Open the Solar System App Swipe the Screen to the Left Name

Total Page:16

File Type:pdf, Size:1020Kb

Open the Solar System App Swipe the Screen to the Left Name Name _________________________________________ Date ____________ Hour______ Table______ Open the Solar System App Swipe the screen to the left Cosmic Relations (Select each location and record how the Earth fits into the universe.) 1. Earthà__People live on Earth____ 2. Solar Systemà___The Earth orBits the Sun and is part of the Solar System______ 3. Milky Wayà____The Solar System is part of the Milky Way Galaxy______ 4. Universeà____The Milky Way is one of more than 100 Billion Galaxies in the universe_____ Swipe the screen to the left The Milky Way is the home of Earth’s solar system! 5. What type of galaxy is the Milky Way? _____barred spiral Galaxy______ 6. The Milky Way, like most galaxies, probably has what at its center? ___super massive Black hole_____ 7. A ‘regular’ spiral galaxy has a circular center. What shape does a barred spiral galaxy have?___elongated Galactic center____ Swipe the screen to the left 8. The Solar System is a collection of what? ___is a collection of planets, dwarf planets, asteroids, and other material orBitinG the sun _________ 9. List the terrestrial planets. __Mercury, Venus, Earth, Mars____ 10. Describe the terrestrial planets__The inner planets are closer to the Sun and are rocky in nature. Only Earth and Venus have a significant atmosphere ____________________________________________ 11. List the Gas Giant planets. ___Jupiter, Saturn, Uranus, Neptune______________________________ 12. Describe the Gas Giants.____outer planets are much larGer than the terrestrial planets and are composed mostly of Gas______ 13. What occurs between the terrestrial planets and the gas giants? ___an asteroid Belt___ Swipe the screen to the left Name __________________________________________ Date ___________ Hour______ Table______ 14. What is the Sun? ____is a star, a Giant Ball of extremely hot luminous Gas, in the center of the solar system__ LaBel each part of the Graph with the percent and the element that makes up that percentaGe of the Sun. 18. How much of the total mass of the ENTIRE solar system is made up by the Sun? __99.9% __ 19. What appears as dark blemishes on the Sun? ___sunspots_____ Watch the Video 20. What are coronal loops? __jets of plasma that follow the Sun’s maGnetic field____ Swipe the screen to the left Planets of the Solar System 21. What three things define a planet? 1.__the oBject orBits the Sun and is not a moon___ 2.__the oBject has enouGh mass to form a staBle spherical shape___ 3.___The object has cleared its orbital path of other objects___ Select Mercury 22. Mercury is the __smallest___ planet in the Solar System and is __closest__ to the Sun. 23. Explain Mercury’s extreme temperature conditions._____it is so close to the Sun that the lit side gets blaZinG hot. At the same time the dark side is freeZinG cold because there is no atmosphere to trap heat ____ Name ___________________________________________ Date ____________ Hour______ Table______ Select Venus 24. Venus has a thick atmosphere that traps heat from the Sun. What temperatures can occur on the Venusian Terrain? ____surface temperatures can reach 460°C (860°F)______ 25. What appears at each of the poles of Venus? ___a large atmospheric vortex____ 26. The Venera 13 probe only lasted two hours due to what features of the thick atmosphere? ___ ___hiGh surface pressure and hot temperatures caused by thick atmosphere ____ Select Earth 27. How much of Earth’s surface is water? ___70%_____ 28. What two things continuously refresh Earth’s crust? ___tectonic plates and volcanic activity____ Select the Moon at the bottom left side of the page 29. What does tidally locked to Earth mean? _the same side of the moon always faces Earth. The far side of the moon can only Be seen from space__ 30. Many large craters are filled with what substance from old volcanic activity? __dark basalt__ 31. About how long does it take the Moon to go through phases from New Moon and back? _about 30 days_ Select Mars 32. Why is Mars known as the ‘red planet’?_due to the larGe amount of iron oxide/rust in the Ground__ 33. What dormant volcano is three times taller than Earth’s Mount Everest? _Olympus Mons__ 34. What are the names of Mars’ two moons? Describe both__PhoBos and Deimos; Both are heavily cratered rocky Bodies _ Select Jupiter 35. How many Earths would fit inside of Jupiter? _over 1000 Earths!__ 36. What year were Jupiter’s rings discovered? __1979___ 37. What is the name of the giant storm that has existed for 182 years __Great Red Spot__ Name ___________________________________________ Date _____________ Hour______ Table______ 38. Jupiter has at least 66 observed moons. In the table below, list the names and a fact about each of the Galilean moons. (Select each moon on the Bottom riGht side of the screen to find this information. You can slide the screen left to advance to the next moon.) Name Fact The most geologically active object in the solar system with over 400 active volcanoes; high volcanic Io activity changes surface and refreshes the bright colors that paint the landscape; the Tvashtar volcanic region spews debris 330 km into space Europa Had sub-surface oceans which could possibly harbor alien life; believed to have a layer of liquid salt water beneath the icy outer crust; the moon also likely has a solid metallic core surrounded by a rocky mantle; smooth fractured surface is evidence of liquid water flowing beneath frozen surface The largest moon in the solar system and larger than Mercury; 40% is old dark