Downloads/Kornau-Tim--Diplomarbeit--Rop.Pdf [34] Sebastian Krahmer
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
MIPS® Architecture for Programmers Volume I-B: Introduction to the Micromips32™ Architecture, Revision 5.03
MIPS® Architecture For Programmers Volume I-B: Introduction to the microMIPS32™ Architecture Document Number: MD00741 Revision 5.03 Sept. 9, 2013 Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries. This document contains information that is proprietary to MIPS Tech, LLC, a Wave Computing company (“MIPS”) and MIPS’ affiliates as applicable. Any copying, reproducing, modifying or use of this information (in whole or in part) that is not expressly permitted in writing by MIPS or MIPS’ affiliates as applicable or an authorized third party is strictly prohibited. At a minimum, this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties and fines. Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format) is subject to use and distribution restrictions that are independent of and supplemental to any and all confidentiality restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS (AND MIPS’ AFFILIATES AS APPLICABLE) reserve the right to change the information contained in this document to improve function, design or otherwise. MIPS and MIPS’ affiliates do not assume any liability arising out of the application or use of this information, or of any error or omission in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the implied warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any written license agreement from MIPS or an authorized third party, the furnishing of this document does not give recipient any license to any intellectual property rights, including any patent rights, that cover the information in this document. -
Chapter 3 System Calls, Exceptions, and Interrupts
DRAFT as of September 29, 2009: Copyright 2009 Cox, Kaashoek, Morris Chapter 3 System calls, exceptions, and interrupts An operating system must handle system calls, exceptions, and interrupts. With a system call a user program can ask for an operating system service, as we saw at the end of the last chapter. Exceptions are illegal program actions that generate an inter- rupt. Examples of illegal programs actions include divide by zero, attempt to access memory outside segment bounds, and so on. Interrupts are generated by hardware de- vices that need attention of the operating system. For example, a clock chip may gen- erate an interrupt every 100 msec to allow the kernel to implement time sharing. As another example, when the disk has read a block from disk, it generates an interrupt to alert the operating system that the block is ready to be retrieved. In all three cases, the operating system design must range for the following to happen. The system must save user state for future transparent resume. The system must be set up for continued execution in the kernel. The system must chose a place for the kernel to start executing. The kernel must be able to retrieve information about the event, including arguments. It must all be done securely; the system must main- tain isolation of user processes and the kernel. To achieve this goal the operating system must be aware of the details of how the hardware handles system calls, exceptions, and interrupts. In most processors these three events are handled by a single hardware mechanism. -
MIPS32™ Architecture for Programmers Volume I: Introduction to the MIPS32™ Architecture
