Saturn: Diameter, 120000 Km

Total Page:16

File Type:pdf, Size:1020Kb

Saturn: Diameter, 120000 Km Saturn: Diameter, 120,000 km; Mass, 95.2 Earth masses; Density, 0.7 (density of water is 1.0); Rotation Period, 10 hours, 14 minutes; Axis Inclination, 26° 44’; Oblateness, 0.1; Surface Gravity, 1.15 (Earth = 1.0) Today, we will mainly discuss Saturn. Its orbit, and its place in our solar system, are shown on the next two slides. It is a little more than 9.5 times further from the sun than is the earth, and almost twice as distant from the sun as Jupiter. Its orbit, like the earth’s, lies pretty much in the ecliptic plane. Saturn rotates in the same sense as its orbital motion, as does the earth, and its rotational axis is inclined relative to the plane of its orbit, much like the earth’s. The inclined rotation axis of Saturn means that Saturn has seasons, like we do on earth, although it is amusing to think how the seasons on Saturn might be affected by the presence of Saturn’s ring system. The following tables, repeated from last time, give comparisons of some of the physical properties of the planets. The most important columns of these tables to see for the moment are those that compare the sizes and material compositions of the planets. These data show that Saturn, like Jupiter, is a giant gaseous planet entirely different from the earth. Sizes of the Giant Gas Planets Saturn, like Jupiter, rotates very rapidly. For this reason, it is visibly oblate. Saturn has just about the same radius and rotation period as Jupiter, but it is less than a third as massive. Therefore Saturn exerts much less gravitational force than Jupiter does near its surface. Consequently, Saturn has less gravity than Jupiter to counterbalance the large centrifugal force generated near its equatorial surface by its rapid rotation. The result is that Saturn is visibly much more oblate than Jupiter. Remember that this situation, where Saturn is much less massive, yet nevertheless not very much smaller than Jupiter, arises because both planets are made out of gases rather than rocks or ice. If you were to add more mass to Jupiter, its gases would become more compressed by the increased gravity, and the planet might not become much larger. If you added enough mass, Jupiter might even become smaller! Figure 11.3 (a) Gravity alone makes a planet spherical, but rapid rotation flattens out the spherical shape by flinging material near the equator outward. (b) Saturn is clearly not spherical. The rapid rotation of Saturn, just as on Jupiter, inhibits circulation of any parcel of gas in the atmosphere over a wide range of latitudes. If a parcel of gas in the atmosphere near the equator were to travel very far toward either pole, the principle of conservation of its angular momentum about the planet’s rotation axis would force it to spin up to a tremendous velocity. The gas therefore prefers to organize its circulation into bands, so that no part of the atmosphere travels over too wide a range of latitudes. The atmospheric circulation therefore breaks up into a series of “belts” and “zones,” horizontal bands in which prevailing wind velocities alternate. As on Jupiter, these motions are driven by convection. Convection carries heat outward from the interior to the surface, where it is radiated into space. Despite the similarities of Saturn and Jupiter just mentioned, Saturn does not exhibit the garish atmospheric features that are so striking on Jupiter. Because of its overall lower surface gravity, Saturn’s is thicker in its atmosphere than that of Jupiter. As a result, a layer of tan haze overlies the clouds and washes out Saturn’s appearance. However, the Cassini spacecraft has allowed us to look below this obscuring layer of haze to reveal a diverse array of clouds in the depths of Saturn. This new view on the right side on the next slide shows clouds at an altitude of about 30 kilometers (19 miles) underneath the clouds usually observed on Saturn. This is distinctly different from the typical view of Saturn in reflected sunlight, shown on the left. The left view is characterized by broad expanses of clouds near the 1-bar (1 Earth atmosphere of pressure) level, such as the white cloud seen circling the equator, with little hint of the discrete cloud complexes lying underneath. This new view was obtained at the far infrared wavelength, using Saturn’s own thermal radiation emanating from Saturn’s interior as the light source instead of the Sun. Clouds block this upwelling radiation to varying degrees, depending on the thickness of the cloud, and would appear as dark areas. To render them visible as white clouds in the image shown on the right, the original view was photographically inverted. This technique enables clouds to be imaged