colored heavily cratered terrain, 60% is light colored grooved terrain; The craters are relatively flat compared to the surrounding surface, thought to be caused by Ganymede the soft icy crust slowly settling, smoothing the surface; craters are created when asteroids hit surface and then the crater sinks over time Is one of the most heavily cratered objects in the solar system; the largest crater is Valhalla at 3,800 km in diameter; Callisto it is thought that there is a layer of liquid water beneath the thick icy crust; third largest moon in the solar system; core is only partially differentiated—a fully differentiated core is composed of distinct layers—interior is mixture of ice and rock Select Saturn 39. Where does the large hurricane-like vortex exist? __Saturn’s north pole_ 40. Saturn has at least 62 moons. In the table below, list the names and fact for each of four largest moons. (Tap each of the moons at the bottom left of the screen to find this information. You can slide the screen left to advance to the next moon.) Name Fact Is only known moon with dense atmosphere; dark colored methane lakes can be seen on the surface; the Huygens Titan probe landed on Titan and took photographs of its surface; Titan has a methane cycle, similar to the water cycle on Earth but operating at much lower temperatures: 179°C (-290°F) on the surface; due to the presence of stable liquids on the surface, it is thought that Titan could possibly harbor alien life; Titan is the largest moon of Saturn and slightly larger than Mercury Rhea Is like a giant dirty snowball with its composition of 75% ice and 25% rock; bright wispy terrain stretches across surface; is extremely cold -230°C (-364°F) to -174°C (-281°F); heavily cratered; second largest moon of Saturn but less than a third as big as Titan Iapetus Has a distinct two toned color- half whited half brown; a large ridge encircles the equator; Some peaks in the ridge are over 10 km (6 miles) tall; mostly composed of ice; the dark material is only a thin coat over the ice beneath Enceladus Could harbor alien life underground in pockets of liquid water; appears to be geologically active and has a varied terrain of canyons, plains, and ridges; surface is composed almost entirely of pure water ice; likely a layer of liquid water beneath surface that breaks out from weak points in the crust as plumes of water Select Uranus 41. Describe the tilt of this planet.___on its side relative to its orbital plane___ 42. Uranus is the coldest planet with the temperature of __as low as -244°C (-407°F)__. 43. Uranus has 27 known moons. List the names of the two largest moons and a fact about each. Name Fact Largest moon of Uranus; many large canyons—most prominent is the Messina Chasm Titania which runs from the equator to the south pole Second largest moon of Uranus; Oberon Name __________________________________________ Date _____________ Hour______ Table______ Select Neptune 44. How many kilometers away from the Sun is Neptune? __4.5 billion kilometers from the Sun___ 45. There are often active, raging storms, visible as dark areas on Neptune. At what speed have the winds been observed? ___1,200 km (750 miles) per hour have been observed__ 46. Neptune has 13 known moons. Select the image of Triton at the bottom of the screen. List three things about Triton. 1. ___orbits opposite direction from Neptune and of Neptune’s other moons; indicatinG the moon was likely captured from the Kuiper Belt___ 2. ___relatively few impact craters on Triton; volcanic activity is thouGht to have resurfaced the crust erasinG old craters____ 3. __larGest moon of Neptune, comprisinG 99.5% of the mass of all moons orBitinG Neptune___ Swipe the screen to the left Dwarf Planets of the Solar System 47. What three things define a dwarf planet? 1.__the oBject orBits the Sun and is not a moon__ 2.__the oBject has enouGh mass to form a staBle spherical shape____ 3.___the oBject has NOT cleared its orBital path of other oBjects _____ 48.
Recommended publications
  • Current State of Knowledge of the Magnetospheres of Uranus and Neptune
    Current State of Knowledge of the Magnetospheres of Uranus and Neptune 28 July 2014 Abigail Rymer [email protected] What does a ‘normal’ magnetosphere look like? . N-S dipole field perpendicular to SW . Solar wind driven circulation system . Well defined central tail plasmasheet . Loaded flux tubes lost via substorm activity . Trapped radiation on closed (dipolar) field lines close to the planet. …but then what is normal…. Mercury Not entirely at the mercy of the solar wind after all . Jupiter . More like its own little solar system . Sub-storm activity maybe totally internally driven …but then what is normal…. Saturn Krimigis et al., 2007 What is an ice giant (as distinct from a gas giant) planet? Consequenses for the magnetic field Soderlund et al., 2012 Consequenses for the magnetic field Herbert et al., 2009 Are Neptune and Uranus the same? URANUS NEPTUNE Equatorial radius 25 559 km 24 622 km Mass 14.5 ME 17.14 ME Sidereal spin period 17h12m36s (retrograde) 16h6m36s Obliquity (axial tilt to ecliptic) -97.77º 28.32 Semi-major axis 19.2 AU 30.1 AU Orbital period 84.3 Earth years 164.8 Earth years Dipole moment 50 ME 25 ME Magnetic field Highly complex with a surface Highly complex with a surface field up to 110 000 nT field up to 60 000 nT Dipole tilt -59º -47 Natural satellites 27 (9 irregular) 14 (inc Triton at 14.4 RN) Spacecraft at Uranus and Neptune – Voyager 2 Voyager 2 observations - Uranus Stone et al., 1986 Voyager 2 observations - Uranus Voyager 2 made excellent plasma measurements with PLS, a Faraday cup type instrument.
