Wynne & Ballantine 1986; 1802 29.06 E), Southsea, England, near the lectotype locality to compare with our samples of H. geminatum. The samples were sorted according to reproductive stages using a * Corresponding author ([email protected]). DOI: 10.2216/15-94.1 stereomicroscope and preserved in 4%–5% formalin/seawater Ó 2016 International Phycological Society for morphological examination and in silica gel for molecular 165 166 Phycologia, Vol. 55 (2) Figs 1–14. Vegetative structures of Wynneophycus geminatus gen. & comb. nov. (CUK 6033, 9904, 12478, 13064). Fig. 1. Whole plant (CUK12478). Scale bar ¼ 1 cm. Fig. 2. Irregular branching pattern of blades, short stipe and discoid holdfast. Scale bar ¼ 0.1 cm. Fig. 3. Corticated midrib. Scale bar ¼ 50 lm. Fig. 4. Blade with apex and detail of the apical organization. Scale bar ¼ 10 lm. Fig. 5. Blade margin. Scale bar ¼ 20 lm. Jeong et al.: Wynneophycus geminatus gen. & comb. nov. 167 investigation. Microscopic observations of internal anatomy RESULTS were prepared using a freezing microtome (Shandon Cry- otome FSE, Thermo Fisher Scientific, London, UK) with Wynneophycus S.Y. Jeong, B.Y. Won, S. Fredericq & T.O. materials stained with 1% aqueous aniline blue acidified with Cho gen. nov. 0.1% diluted HCl. Photomicrographs were taken by using an Olympus microscope (BX51TRF, Olympus, Tokyo, Japan) with an Olympus DP71 camera. Voucher specimens are Plants epiphytic, erect, membranous, attached to host by deposited in the herbarium of Chosun University, Gwangju, small bundles of multicellular rhizoids. Blades originating Korea (CUK), and in the National Institute of Biological from an endogenous budding of central axial cells of the Resources (NIBR), Incheon, Korea. midrib, lanceolate to ovate, monostromatic except along the Genomic DNA was extracted from silica gel-dried samples midrib, monopodial, with a distinct corticated midrib. using a NucleoSpin Plant II Kit (Macherey-Nagel, D ren, u¨ Apices blunt and tapering. Apical cells obconical, segment- Germany) following the instructions of the manufacturer. ing to form an axial filament of cells with two lateral Polymerase chain reaction (PCR) was performed with a final pericentral cells followed by two transverse pericentral cells. volume 30 ll using 2.8 ll of genomic DNA, 1 ll of 10 pmol Lateral veins absent. Gametophytes dioecious. Procarps forward and reverse primers and Ready-2x-Go Series borne on transverse pericentral cells on one side of the (NanoHelix Co., Ltd, Daejeon, Korea). The rbcL was blades, each with two sterile groups and a four-celled amplified using the primer combinations F7-R753 and carpogonial branch. Female plants with a basal fusion cell F645-RrbcS start (Lin et al. 2001; Bustamante et al. 2013) and much-branched gonimoblasts. Pericarp formed by one and purified with PCRquick-spin PCR product purification to three layers of outer cortical cells. Male plants with kit (iNtRON Biotechnology, Inc., Seongnam, Korea). Cycle spermatangial sori between midrib and margin on both sides sequencing was performed with the primers F7, F645, F993, R376, R753, R1150 and RrbcStart (Freshwater & Rueness of primary and second-order blades. Tetrasporangial plants 1994; Cho et al. 2003; Bustamante et al. 