across the globe, under both daytime and nighttime conditions. The images are also unaffected by shadowing from Saturn’s immense ring system, unlike the left-hand image, which has much of the northern hemisphere covered by ring shadow. The Cassini spacecraft discovered this hexagonal jet stream pattern, which has apparently been persistent for decades, at Saturn’s north pole. The Cassini spacecraft discovered this hexagonal jet stream pattern, which has apparently been persistent for decades, at Saturn’s north pole. View of Saturn from the Cassini Spacecrft, 2005. Here colors are pretty much as you would see them. The Rings Of course, the most striking feature of this planet is its magnificent ring system. With the assistance of spacecraft, we have discovered that all the Jovian planets have Rings, but none as spectacular as Saturn's. All the Jovian worlds have ring systems due to the massive tidal forces associated with the gas giants. Saturn’s rings orbit the planet inside what is called the Roche zone. This is the region so close to the planet (within 2 or 3 Saturn radii) that the tidal forces caused by the planet prevent the accumulation of sizable bodies as a result of their self- gravity. Natural color mosaic of Saturn’s rings at high resolution taken by the Cassini spacecraft in 2004. Gaps, gravitational resonances and wave patterns are all present, and the delicate color variations across the system are clearly visible. This mosaic of six images covers a distance of approximately 62,000 kilometers along the ring plane, from a radius of 74,565 kilometers to 136,780 kilometers (46,333 to 84,991 miles) from the planet's center. This view is from Cassini's vantage point beneath the ring plane. The rings are tilted away from Cassini at an angle of about 4 degrees. Images taken using red, green and blue spectral filters were used to create this natural color mosaic. The images were acquired using the Cassini spacecraft narrow angle camera on Dec. 12, 2004, at a distance of approximately 1.8 million kilometers (1.1 million miles). The image scale is 10.5 kilometers (6.5 miles) per pixel. Rings are very thin compared to their width. Most are only a few tens of meters to a kilometer in thickness, compared to the almost 300,000 km diameter. This means that relatively speaking they are thinner than a CD. This is due to the fact that a particle that lies in an orbit above and below the ring must pass through the ring twice each orbit. This leads to collisions which cause the particles to exchange energy (the collisions are “inelastic,” i.e. the particles do not bounce off each other perfectly like billiard balls) and adopt velocities and directions similar to the particles in the rings. Inelastic collisions are very important in the formation of the solar system. They are likely to have produced a thin disk of dusty/icy material particles orbiting the early sun, from which the planets themselves began to accumulate. • Taken by Cassini less than a degree above the ring plane Here is an image from the Cassini probe that shows how thin the rings are, even when viewed from close up. An artist’s representation of particles in Saturn’s A ring Saturn’s rings look very different when viewed in reflected light or transmitted light. Tiny dust particles scatter light, but mostly do not change its direction very much. (Just think about how dust on your car’s windshield scatters sunlight.) Therefore when the sun is behind Saturn’s rings, we see mostly light scattered by small dust-sized particles. Marble- or boulder-sized particles mostly scatter light back in the general direction that it came from. Therefore when we view Saturn’s rings lit by sunlight which is reflected back toward us, we see the regions populated by these larger particles as the brightest, and the regions populated mainly by smaller particles appear dark. Appearance of Saturn’s rings under different lighting conditions (from Sky & Telescope Jan., 1981, p. 10) Voyager-1 view of Saturn in its crescent phase Voyager-2 view of Saturn in its crescent phase Saturn’s rings orbit the planet inside what is called the Roche zone. This is the region so close to the planet (within 2 or 3 Saturn radii) that the tidal forces caused by the planet prevent the accumulation of sizable bodies as a result of their self- gravity. Within the Roche zone, the tidal forces tending to pull an object apart are comparable to the gravitational forces tending to hold it together. Therefore only relatively small bodies, especially bodies held together by non-gravitational forces, as your body is, can survive inside the Roche zone. Within the Roche zone, the tidal forces tending to pull an object apart are comparable to the gravitational forces tending to hold it together.
