The Control Unit 285

Total Page:16

File Type:pdf, Size:1020Kb

The Control Unit 285 CHAPTER 9 THE CONTROL UNIT 285 THE CONTROL UNIT 9 9.1 A Microarchitecture for the ARC The microarchitecture of a computer implements the fetch-execute cycle. As we see in Chapter 4, the steps involved in the fetch-execute cycle are: 1) Fetch an instruction from main memory. 2) Decode the opcode. 3) Read operand(s) from main memory, if any. 4) Execute the instruction and store results. 5) Go to Step 1. The microarchitecture fetches the next instruction to be executed, determines which instruction it is, fetches the operands, and finally executes the instruction. The microarchitecture consists of a data section that contains registers and an ALU, and a control section, as illustrated in Figure 9-1. The data section is also referred to as the datapath. The control section can be implemented in a hard- wired form, using the digital design methods covered in Appendix A, or it may be driven by a microprogram, which is an internal program that is not visible to the user. For the moment, we will consider a microprogrammed approach for the ARC architecture. The instruction set and instruction format for the ARC subset is repeated from Chapter 4 in Figure 9-2. There are 15 instructions that are 286 CHAPTER 9 THE CONTROL UNIT Registers Control Unit ALU Datapath Control Section (Data Section) System Figure 9-1 High level view of a microarchitecture. grouped into four formats according to the leftmost two bits of the coded instruction. The Processor Status Register %psr is also shown. 9.1.1 THE DATAPATH A datapath for an example ARC implementation is illustrated in Figure 9-3. The datapath contains 32 user-visible data registers (%r0 – %r31), the program counter (%pc), four temporary registers (%temp0 – %temp3), the instruction register (%ir), the ALU, and the connections among these components. The numbers adjacent to the diagonal slashes on the connections indicate the number of separate connections that are represented by the corresponding lines. Registers %r0 – %r31 are directly accessible by a user. Register %r0 always con- tains the value 0, and cannot be changed. The %pc register is the program counter, which keeps track of the next instruction to be read from the main memory. The user does not have direct access to %pc, but can access it indirectly through the call and jmpl instructions. The temporary registers are used in interpreting the ARC instruction set, and are not visible to the user. The %ir register holds the current instruction that is being executed. The %ir register is internal to the microarchitecture and is not visible to the user. • The ALU The ALU performs one of 16 functions on the A and B busses according to the table shown in Figure 9-4. Some of the operations do not set the condition codes, which allows the control section to use the ALU without disturbing their settings. Only operations that end with “CC” affect the condition codes. CHAPTER 9 THE CONTROL UNIT 287 Mnemonic Meaning ld Load a register from memory st Store a register into memory sethi Load the 22 most significant bits of a register andcc Bitwise logical AND orcc Bitwise logical OR orncc Bitwise logical NOR srl Shift right (logical) addcc Add call Call subroutine jmpl Jump and link (return from subroutine call) be Branch if equal bneg Branch if negative bcs Branch on carry bvs Branch on overflow ba Branch always op 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 SETHI Format 00 rd op2 imm22 Branch Format 000 cond op2 disp22 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 CALL format 01 disp30 i 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 10 rd op3 rs1 0 00000000 rs2 Arithmetic Formats 10 rd op3 rs1 1 simm13 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 11 rd op3 rs1 0 00000000 rs2 Memory Formats 11 rd op3 rs1 1 simm13 op Format op2 Inst. op3 (op=10) op3 (op=11) cond branch 00 SETHI/Branch 010 branch 010000 