2013). The partial with tetrasporangial sori on second-order blades. Tetraspor- fragments of LSU rDNA were amplified with 28C-28D and angia cut off from pericentral cells and second-order cells, W-28F (Freshwater et al. 1999) and purified with PCRquick- spherical, tetrahedrally divided, each associated with four to spin PCR product purification kit (iNtRON Biotechnology). five cover cells, arranged in primary cell layer except at Cycle sequencing was performed with the primers 28C-28D midrib. and W-28F (Freshwater et al. 1999). Sequences were ETYMOLOGY:‘Wynneophycus’ – ‘Wynne’ plus ‘phycus’. This generic determined for both forward and reverse strands using an name honours Dr. Michael J. Wynne for his valuable contributions to ABI Prism 3100 Genetic Analyzer (Life Technologies, Seoul, phycology, especially in the taxonomy of the family Delesseriaceae. Korea). New sequences were obtained from Wynneophycus geminatus and have been deposited in EMBL/GenBank TYPE SPECIES: Wynneophycus geminatus (Okamura) S.Y. Jeong, B.Y. under accession numbers KR604855, KR604856 and Won, S. Fredericq & T.O. Cho, comb. nov. KR604857 for rbcL and KR604867, KR604868 and KR604869 for LSU rDNA. Sequences generated in the Wynneophycus geminatus (Okamura) S.Y. Jeong, B.Y. Won, present study and others obtained from GenBank were S. Fredericq & T.O. Cho comb. nov. aligned with Clustal W (Thompson et al. 1994) and corrected manually using the MEGA v5 software (Tamura et al. 2011). Figs 1–40 Phylogenetic and molecular evolutionary analyses for BASIONYM: Hypoglossum
Recommended publications
  • Newsletter 4
    PHYCOLOGICAL NEWSLETTER A PUBLICATION OF THE PHYCOLOGICAL SOCIETY OF AMERICA WINTER INSIDE THIS ISSUE: 2008 PSA Meeting 1 SPRING 2008 Meetings and Symposia 2 Editor: Courses 5 Juan Lopez-Bautista VOLUME 44 Job Opportunities 11 Department of Biological Sciences Trailblazer 28: Sophie C. Ducker 12 University of Alabama Island to honor UAB scientists 18 Tuscaloosa, AL 35487 Books 19 [email protected] Deadline for contributions 23 ∗Dr. Karen Steidinger (Florida Fish and 1 2008 Meeting of Wildlife Research Institute) presenting The Phycological Society of America a plenary talk entitled “Harmful algal blooms in North America: Common risks.” New Orleand, Louisiana, USA NUMBER 27-30 July The associated mini-symposium speakers will be Dr. Leanne Flewelling (Florida Fish he Phycological Society of America (PSA) will and Wildlife Research Institute) present- hold its 2008 annual meeting on July 27-30, ing a talk entitled “Unexpected vectors of 1 T2008 in New Orleans, Louisiana, USA. The brevetoxins to marine mammals” and Dr. meeting will be held on the campus of Loyola Jonathan Deeds (US FDA Center for Food University and is being hosted by Prof. James Wee Safety and Applied Nutrition) present- (Loyola University). The meeting will kick-off with ing a talk entitled “The evolving story of an opening mixer on the evening of Sunday, 27 July Gyrodinium galatheanum = Karlodinium and the scientific program will be Monday through micrum = Karlodinium veneficum. A ten- Wednesday, 28-30 July. The PSA banquet will be year perspective.” Wednesday evening at the Louisiana Swamp Ex- hibit at the Audubon Zoo. Optional field trips are *Dr. John W.