MIPS32™ Architecture For Programmers Volume I: Introduction to the MIPS32™ Architecture Document Number: MD00082 Revision 0.95 March 12, 2001 MIPS Technologies, Inc. 1225 Charleston Road Mountain View, CA 94043-1353 Copyright © 2001 MIPS Technologies, Inc. All rights reserved. Unpublished rights reserved under the Copyright Laws of the United States of America. This document contains information that is proprietary to MIPS Technologies, Inc. (“MIPS Technologies”). Any copying, modifyingor use of this information (in whole or in part) which is not expressly permitted in writing by MIPS Technologies or a contractually-authorized third party is strictly prohibited. At a minimum, this information is protected under unfair competition laws and the expression of the information contained herein is protected under federal copyright laws. Violations thereof may result in criminal penalties and fines. MIPS Technologies or any contractually-authorized third party reserves the right to change the information contained in this document to improve function, design or otherwise. MIPS Technologies does not assume any liability arising out of the application or use of this information. Any license under patent rights or any other intellectual property rights owned by MIPS Technologies or third parties shall be conveyed by MIPS Technologies or any contractually-authorized third party in a separate license agreement between the parties. The information contained in this document constitutes one or more of the following: commercial computer software, commercial -
Chapter 3 Protected-Mode Memory Management
CHAPTER 3 PROTECTED-MODE MEMORY MANAGEMENT This chapter describes the Intel 64 and IA-32 architecture’s protected-mode memory management facilities, including the physical memory requirements, segmentation mechanism, and paging mechanism. See also: Chapter 5, “Protection” (for a description of the processor’s protection mechanism) and Chapter 20, “8086 Emulation” (for a description of memory addressing protection in real-address and virtual-8086 modes). 3.1 MEMORY MANAGEMENT OVERVIEW The memory management facilities of the IA-32 architecture are divided into two parts: segmentation and paging. Segmentation provides a mechanism of isolating individual code, data, and stack modules so that multiple programs (or tasks) can run on the same processor without interfering with one another. Paging provides a mech- anism for implementing a conventional demand-paged, virtual-memory system where sections of a program’s execution environment are mapped into physical memory as needed. Paging can also be used to provide isolation between multiple tasks. When operating in protected mode, some form of segmentation must be used. There is no mode bit to disable segmentation. The use of paging, however, is optional. These two mechanisms (segmentation and paging) can be configured to support simple single-program (or single- task) systems, multitasking systems, or multiple-processor systems that used shared memory. As shown in Figure 3-1, segmentation provides a mechanism for dividing the processor’s addressable memory space (called the linear address space) into smaller protected address spaces called segments. Segments can be used to hold the code, data, and stack for a program or to hold system data structures (such as a TSS or LDT). -
MCST~8 Assembly Language Programming Manual PRELIMINARY EDITION
INTEL CORP. 3065 Bowers Avenue, Santa Clara, California 95051 • (408) 246-7501 MCST~8 Assembly Language Programming Manual PRELIMINARY EDITION November 1973 © Intel Corporation 1973 -- TABLE OF CONTENTS -- 8008 PROGRAMMING MANUAL Page No. 1.0 INTRODUCTION 1-1 2.0 COMPUTER ORGANIZATION 2-1 2.1 THE CENTRAL PROCESSING UNIT 2-3 2.1.1 WORKING REGISTERS 2-3 2. 1 .2 THE STACK 2-5 2.1.3 ARITHMETIC AND LOGIC UNIT 2-7 2.2 MEMORY 2-8 2.3 COMPUTER PROGRAM REPRESENTATION IN MEMORY 2-8 2.4 MEMORY ADDRESSING 2-10 2.4.1 DIRECT ADDRESSING 2-11 2 .4 .2 INDEXED ADDRESSING 2-13 2.4.3 INDIRECT ADDRESSING 2-13 2.4.4 IMMEDIATE ADDRESSING 2-14 2.4.5 SUBROUTINES AND USE OF THE STACK FOR ADDRESSING 2-15 2.5 CONDITION BITS 2-18 2.5.1 CARRY BIT 2-18 2 .5 • 2 SIGN BIT 2-19 2 .5 . 3 ZERO BIT 2-19 2 • 5 . 4 PARITY BIT 2-20 3.{) THE 8008 INSTRUCTION SET 3-1 3.1 ASSEMBLY LANG UAGE 3-1 3.1.1 HOW ASSEMBLY LANGUAGE IS USED 3-1 3.1.2 STATEMENT MNEMONICS 3-4 3 • 1. 3 LABEL FIELD 3-5 3.1.4 CODE FIELD 3-7 3 • 1 .5 OPERAND FIELD 3-7 3.1.6 COMMENT FIELD 3-15 i Page No. 3.2 DATA STATEMENTS 3-15 3.2.1 TWO'S COMPLEMENT 3-16 3.2.2 DB DEFINE BYTE(S) OF DATA 3-20 3.2.3 DW DEFINE WORD (TWO BYTES) OF DATA 3-21 3.2.4 DS DEFINE STORAGE (BYTES) 3-22 3.3 SINGLE REGISTER INSTRUCTIONS 3-23 3.3.1 INR INCREMENT REGISTER 3-24 3.3.2 DCR DECREMENT REGISTER 3-24 3.4 MOV INSTRUCTION 3-25 3.5 REGISTER OR MEMORY TO ACCUMULATOR INSTRUCTIONS 3-28 3.5.1 ADD ADD REGISTER OR MEMORY TO ACCUMULATOR 3-29 3.5.2 ADC ADD REGISTI:R OR MEMORY TO ACCUMULATOR WITH CARRY 3-31 3.5.3 SUB SUBTRACT REGISTER OR MEMORY -