addcc 000000 ld 0001 be 01 CALL 100 sethi 010001 andcc 000100 st 0101 bcs 10 Arithmetic 010010 orcc 0110 bneg 11 Memory 010110 orncc 0111 bvs 100110 srl 1000 ba 111000 jmpl 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 PSR n zvc Figure 9-2 Instruction subset and instruction formats for the ARC. The ANDCC and AND operations perform a bit-by-bit logical AND of corre- sponding bits on the A and B busses. The ORCC and OR operations perform a bit-by-bit logical OR of corresponding bits on the A and B busses. The NORCC and NOR operations perform a bit-by-bit logical NOR of corresponding bits on the A and B busses. The ADDCC and ADD operations carry out addition using two’s complement arithmetic on the A and B busses. 288 CHAPTER 9 THE CONTROL UNIT C bus A bus B bus a 0 %r0 38 0 A Decoder 1 %r1 a3 7 6 2 %r2 3 %r3 4 %r4 C c 37 b 1 38 0 B Decoder %r5 5 Decoder c3 b3 7 %r6 6 6 7 6 %r7 7 From Control 8 %r8 Unit 9 %r9 CLOCK UNIT 10 %r10 . 30 %r30 %r31 32 31 32 %pc 64-to-32 %temp0 MUX 33 %temp1 C Bus 34 MUX 35%temp2 36%temp3 37 %ir MUX Control 32 32 24 Data To Main Line (From 32 Memory Control Unit) F0 F From 32 ALU 1 To Control F2 Control Address To F3 Unit Unit Main Memory Data From Main Memory Data From 4 n, z, v, c Set Condition Codes Figure 9-3 The datapath of an example ARC implementation. The SRL (shift right logical) operation shifts the contents of the A bus to the right by the amount specified on the B bus (from 0 to 31 bits). Zeros are copied CHAPTER 9 THE CONTROL UNIT 289 F3 F2 F1 F0 Operation Changes Condition Codes 0 0 0 0 ANDCC (A, B) yes 0 0 0 1 ORCC (A, B) yes 0 0 1 0 NORCC (A, B) yes 0 0 1 1 ADDCC (A, B) yes 0 1 0 0 SRL (A, B) no 0 1 0 1 AND (A, B) no 0 1 1 0 OR (A, B) no 0 1 1 1 NOR (A, B) no 1 0 0 0 ADD (A, B) no 1 0 0 1 LSHIFT2 (A) no 1 0 1 0 LSHIFT10 (A) no 1 0 1 1 SIMM13 (A) no 1 1 0 0 SEXT13 (A) no 1 1 0 1 INC (A) no 1 1 1 0 INCPC (A) no 1 1 1 1 RSHIFT5 (A) no Figure 9-4 ARC ALU operations. into the leftmost bits of the shifted result, and the rightmost bits of the result are discarded. LSHIFT2 and LSHIFT10 shift the contents of the A bus to the left by two and 10 bits, respectively. Zeros are copied into the rightmost bits. SIMM13 retrieves the least significant 13 bits of the A bus, and places zeros in the 19 most significant bits. SEXT13 performs a sign extension of the 13 least significant bits on the A bus to a 32-bit word. That is, if the leftmost bit of the 13 bit group is 1, then 1’s are copied into the 19 most significant bits of the result, otherwise, 0’s are copied into the 19 most significant bits of the result. The INC operation increments the value on the A bus by one, and the INCPC operation increments the value on the A bus by four, which is used in incrementing the PC register by one word (four bytes). INCPC can be used on any register placed on the A bus. The RSHIFT5 operation shifts the operand on the A bus to the right by 5 bits. When applied three times in succession to a 32-bit instruction, this operation has the effect of placing the leftmost bit of the COND field in the Branch format (refer to Figure 9-2) into the position of bit 13. This operation is used in decod- ing the Branch instructions. For every ALU operation, the 32-bit result is placed on the C bus, unless it is blocked by the C bus MUX when a word of memory is placed onto the C bus instead. 290 CHAPTER 9 THE CONTROL UNIT Every arithmetic and logic operation can be implemented with just these ALU operations. For instance, a subtraction can be implemented by forming the two’s complement negative of the subtrahend (making use of the NOR operation and adding 1 to it) and then performing addition on the operands. A shift to the left by one bit can be performed by adding a number to itself. A “do-nothing” opera- tion, which is frequently needed for simply passing data through the ALU with- out changing it, can be implemented by logically ANDing an operand with itself and discarding the result in %r0.