    [Show full text]
  • Fingerprinting Marine Macrophytes in Blue Carbon Habitats
    Fingerprinting Marine Macrophytes in Blue Carbon Habitats Thesis by Alejandra Ortega In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Bioscience King Abdullah University of Science and Technology Thuwal, Kingdom of Saudi Arabia November, 2019 2 EXAMINATION COMMITTEE PAGE The thesis of Alejandra Ortega is approved by the examination committee. Committee Chairperson and Thesis Supervisor: Prof. Carlos M. Duarte Committee Members: Prof. Mark Tester, Prof. Takashi Gojobori, and Prof. Hugo de Boer [External] 3 © November, 2019 Alejandra Ortega All Rights Reserved 4 ABSTRACT Fingerprinting Marine Macrophytes in Blue Carbon Habitats Alejandra Ortega Seagrass, mangrove, saltmarshes and macroalgae - the coastal vegetated habitats, offer a promising nature-based solution to climate change mitigation, as they sequester carbon in their living biomass and in marine sediments. Estimation of the macrophyte organic carbon contribution to coastal sediments is key for understanding the sources of blue carbon sequestration, and for establishing adequate conservation strategies. Nevertheless, identification of marine macrophytes has been challenging and current estimations are uncertain. In this dissertation, time- and cost-efficient DNA-based methods were used to fingerprint marine macrophytes and estimate their contribution to the organic pool accumulated in blue carbon habitats. First, a suitable short-length DNA barcode from the universal 18S gene was chosen among six barcoding regions tested, as it successfully recovered degraded DNA from sediment samples and fingerprinted marine macrophyte taxa. Second, an experiment was performed to test whether the abundance of eDNA represents the content of organic carbon within the macrophytes; results supported this notion, indicating a positive correlation (R2 = 0.85) between eDNA and organic carbon.
    [Show full text]
  • Plymouth Sound and Estuaries SAC: Kelp Forest Condition Assessment 2012
    Plymouth Sound and Estuaries SAC: Kelp Forest Condition Assessment 2012. Final report Report Number: ER12-184 Performing Company: Sponsor: Natural England Ecospan Environmental Ltd Framework Agreement No. 22643/04 52 Oreston Road Ecospan Project No: 12-218 Plymouth Devon PL9 7JH Tel: 01752 402238 Email: [email protected] www.ecospan.co.uk Ecospan Environmental Ltd. is registered in England No. 5831900 ISO 9001 Plymouth Sound and Estuaries SAC: Kelp Forest Condition Assessment 2012. Author(s): M D R Field Approved By: M J Hutchings Date of Approval: December 2012 Circulation 1. Gavin Black Natural England 2. Angela gall Natural England 2. Mike Field Ecospan Environmental Ltd ER12-184 Page 1 of 46 Plymouth Sound and Estuaries SAC: Kelp Forest Condition Assessment 2012. Contents 1 EXECUTIVE SUMMARY ..................................................................................................... 3 2 INTRODUCTION ................................................................................................................ 4 3 OBJECTIVES ...................................................................................................................... 5 4 SAMPLING STRATEGY ...................................................................................................... 6 5 METHODS ......................................................................................................................... 8 5.1 Overview .........................................................................................................................
    [Show full text]
  • Constancea 83.15: SEAWEED COLLECTIONS, NATURAL HISTORY MUSEUM 12/17/2002 06:57:49 PM Constancea 83, 2002 University and Jepson Herbaria P.C
    Constancea 83.15: SEAWEED COLLECTIONS, NATURAL HISTORY MUSEUM 12/17/2002 06:57:49 PM Constancea 83, 2002 University and Jepson Herbaria P.C. Silva Festschrift Marine Algal (Seaweed) Collections at the Natural History Museum, London (BM): Past, Present and Future Ian Tittley Department of Botany, The Natural History Museum, London SW7 5BD ABSTRACT The specimen collections and libraries of the Natural History Museum (BM) constitute an important reference centre for macro marine algae (brown, green and red generally known as seaweeds). The first collections of algae were made in the sixteenth and seventeenth centuries and are among the earliest collections in the museum from Britain and abroad. Many collectors have contributed directly or indirectly to the development and growth of the seaweed collection and these are listed in an appendix to this paper. The taxonomic and geographical range of the collection is broad and a significant amount of information is associated with it. As access to this information is not always straightforward, a start has been made to improve this through specimen databases and image collections. A collection review has improved the availability of geographical information; lists of countries for a given species and lists of species for a given country will soon be available, while for Great Britain and Ireland geographical data from specimens have been collated to create species distribution maps. This paper considers issues affecting future development of the seaweed collection at the Natural History Museum, the importance and potential of the UK collection as a resource of national biodiversity information, and participation in a global network of collections.