Recommended publications
  • Lesson 3: Moons, Rings Relationships
    GETTING TO KNOW SATURN LESSON Moons, Rings, and Relationships 3 3–4 hrs Students design their own experiments to explore the fundamental force of gravity, and then extend their thinking to how gravity acts to keep objects like moons and ring particles in orbit. Students use the contexts of the Solar System and the Saturn system MEETS NATIONAL to explore the nature of orbits. The lesson SCIENCE EDUCATION enables students to correct common mis- STANDARDS: conceptions about gravity and orbits and to Science as Inquiry • Abilities learn how orbital speed decreases as the dis- Prometheus and Pandora, two of Saturn’s moons, “shepherd” necessary to Saturn’s F ring. scientific inquiry tance from the object being orbited increases. Physical Science • Motions and PREREQUISITE SKILLS BACKGROUND INFORMATION forces Working in groups Background for Lesson Discussion, page 66 Earth and Space Science Reading a chart of data Questions, page 71 • Earth in the Plotting points on a graph Answers in Appendix 1, page 225 Solar System 1–21: Saturn 22–34: Rings 35–50: Moons EQUIPMENT, MATERIALS, AND TOOLS For the teacher Materials to reproduce Photocopier (for transparencies & copies) Figures 1–10 are provided at the end of Overhead projector this lesson. Chalkboard, whiteboard, or large easel FIGURE TRANSPARENCY COPIES with paper; chalk or markers 11 21 For each group of 3 to 4 students 31 Large plastic or rubber ball 4 1 per student Paper, markers, pencils 5 1 1 per student 6 1 for teacher 7 1 (optional) 1 for teacher 8 1 per student 9 1 (optional) 1 per student 10 1 (optional) 1 for teacher 65 Saturn Educator Guide • Cassini Program website — http://www.jpl.nasa.gov/cassini/educatorguide • EG-1999-12-008-JPL Background for Lesson Discussion LESSON 3 Science as inquiry The nature of Saturn’s rings and how (See Procedures & Activities, Part I, Steps 1-6) they move (See Procedures & Activities, Part IIa, Step 3) Part I of the lesson offers students a good oppor- tunity to experience science as inquiry.
    [Show full text]
  • Shepherd Moon Face-Off! 21 December 2012, by Jason Major
    Shepherd Moon face-off! 21 December 2012, by Jason Major Here's Pandora, as seen by Cassini on September 5, 2005: False-color image of Pandora. Credit: NASA/JPL/SSI Raw Cassini image acquired on Dec. 18, 2012. Credit: NASA/JPL/SSI …and here's Prometheus, seen during a close pass in 2010 and color-calibrated by Gordan Ugarkovic: Two of Saturn's shepherd moons face off across the icy strand of the F ring in this image, acquired by the Cassini spacecraft on December 18, 2012. In the left corner is Pandora, external shepherd of the ropy ring, and in the right is Prometheus, whose gravity is responsible for the subtle tug on the wispy ring material. (Please don't blame the moon for any recent unsatisfying sci-fi films of the same name. There's no relation, we promise.) Similar in size (Pandora is 110 x 88 x 62 km, Prometheus 148 x 100 x 68 km) both moons are porous, icy, potato-shaped bodies covered in craters—although Prometheus' surface is somewhat smoother in appearance than Pandora's, perhaps due to the gradual buildup of infalling material from the F ring. Check out some much closer images of these two moons below, acquired during earlier flybys: 1 / 2 Prometheus casting a shadow through F ring haze. Credit: NASA/JPL/SSI/Gordan Ugarvovic The external edge of the A ring with the thin Keeler gap and the wider Encke gap can be seen at the right of the top image. Both of these gaps also harbor their own shepherd moons—Daphnis and Pan, respectively.
    [Show full text]
  • Jovian Planets
    Northeastern Illinois University Jovian Planets Greg Anderson Department of Physics & Astronomy Northeastern Illinois University Winter-Spring 2020 c 2012-2020 G. Anderson Universe: Past, Present & Future – slide 1 / 81 Northeastern Illinois Outline University Overview Jovian Planets Jovian Moons Ring Systems Review c 2012-2020 G. Anderson Universe: Past, Present & Future – slide 2 / 81 Northeastern Illinois University Outline Overview Orbital Periods Solar System Jovian Planets Jovian Moons Ring Systems Review Overview c 2012-2020 G. Anderson Universe: Past, Present & Future – slide 3 / 81 Northeastern Illinois Orbital Properties of Planets University Name Distance (AU) Period (years) Speed (AU/yr) Mercury 0.387 0.2409 10.09 Venus 0.723 0.6152 7.384 Earth 1.0 1.0 6.283 Mars 1.524 1.881 5.09 Jupiter 5.203 11.86 2.756 Saturn 9.539 29.42 2.037 Uranus 19.19 84.01 1.435 Neptune 30.06 164.8 1.146 c 2012-2020 G. Anderson Universe: Past, Present & Future – slide 4 / 81 M J S M J U S M J N Northeastern Illinois University Outline Overview Jovian Planets Jovian Planets Planetary Densities Composition Composition H & He Formation Escape Velocity Jovian Planets Formation 2 Q: Jovian Interiors Jovian Densities 02A 02 Q: Jupiter and Saturn Q: Jupiter’s composition Jovian Interiors Jovian Interiors Jupiter Jupiter Lithograph Jupiter Jupiter Jupiter from Io Interior c 2012-2020 G. Anderson Universe: Past, Present & Future – slide 6 / 81 Northeastern Illinois Jovian Planets University Jupiter Saturn Uranus Neptune 3 d⊙ R⊕ M⊕ ρ (g/cm ) tilt T (K) Jupiter 5.20 AU 11.21 317.9 1.33 3.1◦ 125 Saturn 9.54 AU 9.45 95.2 0.71 26.7◦ 75 Uranus 19.19 AU 4.01 14.5 1.24 97.9◦ 60 Neptune 30.06 AU 3.88 17.1 1.67 29.◦ 60 c 2012-2020 G.