Recommended publications
  • MIPS® Architecture for Programmers Volume I-B: Introduction to the Micromips32™ Architecture, Revision 5.03
    MIPS® Architecture For Programmers Volume I-B: Introduction to the microMIPS32™ Architecture Document Number: MD00741 Revision 5.03 Sept. 9, 2013 Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries. This document contains information that is proprietary to MIPS Tech, LLC, a Wave Computing company (“MIPS”) and MIPS’ affiliates as applicable. Any copying, reproducing, modifying or use of this information (in whole or in part) that is not expressly permitted in writing by MIPS or MIPS’ affiliates as applicable or an authorized third party is strictly prohibited. At a minimum, this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties and fines. Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format) is subject to use and distribution restrictions that are independent of and supplemental to any and all confidentiality restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS (AND MIPS’ AFFILIATES AS APPLICABLE) reserve the right to change the information contained in this document to improve function, design or otherwise. MIPS and MIPS’ affiliates do not assume any liability arising out of the application or use of this information, or of any error or omission in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the implied warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any written license agreement from MIPS or an authorized third party, the furnishing of this document does not give recipient any license to any intellectual property rights, including any patent rights, that cover the information in this document.
    [Show full text]
  • MIPS32™ Architecture for Programmers Volume I: Introduction to the MIPS32™ Architecture
    MIPS32™ Architecture For Programmers Volume I: Introduction to the MIPS32™ Architecture Document Number: MD00082 Revision 0.95 March 12, 2001 MIPS Technologies, Inc. 1225 Charleston Road Mountain View, CA 94043-1353 Copyright © 2001 MIPS Technologies, Inc. All rights reserved. Unpublished rights reserved under the Copyright Laws of the United States of America. This document contains information that is proprietary to MIPS Technologies, Inc. (“MIPS Technologies”). Any copying, modifyingor use of this information (in whole or in part) which is not expressly permitted in writing by MIPS Technologies or a contractually-authorized third party is strictly prohibited. At a minimum, this information is protected under unfair competition laws and the expression of the information contained herein is protected under federal copyright laws. Violations thereof may result in criminal penalties and fines. MIPS Technologies or any contractually-authorized third party reserves the right to change the information contained in this document to improve function, design or otherwise. MIPS Technologies does not assume any liability arising out of the application or use of this information. Any license under patent rights or any other intellectual property rights owned by MIPS Technologies or third parties shall be conveyed by MIPS Technologies or any contractually-authorized third party in a separate license agreement between the parties. The information contained in this document constitutes one or more of the following: commercial computer software, commercial
    [Show full text]
  • MCST~8 Assembly Language Programming Manual PRELIMINARY EDITION
    INTEL CORP. 3065 Bowers Avenue, Santa Clara, California 95051 • (408) 246-7501 MCST~8 Assembly Language Programming Manual PRELIMINARY EDITION November 1973 © Intel Corporation 1973 -- TABLE OF CONTENTS -- 8008 PROGRAMMING MANUAL Page No. 1.0 INTRODUCTION 1-1 2.0 COMPUTER ORGANIZATION 2-1 2.1 THE CENTRAL PROCESSING UNIT 2-3 2.1.1 WORKING REGISTERS 2-3 2. 1 .2 THE STACK 2-5 2.1.3 ARITHMETIC AND LOGIC UNIT 2-7 2.2 MEMORY 2-8 2.3 COMPUTER PROGRAM REPRESENTATION IN MEMORY 2-8 2.4 MEMORY ADDRESSING 2-10 2.4.1 DIRECT ADDRESSING 2-11 2 .4 .2 INDEXED ADDRESSING 2-13 2.4.3 INDIRECT ADDRESSING 2-13 2.4.4 IMMEDIATE ADDRESSING 2-14 2.4.5 SUBROUTINES AND USE OF THE STACK FOR ADDRESSING 2-15 2.5 CONDITION BITS 2-18 2.5.1 CARRY BIT 2-18 2 .5 • 2 SIGN BIT 2-19 2 .5 . 3 ZERO BIT 2-19 2 • 5 . 4 PARITY BIT 2-20 3.