    [Show full text]
  • J. Phycol. 53, 32–43 (2017) © 2016 Phycological Society of America DOI: 10.1111/Jpy.12472
    J. Phycol. 53, 32–43 (2017) © 2016 Phycological Society of America DOI: 10.1111/jpy.12472 ANALYSIS OF THE COMPLETE PLASTOMES OF THREE SPECIES OF MEMBRANOPTERA (CERAMIALES, RHODOPHYTA) FROM PACIFIC NORTH AMERICA1 Jeffery R. Hughey2 Division of Mathematics, Science, and Engineering, Hartnell College, 411 Central Ave., Salinas, California 93901, USA Max H. Hommersand Department of Biology, University of North Carolina at Chapel Hill, CB# 3280, Coker Hall, Chapel Hill, North Carolina 27599- 3280, USA Paul W. Gabrielson Herbarium and Department of Biology, University of North Carolina at Chapel Hill, CB# 3280, Coker Hall, Chapel Hill, North Carolina 27599-3280, USA Kathy Ann Miller Herbarium, University of California at Berkeley, 1001 Valley Life Sciences Building 2465, Berkeley, California 94720-2465, USA and Timothy Fuller Division of Mathematics, Science, and Engineering, Hartnell College, 411 Central Ave., Salinas, California 93901, USA Next generation sequence data were generated occurring south of Alaska: M. platyphylla, M. tenuis, and used to assemble the complete plastomes of the and M. weeksiae. holotype of Membranoptera weeksiae, the neotype Key index words: Ceramiales; Delesseriaceae; holo- (designated here) of M. tenuis, and a specimen type; Membranoptera; Northeast Pacific; phylogenetic examined by Kylin in making the new combination systematics; plastid genome; plastome; rbcL M. platyphylla. The three plastomes were similar in gene content and length and showed high gene synteny to Calliarthron, Grateloupia, Sporolithon, and Vertebrata. Sequence variation in the plastome Freshwater and Rueness (1994) were the first to coding regions were 0.89% between M. weeksiae and use gene sequences to address species-level taxo- M. tenuis, 5.14% between M.
    [Show full text]
  • Martensia Fragilis Harv. (Delesseriaceae): a New Record to Seaweed Flora of Karnataka Coast, India
    J. Algal Biomass Utln. 2018, 9(2): 55-58 Martensia fragilis: A New record to seaweed flora of Karnataka Coast eISSN: 2229 – 6905 Martensia fragilis Harv. (Delesseriaceae): A New record to seaweed flora of Karnataka Coast, India. S.K. Yadav and M Palanisamy* Botanical Survey of India, Southern Regional Centre, Coimbatore - 641 003, Tamil Nadu, India.* Corresponding author: [email protected] Abstract Comprehensive marine macro algal explorations conducted in Karnataka coast during the years 2014-2017 revealed new distributional record of a red algae Martensia fragilis Harv. (Delesseriaceae). A complete description, nomenclatural citations and notes on its occurance have been provided. Keywords: New Record, Martensia fragilis Harv., Karnataka coast, Seaweeds, Rhodophyceae. Introduction The marine macro algae, also known as seaweeds, are the important component of the marine floral diversity. The red seaweed genus Martensia K. Hering belongs to the family Delesseriaceae under the order Ceramiales of class Rhodophyceae. Presently, this genus is represented with 18 taxa in the world (Guiry & Guiry, 2018), and 2 taxa in India (Rao & Gupta, 2015). It is mostly distributed in the tropical to subtropical regions of the world and is characterised by membranous thallus with flabellate lobes. Martensia fragilis Harv. was first described by Harvey in 1854 from the Belligam Bay, Ceylon (now Weliagama, Sri Lanka). Silva & al. (1996) reported this species from the Maldives. Later, it was reported by various workers from other parts of the world like Australia (Huisman, 1997), Africa (Ateweberhan & Prud’homme 2005), South Korea (Lee, 2006), Pacific islands (Skelton & South, 2007), China (Zheng & al., 2008), New Zealand (Nelson, 2012), Vietnam (Nguyen & al., 2013), Taiwan (Lin, 2013), Philippines (Kraft & al.