    [Show full text]
  • Index of Astronomia Nova
    Index of Astronomia Nova Index of Astronomia Nova. M. Capderou, Handbook of Satellite Orbits: From Kepler to GPS, 883 DOI 10.1007/978-3-319-03416-4, © Springer International Publishing Switzerland 2014 Bibliography Books are classified in sections according to the main themes covered in this work, and arranged chronologically within each section. General Mechanics and Geodesy 1. H. Goldstein. Classical Mechanics, Addison-Wesley, Cambridge, Mass., 1956 2. L. Landau & E. Lifchitz. Mechanics (Course of Theoretical Physics),Vol.1, Mir, Moscow, 1966, Butterworth–Heinemann 3rd edn., 1976 3. W.M. Kaula. Theory of Satellite Geodesy, Blaisdell Publ., Waltham, Mass., 1966 4. J.-J. Levallois. G´eod´esie g´en´erale, Vols. 1, 2, 3, Eyrolles, Paris, 1969, 1970 5. J.-J. Levallois & J. Kovalevsky. G´eod´esie g´en´erale,Vol.4:G´eod´esie spatiale, Eyrolles, Paris, 1970 6. G. Bomford. Geodesy, 4th edn., Clarendon Press, Oxford, 1980 7. J.-C. Husson, A. Cazenave, J.-F. Minster (Eds.). Internal Geophysics and Space, CNES/Cepadues-Editions, Toulouse, 1985 8. V.I. Arnold. Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics (60), Springer-Verlag, Berlin, 1989 9. W. Torge. Geodesy, Walter de Gruyter, Berlin, 1991 10. G. Seeber. Satellite Geodesy, Walter de Gruyter, Berlin, 1993 11. E.W. Grafarend, F.W. Krumm, V.S. Schwarze (Eds.). Geodesy: The Challenge of the 3rd Millennium, Springer, Berlin, 2003 12. H. Stephani. Relativity: An Introduction to Special and General Relativity,Cam- bridge University Press, Cambridge, 2004 13. G. Schubert (Ed.). Treatise on Geodephysics,Vol.3:Geodesy, Elsevier, Oxford, 2007 14. D.D. McCarthy, P.K.
    [Show full text]
  • Saturns Rings Observed by the Cassini Spacecraft (I.S.S.)
    SF2A 2013 L. Cambr´esy,F. Martins, E. Nuss and A. Palacios (eds) SATURNS RINGS OBSERVED BY THE CASSINI SPACECRAFT (I.S.S.) Andr´eBrahic1 Abstract. After 9 years of observations by the Cassini spacecraft Imaging Sub System (ISS), we review the main discoveries on Saturns rings. We have been able to follow the evolution of the rings as a function of time with variations on time scales as short as days. This exploration provided new information on the structure of the rings, on waves, on resonances phenomena, and on ring - satellites interactions. A detailed study of the rings edges, of the spokes and of the F, G, E and D rings has been performed. The discovery of propellers, meteoroid impacts, and of the opposition effect gave new insights on rings evolution. New ideas about the nature of the particles and the age of the rings have been developed. Keywords: planetary rings, Cassini ISS observations 1 Introduction The disc around Saturn is a system of colliding particles submitted to the gravitational influence of Saturn and of small nearby satellites. It can be considered as a natural laboratory of dynamics, cosmogony, granular flow and particle and field physics. The structure of the rings is determined by their origin and by dynamical processes which depend upon the sizes and collisional properties of the ring particles, and on the gravitational effects of the satellites. Electromagnetic processes play a role on the motion of charged particles. Since they were first discovered by Galileo in 1610, the nature of Saturns rings has been a continuing challenge to observation and theory.