Notes on Usage of the RX Family C/C++ Compiler V.1.00 Release 01 and Corrections in the User's Manual
R0C5RX00XSW01R-ERN100630 Notes on Usage of the RX Family C/C++ Compiler V.1.00 Release 01 and Corrections in the User's Manual There are notes on usage of the RX Family C/C++ compiler V.1.00 Release 01 and corrections to be made in the bundled user's manual (REJ10J2062-0100) as listed below. 1. Notes on Usage 1.1 Note on a Case of the C1804 Message [C/C++ Compiler] When the int_to_short option is specified and a file including a C standard header is compiled as C++ or EC++, the compiler may show the C1804(W) message. In this case, simply ignore the message because there are no problems. [NOTE] In compilation of C++ or EC++, the int_to_short option will be invalid. Data that are shared between C and C++ (EC++) program must be declared as the long or short type rather than as the int type. 1.2 Note on using MVTC or POPC instructions [Assembler] In the assembly language, the program counter (PC) cannot be specified for MVTC or POPC instructions. 1.3 Note on the delete Option for Linkage [Optimizing linkage editor] When a function symbol is removed by the delete option, its following function in the source program is not allowed to have a breakpoint at its function name on the editor in your debugging. If you would like to set a breakpoint at the function entrance, set the breakpoint via the Label window or at the prologue code of the function. 1.4 Notes of Paths Name and File Name [Optimizing linkage editor] In the specification of the optimizing linkage editor, the parentheses "(" and ")" signs for the path names and file names cannot be used because these signs are used for the option descriptions. -
(SLB) Predictor: a Compiler Assisted Branch Prediction for Data Dependent Branches
Store-Load-Branch (SLB) Predictor: A Compiler Assisted Branch Prediction for Data Dependent Branches M. Umar Farooq Khubaib Lizy K. John Department of Electrical and Computer Engineering The University of Texas at Austin [email protected], [email protected], [email protected] Abstract This work is based on the following observation: Hard- to-predict data-dependent branches are commonly associ- Data-dependent branches constitute single biggest ated with program data structures such as arrays, linked source of remaining branch mispredictions. Typically, lists, trees etc., and follow store-load-branch execution se- data-dependent branches are associated with program quence similar to one shown in listing 1. A set of memory data structures, and follow store-load-branch execution se- locations is written while building and updating the data quence. A set of memory locations is written at an earlier structure (line 2, listing 1). During data structure traver- point in a program. Later, these locations are read, and sal, these locations are read, and used for evaluating branch used for evaluating branch condition. Branch outcome de- condition (line 7, listing 1). pends on data values stored in data structure, which, typi- 52 50 53 cally do not have repeatable pattern. Therefore, in addition 35 Gshare to history-based dynamic predictor, we need a different kind 30 YAGS BiMode of predictor for handling such branches. TAGE 25 This paper presents Store-Load-Branch (SLB) predic- 20 tor; a compiler-assisted dynamic branch prediction scheme for data-dependent direct and indirect branches. For ev- 15 ery data-dependent branch, compiler identifies store in- 10 5 structions that modify the data structure associated with Mispredictions per 1K instructions the branch. -