    [Show full text]
  • The Influence of Ocean Warming on the Provision of Biogenic Habitat by Kelp Species
    University of Southampton Faculty of Natural and Environmental Sciences School of Ocean and Earth Sciences The influence of ocean warming on the provision of biogenic habitat by kelp species by Harry Andrew Teagle (BSc Hons, MRes) A thesis submitted in accordance with the requirements of the University of Southampton for the degree of Doctor of Philosophy April 2018 Primary Supervisor: Dr Dan A. Smale (Marine Biological Association of the UK) Secondary Supervisors: Professor Stephen J. Hawkins (Marine Biological Association of the UK, University of Southampton), Dr Pippa Moore (Aberystwyth University) i UNIVERSITY OF SOUTHAMPTON ABSTRACT FACULTY OF NATURAL AND ENVIRONMENTAL SCIENCES Ocean and Earth Sciences Doctor of Philosophy THE INFLUENCE OF OCEAN WARMING ON THE PROVISION OF BIOGENIC HABITAT BY KELP SPECIES by Harry Andrew Teagle Kelp forests represent some of the most productive and diverse habitats on Earth, and play a critical role in structuring nearshore temperate and subpolar environments. They have an important role in nutrient cycling, energy capture and transfer, and offer biogenic coastal defence. Kelps also provide extensive substrata for colonising organisms, ameliorate conditions for understorey assemblages, and generate three-dimensional habitat structure for a vast array of marine plants and animals, including a number of ecologically and commercially important species. This thesis aimed to describe the role of temperature on the functioning of kelp forests as biogenic habitat formers, predominantly via the substitution of cold water kelp species by warm water kelp species, or through the reduction in density of dominant habitat forming kelp due to predicted increases in seawater temperature. The work comprised three main components; (1) a broad scale study into the environmental drivers (including sea water temperature) of variability in holdfast assemblages of the dominant habitat forming kelp in the UK, Laminaria hyperborea, (2) a comparison of the warm water kelp Laminaria ochroleuca and the cold water kelp L.
    [Show full text]
  • Characterization of Martensia (Delesseriaceae; Rhodophyta) from Shallow and Mesophotic Habitats in the Hawaiian Islands: Description of Four New Species
    European Journal of Phycology ISSN: 0967-0262 (Print) 1469-4433 (Online) Journal homepage: https://www.tandfonline.com/loi/tejp20 Characterization of Martensia (Delesseriaceae; Rhodophyta) from shallow and mesophotic habitats in the Hawaiian Islands: description of four new species Alison R. Sherwood, Showe-Mei Lin, Rachael M. Wade, Heather L. Spalding, Celia M. Smith & Randall K. Kosaki To cite this article: Alison R. Sherwood, Showe-Mei Lin, Rachael M. Wade, Heather L. Spalding, Celia M. Smith & Randall K. Kosaki (2020) Characterization of Martensia (Delesseriaceae; Rhodophyta) from shallow and mesophotic habitats in the Hawaiian Islands: description of four new species, European Journal of Phycology, 55:2, 172-185, DOI: 10.1080/09670262.2019.1668062 To link to this article: https://doi.org/10.1080/09670262.2019.1668062 © 2019 The Author(s). Published by Informa View supplementary material UK Limited, trading as Taylor & Francis Group. Published online: 29 Oct 2019. Submit your article to this journal Article views: 700 View related articles View Crossmark data Citing articles: 1 View citing articles Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tejp20 British Phycological EUROPEAN JOURNAL OF PHYCOLOGY 2020, VOL. 55, NO. 2, 172–185 Society https://doi.org/10.1080/09670262.2019.1668062 Understanding and using algae Characterization of Martensia (Delesseriaceae; Rhodophyta) from shallow and mesophotic habitats in the Hawaiian Islands: description of four new species Alison R. Sherwood a,e, Showe-Mei Lin b, Rachael M. Wadea,c, Heather L. Spaldinga,d, Celia M. Smitha,e and Randall K. Kosakif aDepartment of Botany, 3190 Maile Way, University of Hawaiʻi, Honolulu, HI 96822, USA; bInstitute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, R.O.C.; cDepartment of Biological Sciences, 3209 N.