    [Show full text]
  • Open the Solar System App Swipe the Screen to the Left Name
    Name _________________________________________ Date ____________ Hour______ Table______ Open the Solar System App Swipe the screen to the left Cosmic Relations (Select each location and record how the Earth fits into the universe.) 1. Earthà__People live on Earth____ 2. Solar Systemà___The Earth orBits the Sun and is part of the Solar System______ 3. Milky Wayà____The Solar System is part of the Milky Way Galaxy______ 4. Universeà____The Milky Way is one of more than 100 Billion Galaxies in the universe_____ Swipe the screen to the left The Milky Way is the home of Earth’s solar system! 5. What type of galaxy is the Milky Way? _____barred spiral Galaxy______ 6. The Milky Way, like most galaxies, probably has what at its center? ___super massive Black hole_____ 7. A ‘regular’ spiral galaxy has a circular center. What shape does a barred spiral galaxy have?___elongated Galactic center____ Swipe the screen to the left 8. The Solar System is a collection of what? ___is a collection of planets, dwarf planets, asteroids, and other material orBitinG the sun _________ 9. List the terrestrial planets. __Mercury, Venus, Earth, Mars____ 10. Describe the terrestrial planets__The inner planets are closer to the Sun and are rocky in nature. Only Earth and Venus have a significant atmosphere ____________________________________________ 11. List the Gas Giant planets. ___Jupiter, Saturn, Uranus, Neptune______________________________ 12. Describe the Gas Giants.____outer planets are much larGer than the terrestrial planets and are composed mostly of Gas______ 13. What occurs between the terrestrial planets and the gas giants? ___an asteroid Belt___ Swipe the screen to the left Name __________________________________________ Date ___________ Hour______ Table______ 14.
    [Show full text]
  • PDF Transcript
    You are cordially invited to the ~rrurru[lJl~~ M®®frarru~ Friends of the Malcolm A. Love Library, SDSU and the f->~©rru~©arru fr~®· ~~fr~@ Faculty Staff Center Saturday, June 3,1989 11:45 Punch in the Patio, Courtesy of the Board 12:30 Luncheon in Dining Room "The Voyager Guide to Giant Worlds" will be presented by Dr. Mark Littmann, author of Planets Beyond: Discovering the Outer Solar System, from which his talk is adapted. NASA's 12-year Voyager mission will be completing its tour of the giants Jupiter, Saturn, and Uranus with a fly-by of Neptune this August. Dr. Littmann's timely and entertaining talk will be accompanied by slides. An accomplished author, Dr. Littmann is President of Starmaster Corporation, a publisher and distributer of educational materials, with a special interest in astronomy education. Among other positions, for eighteen years he was Director of the Hansen Planetarium in Salt Lake City. ;,U)Kt.LAKD fOR VUYAGl:R 2 DISCOVERIES AT NEPTUNE Best lrdormstion Data from before Voyager 2 Voyager 2 Encounter Encounter Ifill in! Nept1me Diameter 30,800 miles 149,600 kilometers) Mass [Earth e l ] 17.2 Density (water =11 1.76 Rotation period 17.0 hours (based on clouds]: about 18.0 hours suspected for interior Magnetic field not detectable from Earth; suspected to be similar to Uranus' in strength Satellites 2; shepherd moon lsi for ring arcs expected to exist Ring arcs 3 reasonably certain; materia! fills about 20 percent of orbit; ring particles expected to be black Distance from center of planet 25,000 to 44,000 miles
    [Show full text]
  • The Age and Fate of Saturn's Rings
    Papers The age and fate of Saturn’s rings Jonathan Henry When Saturn was the only known ringed planet, the rings were believed to be as old as the solar system—4.6 billion years in the conventional chronology. The existence of the rings to the present day was taken as evidence of this chronology. In the 1970s and 1980s, other planets were found to have short-lived, rapidly dissipating rings with life times of the order of millennia. Subsequently, the view of the age of Saturn’s rings began to change. They are now viewed conventionally as no more than hundreds of millions of years old, and a former prop of the conventional chronology has now vanished. Furthermore, an examination of ring observations and data unconstrained by conventional chronology indicates that the actual life time of Saturn’s rings may be of the order of tens of thousands of years, and possibly less. This age fits in perfectly with the biblical Creation/Fall/Flood model, and opens up possibilities for effectively explaining their origin within a biblical framework. puzzle for evolutionary chronology began with the dust particles and cause them to sink into the inner A Voyager 1 flyby past Saturn’s rings in 1980. Before atmosphere in a few thousand years or less ... then, Earth-bound telescopes provided little ring detail, and Collisions between ring particles ... slowly [make] planetary rings were assumed to have endured virtually the ring wider.’18,19 changeless since the emergence of the solar system from Saturn’s rings have little matter, ‘only about a mil- the solar nebula—a vast cloud of gas and dust—some 4.6 lionth of the mass of our moon’,20 similar to that of smaller billion years ago.1–3 asteroids such as 243 Ida or 253 Mathilde.21 Their small ‘Everyone had expected that collisions between mass suggests that the rings could ‘empty out’ fairly quickly.