{) THE 8008 INSTRUCTION SET 3-1 3.1 ASSEMBLY LANG UAGE 3-1 3.1.1 HOW ASSEMBLY LANGUAGE IS USED 3-1 3.1.2 STATEMENT MNEMONICS 3-4 3 • 1. 3 LABEL FIELD 3-5 3.1.4 CODE FIELD 3-7 3 • 1 .5 OPERAND FIELD 3-7 3.1.6 COMMENT FIELD 3-15 i Page No. 3.2 DATA STATEMENTS 3-15 3.2.1 TWO'S COMPLEMENT 3-16 3.2.2 DB DEFINE BYTE(S) OF DATA 3-20 3.2.3 DW DEFINE WORD (TWO BYTES) OF DATA 3-21 3.2.4 DS DEFINE STORAGE (BYTES) 3-22 3.3 SINGLE REGISTER INSTRUCTIONS 3-23 3.3.1 INR INCREMENT REGISTER 3-24 3.3.2 DCR DECREMENT REGISTER 3-24 3.4 MOV INSTRUCTION 3-25 3.5 REGISTER OR MEMORY TO ACCUMULATOR INSTRUCTIONS 3-28 3.5.1 ADD ADD REGISTER OR MEMORY TO ACCUMULATOR 3-29 3.5.2 ADC ADD REGISTI:R OR MEMORY TO ACCUMULATOR WITH CARRY 3-31 3.5.3 SUB SUBTRACT REGISTER OR MEMORY
    [Show full text]
  • Notes on Usage of the RX Family C/C++ Compiler V.1.00 Release 01 and Corrections in the User's Manual
    R0C5RX00XSW01R-ERN100630 Notes on Usage of the RX Family C/C++ Compiler V.1.00 Release 01 and Corrections in the User's Manual There are notes on usage of the RX Family C/C++ compiler V.1.00 Release 01 and corrections to be made in the bundled user's manual (REJ10J2062-0100) as listed below. 1. Notes on Usage 1.1 Note on a Case of the C1804 Message [C/C++ Compiler] When the int_to_short option is specified and a file including a C standard header is compiled as C++ or EC++, the compiler may show the C1804(W) message. In this case, simply ignore the message because there are no problems. [NOTE] In compilation of C++ or EC++, the int_to_short option will be invalid. Data that are shared between C and C++ (EC++) program must be declared as the long or short type rather than as the int type. 1.2 Note on using MVTC or POPC instructions [Assembler] In the assembly language, the program counter (PC) cannot be specified for MVTC or POPC instructions. 1.3 Note on the delete Option for Linkage [Optimizing linkage editor] When a function symbol is removed by the delete option, its following function in the source program is not allowed to have a breakpoint at its function name on the editor in your debugging. If you would like to set a breakpoint at the function entrance, set the breakpoint via the Label window or at the prologue code of the function. 1.4 Notes of Paths Name and File Name [Optimizing linkage editor] In the specification of the optimizing linkage editor, the parentheses "(" and ")" signs for the path names and file names cannot be used because these signs are used for the option descriptions.
    [Show full text]
  • (SLB) Predictor: a Compiler Assisted Branch Prediction for Data Dependent Branches
    Store-Load-Branch (SLB) Predictor: A Compiler Assisted Branch Prediction for Data Dependent Branches M. Umar Farooq Khubaib Lizy K. John Department of Electrical and Computer Engineering The University of Texas at Austin [email protected], [email protected], [email protected] Abstract This work is based on the following observation: Hard- to-predict data-dependent branches are commonly associ- Data-dependent branches constitute single biggest ated with program data structures such as arrays, linked source of remaining branch mispredictions. Typically, lists, trees etc., and follow store-load-branch execution se- data-dependent branches are associated with program quence similar to one shown in listing 1. A set of memory data structures, and follow store-load-branch execution se- locations is written while building and updating the data quence. A set of memory locations is written at an earlier structure (line 2, listing 1). During data structure traver- point in a program. Later, these locations are read, and sal, these locations are read, and used for evaluating branch used for evaluating branch condition. Branch outcome de- condition (line 7, listing 1). pends on data values stored in data structure, which, typi- 52 50 53 cally do not have repeatable pattern. Therefore, in addition 35 Gshare to history-based dynamic predictor, we need a different kind 30 YAGS BiMode of predictor for handling such branches. TAGE 25 This paper presents Store-Load-Branch (SLB) predic- 20 tor; a compiler-assisted dynamic branch prediction scheme for data-dependent direct and indirect branches. For ev- 15 ery data-dependent branch, compiler identifies store in- 10 5 structions that modify the data structure associated with Mispredictions per 1K instructions the branch.