    [Show full text]
  • Morphology, Reproduction and Development of Hypoglossum
    Revista Brasil. Bot., V.26, n.4, p.453-460, out.-dez. 2003 Morphology, reproduction and development of Hypoglossum hypoglossoides (Stackhouse) Collins & Hervey (Ceramiales, Rhodophyta) from the south and southeastern Brazilian coast PAULO A. HORTA1,4, NAIR S. YOKOYA2, SILVIA M.P.B. GUIMARÃES2, DENISE S. BACCI2 and EURICO C. OLIVEIRA3 (received: January 15, 2003; accepted: September 2, 2003) ABSTRACT – (Morphology, reproduction and development of Hypoglossum hypoglossoides (Stackhouse) Collins & Hervey (Ceramiales, Rhodophyta) from the south and southeastern Brazilian coast). Hypoglossum hypoglossoides (Stackhouse) Collins & Hervey is reported for the first time from the infralittoral of São Paulo and Santa Catarina states. The species was already reported to the states of Rio de Janeiro, Espírito Santo and Bahia as Hypoglossum tenuifolium (Harvey) J. Agardh var. carolinianum Williams. A detailed description of the morphology and reproduction is given based on field-collected material. Unialgal cultures were initiated from tetraspore germination, and growth rates of gametophytes were determined under different conditions of temperature, photoperiod and irradiance. Gametophytes grew well between 15 to 30 ºC, 14L:10D and 10L:14D photoperiods and irradiance from 20 to 120 µmol photons.m-2.s-1, but presented low percentage of fertile plants in low temperature (15 ºC). Gametophytes cultured in laboratory developed only male reproductive structures. Physiological responses of H. hypoglossoides indicate that the species is well adapted to temperature and light variations which could explain its range of vertical (6-26 m depth) and latitudinal distribution (from Fernando de Noronha to Santa Catarina) as well as the absence of sexual reproduction in the southern limit of its distribution.
    [Show full text]
  • John Stackhouse (1742-1819) and the Linnean Society
    NEWSLETTER AND PROCEEDINGS OF THE LINNEAN SOCIETY OF LONDON VOLUME 24 • NUMBER 1 • JANUARY 2008 THE LINNEAN SOCIETY OF LONDON Registered Charity Number 220509 Burlington House, Piccadilly, London W1J 0BF Tel. (+44) (0)20 7434 4479; Fax: (+44) (0)20 7287 9364 e-mail: [email protected]; internet: www.linnean.org President Secretaries Council Professor David F Cutler BOTANICAL The Officers and Dr Sandra D Knapp Dr Pieter Baas Vice-Presidents Dr Andy Brown Professor Richard M Bateman ZOOLOGICAL Dr Joe Cain Dr Jenny M Edmonds Dr Vaughan R Southgate Dr John David Dr Sandy D Knapp Prof Peter S Davis Dr Vaughan R Southgate EDITORIAL Dr Shahina Ghazanfar Dr John R Edmondson Dr D J Nicholas Hind Treasurer Mr W M Alastair Land Professor Gren Ll Lucas OBE COLLECTIONS Dr D Tim J Littlewood Mrs Susan Gove Dr George McGavin Acting Executive Secretary Dr Malcolm Scoble Miss Gina Douglas Librarian & Archivist Prof Mark Seaward Miss Gina Douglas Dr Max Telford Head of Development Ms Elaine Shaughnessy Deputy Librarian Conservator Mrs Lynda Brooks Ms Janet Ashdown Financial Controller/Membership Mr Priya Nithianandan Assistant Librarian Special Publications Mr Ben Sherwood Manager Building and Office Manager Ms Leonie Berwick Ms Victoria Smith Communications Manager Ms Kate Longhurst THE LINNEAN Newsletter and Proceedings of the Linnean Society of London ISSN 0950-1096 Edited by Brian G Gardiner Editorial .......................................................................................................................2 Society News..............................................................................................................