    [Show full text]
  • Jewel of the Solar System Afterschool Program Activity Guide from Out-Of-School to Outer Space Series
    National Aeronautics and Space Administration Grades 4-5 Jewel of the Solar System Afterschool Program Activity Guide From Out-of-School to Outer Space Series Educational Product Jet Propulsion Laboratory Educators Grades 4–5 California Institute of Technology EG-2011-09-020-JPL Jewel of the Solar System Program Unit Overview Storyline Activity Activity Type Sessions/ Science Make & Take Skills & Fun Length for the Kids What do I already 1. What Do I Journaling, 2 @ 40 min Observing, wondering Make & Take: Make observations know? See When art, team each and forming conclu- Decorated fun. Learn Saturn I Picture observation sions like a scientist. Saturn vocabulary Saturn? Learning about claims Discovery Log and evidence. Size and distance 2. Where Are We Kinesthetic 1 @ 30 min Solar system scale Make: Take a walk in a in the solar in the Solar walk, art 2 @ 40 min (size and distance) Solar system solar system model system System? scale model to experience its vast poster size What do Saturn 3. Discovering Reading, 4 @ 40 min Observing Saturn’s Make: Play a game and and its moons Saturn: The journaling, each appearance and that Saturn poster make a team poster look like? Real “Lord of group discus- of its moons of new knowledge the Rings” sion, game, art Saturn from the 4. Saturn’s Journaling, 2 @ 40 min The internal and Make & Take: Decorate and outside in Fascinating art each surface properties of Multi-layered compose their own Features Saturn and its rings 3-d book on 3-D book of Saturn Saturn facts Engineering: 5.
    [Show full text]
  • Astronomy Today 8Th Edition Chaisson/Mcmillan Chapter 12
    Lecture Outlines Chapter 12 Astronomy Today 8th Edition Chaisson/McMillan © 2014 Pearson Education, Inc. Chapter 12 Saturn © 2014 Pearson Education, Inc. Units of Chapter 12 12.1 Orbital and Physical Properties 12.2 Saturn’s Atmosphere 12.3 Saturn’s Interior and Magnetosphere 12.4 Saturn’s Spectacular Ring System 12.5 The Moons of Saturn Discovery 12.1 Dancing Among Saturn’s Moons © 2014 Pearson Education, Inc. 12.1 Orbital and Physical Properties Mass: 5.7 × 1026 kg Radius: 60,000 km Density: 700 kg/m3—less than water! Rotation: Rapid and differential, enough to flatten Saturn considerably Rings: Very prominent; wide but extremely thin © 2014 Pearson Education, Inc. 12.1 Orbital and Physical Properties View of rings from Earth changes as Saturn orbits the Sun © 2014 Pearson Education, Inc. 12.2 Saturn’s Atmosphere Saturn’s atmosphere also shows zone and band structure, but coloration is much more subdued than Jupiter’s Mostly molecular hydrogen, helium, methane, and ammonia; helium fraction is much less than on Jupiter © 2014 Pearson Education, Inc. 12.2 Saturn’s Atmosphere This true-color image shows the delicate coloration of the cloud patterns on Saturn © 2014 Pearson Education, Inc. 12.2 Saturn’s Atmosphere Similar to Jupiter’s, except pressure is lower Three cloud layers Cloud layers are thicker than Jupiter’s; see only top layer © 2014 Pearson Education, Inc. 12.2 Saturn’s Atmosphere Structure in Saturn’s clouds can be seen more clearly in this false-color image © 2014 Pearson Education, Inc. 12.2 Saturn’s Atmosphere Wind patterns on Saturn are similar to those on Jupiter, with zonal flow © 2014 Pearson Education, Inc.