    [Show full text]
  • Downloads/Kornau-Tim--Diplomarbeit--Rop.Pdf [34] Sebastian Krahmer
    CFI CaRE: Hardware-supported Call and Return Enforcement for Commercial Microcontrollers Thomas Nyman Jan-Erik Ekberg Lucas Davi N. Asokan Aalto University, Finland Trustonic, Finland University of Aalto University, Finland [email protected] [email protected] Duisburg-Essen, [email protected] Trustonic, Finland Germany thomas.nyman@ lucas.davi@wiwinf. trustonic.com uni-due.de ABSTRACT CFI (Section 3.1) is a well-explored technique for resisting With the increasing scale of deployment of Internet of Things (IoT), the code-reuse attacks such as Return-Oriented Programming concerns about IoT security have become more urgent. In particular, (ROP) [47] that allow attackers in control of data memory to subvert memory corruption attacks play a predominant role as they allow the control flow of a program. CFI commonly takes the formof remote compromise of IoT devices. Control-flow integrity (CFI) is inlined enforcement, where CFI checks are inserted at points in the a promising and generic defense technique against these attacks. program code where control flow changes occur. For legacy applica- However, given the nature of IoT deployments, existing protection tions CFI checks must be introduced by instrumenting the pre-built mechanisms for traditional computing environments (including CFI) binary. Such binary instrumentation necessarily modifies the mem- need to be adapted to the IoT setting. In this paper, we describe ory layout of the code, requiring memory addresses referenced by the challenges of enabling CFI on microcontroller (MCU) based the program to be adjusted accordingly [28]. This is typically done IoT devices. We then present CaRE, the first interrupt-aware CFI through load-time dynamic binary rewriting software [14, 39].
    [Show full text]
  • PL/I for AIX: Programming Guide
    IBM PL/I for AIX Programming Guide Ve r s i o n 2.0.0 SC18-9328-00 IBM PL/I for AIX Programming Guide Ve r s i o n 2.0.0 SC18-9328-00 Note! Before using this information and the product it supports, be sure to read the general information under “Notices” on page 309. Second Edition (June 2004) This edition applies to IBM PL/I for AIX 2.0.0, 5724-H45, and to any subsequent releases until otherwise indicated in new editions or technical newsletters. Make sure you are using the correct edition for the level of the product. Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the address below. A form for readers’ comments is provided at the back of this publication. If the form has been removed, address your comments to: IBM Corporation, Department HHX/H1 555 Bailey Ave San Jose, CA, 95141-1099 United States of America When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes appropriate without incurring any obligation to you. ©International Business Machines Corporation 1998,2004. All rights reserved. Contents Figures . vii COMPILE . .47 COPYRIGHT . .48 CURRENCY . .48 Part 1. Introducing PL/I on your DEFAULT . .48 workstation . .1 EXIT. .54 EXTRN . .54 Chapter 1. About this book . .3 FLAG . .55 FLOATINMATH. .55 Chapter 2. How to read the syntax GONUMBER . .56 GRAPHIC . .56 diagrams . .5 IMPRECISE . .56 INCAFTER . .57 Chapter 3.
    [Show full text]
  • Jump Tables Via Function Pointer Arrays in C/C++ Jump Tables, Also Called Branch Tables, Are an Efficient Means of Handling Similar Events in Software
    Jump Tables via Function Pointer Arrays in C/C++ Jump tables, also called branch tables, are an efficient means of handling similar events in software. Here’s a look at the use of arrays of function pointers in C/C++ as jump tables. Examination of assembly language code that has been crafted by an expert will usually reveal extensive use of function “branch tables.” Branch tables (a.k.a., jump tables) are used because they offer a unique blend of compactness and execution speed, particularly on microprocessors that support indexed addressing. When one examines typical C/C++ code, however, the branch table (i.e., an array of funtion pointers) is a much rarer beast. The purpose of this article is to examine why branch tables are not used by C/C++ programmers and to make the case for their extensive use. Real world examples of their use are included. Function pointers In talking to C/C++ programmers about this topic, three reasons are usually cited for not using function pointers. They are: • They are dangerous • A good optimizing compiler will generate a jump table from a switch statement, so let the compiler do the work • They are too difficult to code and maintain Are function pointers dangerous? This school of thought comes about, because code that indexes into a table and then calls a function based on the index has the capability to end up just about anywhere. For instance, consider the following code fragment: void (*pf[])(void) = {fna, fnb, fnc, …, fnz}; void test(const INT jump_index) { /* Call the function specified by jump_index */ pf[jump_index](); } FREDERICK, MD 21702 USA • +1 301-551-5138 • WWW.RMBCONSULTING.US The above code declares pf[] to be an array of pointers to functions, each of which takes no arguments and returns void.