Intel 64 and IA-32 Architectures Software Developer's Manual
SYSTEM ARCHITECTURE OVERVIEW Physical Address EFLAGS Register Code, Data or Linear Address Stack Segment Control Registers Task-State CR4 Segment Selector Segment (TSS) Task CR3 Code CR2 Register CR1 Data Stack CR0 Global Descriptor Task Register Table (GDT) Interrupt Handler Segment Sel. Seg. Desc. Code Current Interrupt TSS Seg. Sel. TSS Desc. TSS Stack Vector Seg. Desc. Interrupt Descriptor Task-State Segment (TSS) Table (IDT) TSS Desc. Task Code Interrupt Gate LDT Desc. Data Stack Task Gate GDTR Trap Gate Local Descriptor Exception Handler Table (LDT) Code Current TSS Stack IDTR Call-Gate Seg. Desc. Segment Selector Call Gate Protected Procedure Code XCR0 (XFEM) LDTR Current TSS Stack Linear Address Space Linear Address Dir Table Offset Linear Addr. Page Directory Page Table Page Physical Addr. Pg. Dir. Entry Pg. Tbl. Entry 0 This page mapping example is for 4-KByte pages CR3* and the normal 32-bit physical address size. *Physical Address Figure 2-1. IA-32 System-Level Registers and Data Structures Vol. 3 2-3 SYSTEM ARCHITECTURE OVERVIEW 31 22 21 20 19 18 17 16 15 1413 12 11 10 9 8 7 6 5432 1 0 I V V I A V R N O O D I T S Z A P C Reserved (set to 0) I I 0 0 0 1 D C M F T P F F F F F F F F F P F L ID — Identification Flag VIP — Virtual Interrupt Pending VIF — Virtual Interrupt Flag AC — Alignment Check VM — Virtual-8086 Mode RF — Resume Flag NT — Nested Task Flag IOPL— I/O Privilege Level IF — Interrupt Enable Flag TF — Trap Flag Reserved Figure 2-4. -
Chapter 1: Introduction
Access Control in Practice CS461/ECE422 Fall 2009 1 Reading • Computer Security – Chapter 15 2 Outline • Evolution of OS • Object Access Control – Access control lists – Capabilities 3 In the Beginning... • The program owned the machine – Access all power of the hardware – Could really mess things up • Executives emerged – Gather common functionality • Multi-user systems required greater separation – Multics, the source of much early OS development 4 Protecting objects • Desire to protect logical entities – Memory – Files or data sets – Executing program – File directory – A particular data structure like a stack – Operating system control structures – Privileged instructions Access Control Matrix • Access Control Matrix (ACM) and related concepts provides very basic abstraction – Map different systems to a common form for comparison – Enables standard proof techniques – Not directly used in implementation 6 Definitions • Protection state of system – Describes current settings, values of system relevant to protection • Access control matrix – Describes protection state precisely – Matrix describing rights of subjects – State transitions change elements of matrix 7 Description objects (entities) o1 … om s1 … sn • Subjects S = { s1,…,sn } s1 • Objects O = { o1,…,om } s 2 • Rights R = { r1,…,rk } ⊆ • Entries A[si, oj] R subjects … • A[si, oj] = { rx, …, ry } sn means subject si has rights rx, …, ry over object oj 8 Practical object access control • Can slice the logical ACM two ways – By row: Store with subject – By column: Store with object -
PL/I for AIX: Programming Guide
IBM PL/I for AIX Programming Guide Ve r s i o n 2.0.0 SC18-9328-00 IBM PL/I for AIX Programming Guide Ve r s i o n 2.0.0 SC18-9328-00 Note! Before using this information and the product it supports, be sure to read the general information under “Notices” on page 309. Second Edition (June 2004) This edition applies to IBM PL/I for AIX 2.0.0, 5724-H45, and to any subsequent releases until otherwise indicated in new editions or technical newsletters. Make sure you are using the correct edition for the level of the product. Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the address below. A form for readers’ comments is provided at the back of this publication. If the form has been removed, address your comments to: IBM Corporation, Department HHX/H1 555 Bailey Ave San Jose, CA, 95141-1099 United States of America When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes appropriate without incurring any obligation to you. ©International Business Machines Corporation 1998,2004. All rights reserved. Contents Figures . vii COMPILE . .47 COPYRIGHT . .48 CURRENCY . .48 Part 1. Introducing PL/I on your DEFAULT . .48 workstation . .1 EXIT. .54 EXTRN . .54 Chapter 1. About this book . .3 FLAG . .55 FLOATINMATH. .55 Chapter 2. How to read the syntax GONUMBER . .56 GRAPHIC . .56 diagrams . .5 IMPRECISE . .56 INCAFTER . .57 Chapter 3. -
Jump Tables Via Function Pointer Arrays in C/C++ Jump Tables, Also Called Branch Tables, Are an Efficient Means of Handling Similar Events in Software
Jump Tables via Function Pointer Arrays in C/C++ Jump tables, also called branch tables, are an efficient means of handling similar events in software. Here’s a look at the use of arrays of function pointers in C/C++ as jump tables. Examination of assembly language code that has been crafted by an expert will usually reveal extensive use of function “branch tables.” Branch tables (a.k.a., jump tables) are used because they offer a unique blend of compactness and execution speed, particularly on microprocessors that support indexed addressing. When one examines typical C/C++ code, however, the branch table (i.e., an array of funtion pointers) is a much rarer beast. The purpose of this article is to examine why branch tables are not used by C/C++ programmers and to make the case for their extensive use. Real world examples of their use are included. Function pointers In talking to C/C++ programmers about this topic, three reasons are usually cited for not using function pointers. They are: • They are dangerous • A good optimizing compiler will generate a jump table from a switch statement, so let the compiler do the work • They are too difficult to code and maintain Are function pointers dangerous? This school of thought comes about, because code that indexes into a table and then calls a function based on the index has the capability to end up just about anywhere. For instance, consider the following code fragment: void (*pf[])(void) = {fna, fnb, fnc, …, fnz}; void test(const INT jump_index) { /* Call the function specified by jump_index */ pf[jump_index](); } FREDERICK, MD 21702 USA • +1 301-551-5138 • WWW.RMBCONSULTING.US The above code declares pf[] to be an array of pointers to functions, each of which takes no arguments and returns void. -
LC-2 Programmer's Reference and User Guide
LC-2 Programmer’s Reference and User Guide University of Michigan EECS 100 Matt Postiff Copyright (C) Matt Postiff 1995-1999. All rights reserved. Written permission of the author is required for duplication of this document. Table of Contents Table of Contents . i List of Tables . iii List of Figures . v Chapter 1 Introduction to the LC-2 . 1 1.1 Notational Conventions . 3 Chapter 2 LC-2 Programmer’s Reference . 7 2.1 LC-2 Programming Model. 9 2.2 Instruction Set . 10 2.3 Summary of Instruction Formats and Semantics. 28 2.4 Addressing Modes . 31 2.5 Branching Modes. 32 2.6 The LC-2 System Calls . 33 2.7 The LC-2 Hardware Registers . 34 2.8 The LC-2 Memory Map. 35 Chapter 3 LC-2 Machine- and Assembly-Programming . 37 3.1 Introduction to Program Execution in the LC-2 . 39 3.2 The LC-2 Instruction Encoding . 40 3.3 Condition Codes in the LC-2 Processor. 41 3.3.1 Condition Field in the Instruction Encoding. 41 3.4 Keyboard Input and Console Output . 42 3.5 Programming the LC-2 in Machine Language . 43 3.5.1 Machine-Language File Formats . 43 3.6 Programming the LC-2 in Assembly Language . 46 3.6.1 Introduction. 46 3.6.2 LC-2 Assembly Language . 46 3.6.3 The Assembly Process . 49 3.6.4 Some Examples. 49 Chapter 4 LC-2 Programming Tools Guide. 51 4.1 The convert Program . 53 4.2 The assemble Program. 54 4.2.1 The Listing File.