    [Show full text]
  • LESSON A2 Saturn's Moons
    A: Getting to Know Saturn Lesson A2: Saturn’s Moons LESSON A2 Saturn’s Moons Science Content Standards: UNIFYING CONCEPTS AND PROCESSES -Systems, order and organization SCIENCE AS INQUIRY -Abilities necessary to do scientific inquiry EARTH AND SPACE SCIENCE -Earth in the Solar System Description: Students use the data provided on a set of 18 Saturn’s eight icy moons. Courtesy, NASA/JPL Saturn Moon Cards to compare Saturn’s moons to Earth’s moon, and to explore moon properties and physical relationships within a planet-moon system. For example, the farther the moon is from the center of the planet, the slower its orbital speed, and the longer its orbital period. The lesson enables students to complete their own Moon Card for a “mystery moon” of Saturn whose size, mass, and distance from the center of Saturn are specified. Prerequisite Skills: Working in groups MATERIALS Reading in the context area of science AND TOOLS Basic familiarity with concepts of mass, 1 23 99 3 81 9 10 92 38 019 238 20 3 94 85 28 40 5 582 90 59 surface gravity, orbital period, and Q¢ orbital speed (see next page) For the teacher: Overhead projector Interpreting scientific notation Earth Moon Chart* (T) Using Venn diagrams Sorting and ordering data For each student group of 2-3: Set of 18 Saturn Moon Cards* Estimated Time for Lesson: 2 to 3 paper clips 3 hours (may vary with grade level) Paper Background Information: For each student: Background for Lesson Discussion Earth’s Moon Chart * (see next page) Mystery Moon Card* Question & Answer Section 1 - 21: The Planet Saturn *Master is included T = Transparency 35 - 50: The Moons CASSINI Space Science Institute Saturn Educator Guide 1 A: Getting to Know Saturn Lesson A2: Saturn’s Moons Saturn and its Moons Background for Lesson Discussion Its orbit around the Sun Other factors affecting density and mass QQQQ¢¢¢¢ Students may ask about the quantities listed on the Saturn Moon Cards: QQQQ¢¢¢¢ Radius/Size: To determine the actual size of a moon or a planet, scientists make images of it and use the resolution or “scale” of the image (e.g.
    [Show full text]
  • Saturn's Moons
    GETTING TO KNOW SATURN LESSON Saturn’s Moons 2 3 hrs Students use the data provided on a set of Saturn Moon Cards to compare Saturn’s moons with Earth’s Moon, and to explore moon properties and physical relationships within a planet–moon system. For example, the farther the moon is from the center of MEETS NATIONAL the planet, the slower its orbital speed, and SCIENCE EDUCATION the longer its orbital period. The lesson STANDARDS: enables students to complete their own Unifying Concepts and Processes Moon Card for a mystery moon of Saturn Saturn’s eight large icy moons. • Systems, order, and organization whose size, mass, and distance from the Science as Inquiry center of Saturn are specified. • Abilities necessary to do scientific inquiry PREREQUISITE SKILLS BACKGROUND INFORMATION Earth and Space Background for Lesson Discussion, page 32 Science Working in groups • Earth in the Reading in the context area of science Questions, page 37 Solar System Basic familiarity with concepts of mass, surface Answers in Appendix 1, page 225 gravity, orbital period, and orbital speed 1–21: Saturn Interpreting scientific notation 35–50: Moons Using Venn diagrams Sorting and ordering data EQUIPMENT, MATERIALS, AND TOOLS For the teacher Materials to reproduce Photocopier (for transparencies & copies) Figures 1–21 are provided at the end of Overhead projector this lesson. Marker to write on transparencies FIGURE TRANSPARENCY COPIES Chalkboard, whiteboard, or easel with 1 1 1 per student paper; chalk or markers 2–19 1 set per group 20 1 optional For each group of 2–3 students 21 1 per student Clear adhesive tape Notebook paper; pencils 31 Saturn Educator Guide • Cassini Program website — http://www.jpl.nasa.gov/cassini/educatorguide • EG-1999-12-008-JPL Background for Lesson Discussion LESSON 2 Students may ask about the quantities listed on Orbital period: The orbital period of a moon the Saturn Moon Cards.
    [Show full text]