    [Show full text]
  • Taxonomic Assessment of North American Species of the Genera Cumathamnion, Delesseria, Membranoptera and Pantoneura (Delesseriaceae, Rhodophyta) Using Molecular Data
    Research Article Algae 2012, 27(3): 155-173 http://dx.doi.org/10.4490/algae.2012.27.3.155 Open Access Taxonomic assessment of North American species of the genera Cumathamnion, Delesseria, Membranoptera and Pantoneura (Delesseriaceae, Rhodophyta) using molecular data Michael J. Wynne1,* and Gary W. Saunders2 1University of Michigan Herbarium, 3600 Varsity Drive, Ann Arbor, MI 48108, USA 2Centre for Environmental & Molecular Algal Research, Department of Biology, University of New Brunswick, Fredericton, NB E3B 5A3, Canada Evidence from molecular data supports the close taxonomic relationship of the two North Pacific species Delesseria decipiens and D. serrulata with Cumathamnion, up to now a monotypic genus known only from northern California, rather than with D. sanguinea, the type of the genus Delesseria and known only from the northeastern North Atlantic. The transfers of D. decipiens and D. serrulata into Cumathamnion are effected. Molecular data also reveal that what has passed as Membranoptera alata in the northwestern North Atlantic is distinct at the species level from northeastern North Atlantic (European) material; M. alata has a type locality in England. Multiple collections of Membranoptera and Pantoneura fabriciana on the North American coast of the North Atlantic prove to be identical for the three markers that have been sequenced, and the name Membranoptera fabriciana (Lyngbye) comb. nov. is proposed for them. Many collec- tions of Membranoptera from the northeastern North Pacific (predominantly British Columbia), although representing the morphologies of several species that have been previously recognized, are genetically assignable to a single group for which the oldest name applicable is M. platyphylla. Key Words: Cumathamnion; Delesseria; Delesseriaceae; Membranoptera; molecular markers; Pantoneura; Rhodophyta; taxonomy INTRODUCTION The generitype of Delesseria J.
    [Show full text]
  • Characterization of Martensia (Delesseriaceae, Rhodophyta) Based on a Morphological and Molecular Study of the Type Species, M
    J. Phycol. 45, 678–691 (2009) Ó 2009 Phycological Society of America DOI: 10.1111/j.1529-8817.2009.00677.x CHARACTERIZATION OF MARTENSIA (DELESSERIACEAE, RHODOPHYTA) BASED ON A MORPHOLOGICAL AND MOLECULAR STUDY OF THE TYPE SPECIES, M. ELEGANS,ANDM. NATALENSIS SP. NOV. FROM SOUTH AFRICA1 Showe-Mei Lin2 Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, China Max H. Hommersand Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280, USA Suzanne Fredericq Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana 70504-2451, USA and Olivier De Clerck Phycology Research Group, Ghent University, Krijgslaan 281 ⁄ S8, B-9000 Ghent, Belgium An examination of a series of collections from Abbreviations: M., Martensia; rbcL, large subunit of the coast of Natal, South Africa, has revealed the the RUBISCO gene; subg., subgenus presence of two species of Martensia C. Hering nom. cons: M. elegans C. Hering 1841, the type spe- cies, and an undescribed species, M. natalensis sp. nov. The two are similar in gross morphology, with both having the network arranged in a single band, The genus Martensia was established with a brief and with reproductive thalli of M. elegans usually lar- diagnosis by Hering (1841) based on plants col- ger and more robust than those of M. natalensis. lected by Dr. Ferdinand Krauss on rocks at Port Molecular studies based on rbcL sequence analyses Natal (present-day Durban) in South Africa. Hering place the two in separate, strongly supported clades. (1844), published posthumously by Krauss, contains The first assemblage occurs primarily in the Indo- a more detailed description and illustrations of West Pacific Ocean, and the second is widely distrib- M.
    [Show full text]