    [Show full text]
  • LC-2 Programmer's Reference and User Guide
    LC-2 Programmer’s Reference and User Guide University of Michigan EECS 100 Matt Postiff Copyright (C) Matt Postiff 1995-1999. All rights reserved. Written permission of the author is required for duplication of this document. Table of Contents Table of Contents . i List of Tables . iii List of Figures . v Chapter 1 Introduction to the LC-2 . 1 1.1 Notational Conventions . 3 Chapter 2 LC-2 Programmer’s Reference . 7 2.1 LC-2 Programming Model. 9 2.2 Instruction Set . 10 2.3 Summary of Instruction Formats and Semantics. 28 2.4 Addressing Modes . 31 2.5 Branching Modes. 32 2.6 The LC-2 System Calls . 33 2.7 The LC-2 Hardware Registers . 34 2.8 The LC-2 Memory Map. 35 Chapter 3 LC-2 Machine- and Assembly-Programming . 37 3.1 Introduction to Program Execution in the LC-2 . 39 3.2 The LC-2 Instruction Encoding . 40 3.3 Condition Codes in the LC-2 Processor. 41 3.3.1 Condition Field in the Instruction Encoding. 41 3.4 Keyboard Input and Console Output . 42 3.5 Programming the LC-2 in Machine Language . 43 3.5.1 Machine-Language File Formats . 43 3.6 Programming the LC-2 in Assembly Language . 46 3.6.1 Introduction. 46 3.6.2 LC-2 Assembly Language . 46 3.6.3 The Assembly Process . 49 3.6.4 Some Examples. 49 Chapter 4 LC-2 Programming Tools Guide. 51 4.1 The convert Program . 53 4.2 The assemble Program. 54 4.2.1 The Listing File.
    [Show full text]
  • Control Flow
    Control Flow Stephen A. Edwards Columbia University Fall 2012 Control Flow “Time is Nature’s way of preventing everything from happening at once.” Scott identifies seven manifestations of this: 1. Sequencing foo(); bar(); 2. Selection if (a) foo(); 3. Iteration while (i<10) foo(i); 4. Procedures foo(10,20); 5. Recursion foo(int i) { foo(i-1); } 6. Concurrency foo() bar() jj 7. Nondeterminism do a -> foo(); [] b -> bar(); Ordering Within Expressions What code does a compiler generate for a = b + c + d; Most likely something like tmp = b + c; a = tmp + d; (Assumes left-to-right evaluation of expressions.) Order of Evaluation Why would you care? Expression evaluation can have side-effects. Floating-point numbers don’t behave like numbers. GCC returned 25. Sun’s C compiler returned 20. C says expression evaluation order is implementation-dependent. Side-effects int x = 0; int foo() { x += 5; return x; } int bar() { int a = foo() + x + foo(); return a; } What does bar() return? Side-effects int x = 0; int foo() { x += 5; return x; } int bar() { int a = foo() + x + foo(); return a; } What does bar() return? GCC returned 25. Sun’s C compiler returned 20. C says expression evaluation order is implementation-dependent. Side-effects Java prescribes left-to-right evaluation. class Foo { static int x; static int foo() { x += 5; return x; } public static void main(String args[]) { int a = foo() + x + foo(); System.out.println(a); } } Always prints 20. Number Behavior Basic number axioms: a x a if and only if x 0 Additive identity Å Æ Æ (a b) c a (b c) Associative Å Å Æ Å Å a(b c) ab ac Distributive Å Æ Å Misbehaving Floating-Point Numbers 1e20 + 1e-20 = 1e20 1e-20 1e20 ¿ (1 + 9e-7) + 9e-7 1 + (9e-7 + 9e-7) 6Æ 9e-7 1, so it is discarded, however, 1.8e-6 is large enough ¿ 1.00001(1.000001 1) 1.00001 1.000001 1.00001 1 ¡ 6Æ ¢ ¡ ¢ 1.00001 1.000001 1.00001100001 requires too much intermediate ¢ Æ precision.
    [Show full text]
  • Lecture Notes Companion CPSC 213 2Nd Edition DRAFT Oct28
    Lecture Notes Companion CPSC 213 2nd Edition DRAFT Oct28 Mike Feeley University of British Columbia February 13, 2012 2 Contents 1 Introduction to the Computer Systems 7 1.1 JavaandC................................................. 8 1.2 The Compiler . 8 2 Execution of a Program 9 2.1 The Plan . 9 2.2 Introduction to a Simple CPU . 10 2.2.1 The CPU . 10 2.2.2 The Memory . 12 2.2.3 The Anatomy of a Cycle . 14 2.3 Instruction Set Architectures . 16 2.3.1 Simple Machine ISA Constraints . 16 2.3.2 Instruction Set Styles (RISC vs CISC) . 16 2.3.3 Types of Opcodes . 17 2.3.4 Addressing Modes . 18 2.3.5 Assembly Language . 18 2.3.6 The SM213 ISA . 20 2.4 Variables . 20 2.4.1 Classifying Variables . 20 2.4.2 SM213 Instructions for Accessing Variables . 21 2.4.3 Static Variables . 21 2.4.4 Dynamic Arrays . 24 2.4.5 Instance Variables . 26 2.4.6 Java References and C Pointers . 32 3 2.5 Dynamic Allocation and Deallocation . 32 2.5.1 Pointers and References . 32 2.5.2 Allocating and Deallocating Dynamic Objects . 32 2.5.3 Type Safety and Explicit Deallocation . 32 2.5.4 The Dangling Pointer Problem and Other Bugs With Using Pointers in C . 33 2.5.5 Memory Leaks . 33 2.5.6 Java Reference Objects . 34 2.5.7 Garbage Collection . 34 2.6 ALU Instructions . 34 2.6.1 SM213 Instructions for Doing Math . 34 2.7 Control Flow . 35 2.7.1 SM213 Instructions for Static Control Flow .
    [Show full text]
  • Low-Level C Programming CSEE W4840
    Low-Level C Programming CSEE W4840 Prof. Stephen A. Edwards Columbia University Spring 2009 Low-Level C Programming – p. Goals Function is correct Source code is concise, readable, maintainable Time-critical sections of program run fast enough Object code is small and efficient Basically, optimize the use of three resources: Execution time Memory Development/maintenance time Low-Level C Programming – p. Like Writing English You can say the same thing many different ways and mean the same thing. There are many different ways to say the same thing. The same thing may be said different ways. There is more than one way to say it. Many sentences are equivalent. Be succinct. Low-Level C Programming – p. Arithmetic Integer Arithmetic Fastest Floating-point arithmetic in hardware Slower Floating-point arithmetic in software Very slow +, − × slower ÷ sqrt, sin, log, etc. y Low-Level C Programming – p. Simple benchmarks for (i = 0 ; i < 10000 ; ++i) /* arithmetic operation */ On my desktop Pentium 4 with good hardware floating-point support, Operator Time Operator Time + (int) 1 + (double) 5 * (int) 5 * (double) 5 / (int) 12 / (double) 10 « (int) 2 sqrt 28 sin 48 pow 275 Low-Level C Programming – p. Simple benchmarks On my Zaurus SL 5600, a 400 MHz Intel PXA250 Xscale (ARM) processor: Operator Time + (int) 1 + (double) 140 * (int) 1 * (double) 110 / (int) 7 / (double) 220 « (int) 1 sqrt 500 sin 3300 pow 820 Low-Level C Programming – p. C Arithmetic Trivia Operations on char, short, int, and long probably run at the same speed (same ALU). Same for unsigned variants int or long slower when they exceed machine’s word size.
    [Show full text]