    [Show full text]
  • Solar Illumination Conditions at 4 Vesta: Predictions Using the Digital Elevation Model Derived from Hst Images
    42nd Lunar and Planetary Science Conference (2011) 2506.pdf SOLAR ILLUMINATION CONDITIONS AT 4 VESTA: PREDICTIONS USING THE DIGITAL ELEVATION MODEL DERIVED FROM HST IMAGES. T. J. Stubbs 1,2,3 and Y. Wang 1,2,3 , 1Goddard Earth Science and Technology Center, University of Maryland, Baltimore County, Baltimore, MD, USA, 2NASA Goddard Space Flight Center, Greenbelt, MD, USA, 3NASA Lunar Science Institute, Ames Research Center, Moffett Field, CA, USA. Corresponding email address: Timothy.J.Stubbs[at]NASA.gov . Introduction: As with other airless bodies in the plane), the longitude of the ascending node is 103.91° Solar System, the surface of 4 Vesta is directly exposed and the argument of perihelion is 149.83°. Based on to the full solar spectrum. The degree of solar illumina- current estimates, Vesta’s orbital plane is believed to tion plays a major role in processes at the surface, in- have a precession period of 81,730 years [6]. cluding heating (surface temperature), space weather- For the shape of Vesta we use the 5 × 5° DEM ing, surface charging, surface chemistry, and exo- based on HST images [5], which is publicly available spheric production via photon-stimulated desorption. from the Planetary Data System (PDS). To our knowl- The characterization of these processes is important for edge, this is the best DEM of Vesta currently available. interepreting various surface properties. It is likely that The orbital information for Vesta is obtained from the solar illumination also controls the transport and depo- Dawn SPICE kernel, which currently limits us to the sition of volatiles at Vesta, as has been proposed at the current epoch (1900 to present).
    [Show full text]
  • Lesson 3: Moons, Rings Relationships
    GETTING TO KNOW SATURN LESSON Moons, Rings, and Relationships 3 3–4 hrs Students design their own experiments to explore the fundamental force of gravity, and then extend their thinking to how gravity acts to keep objects like moons and ring particles in orbit. Students use the contexts of the Solar System and the Saturn system MEETS NATIONAL to explore the nature of orbits. The lesson SCIENCE EDUCATION enables students to correct common mis- STANDARDS: conceptions about gravity and orbits and to Science as Inquiry • Abilities learn how orbital speed decreases as the dis- Prometheus and Pandora, two of Saturn’s moons, “shepherd” necessary to Saturn’s F ring. scientific inquiry tance from the object being orbited increases. Physical Science • Motions and PREREQUISITE SKILLS BACKGROUND INFORMATION forces Working in groups Background for Lesson Discussion, page 66 Earth and Space Science Reading a chart of data Questions, page 71 • Earth in the Plotting points on a graph Answers in Appendix 1, page 225 Solar System 1–21: Saturn 22–34: Rings 35–50: Moons EQUIPMENT, MATERIALS, AND TOOLS For the teacher Materials to reproduce Photocopier (for transparencies & copies) Figures 1–10 are provided at the end of Overhead projector this lesson. Chalkboard, whiteboard, or large easel FIGURE TRANSPARENCY COPIES with paper; chalk or markers 11 21 For each group of 3 to 4 students 31 Large plastic or rubber ball 4 1 per student Paper, markers, pencils 5 1 1 per student 6 1 for teacher 7 1 (optional) 1 for teacher 8 1 per student 9 1 (optional) 1 per student 10 1 (optional) 1 for teacher 65 Saturn Educator Guide • Cassini Program website — http://www.jpl.nasa.gov/cassini/educatorguide • EG-1999-12-008-JPL Background for Lesson Discussion LESSON 3 Science as inquiry The nature of Saturn’s rings and how (See Procedures & Activities, Part I, Steps 1-6) they move (See Procedures & Activities, Part IIa, Step 3) Part I of the lesson offers students a good oppor- tunity to experience science as inquiry.
    [Show full text]
  • Our Solar System
    This graphic of the solar system was made using real images of the planets and comet Hale-Bopp. It is not to scale! To show a scale model of the solar system with the Sun being 1cm would require about 64 meters of paper! Image credit: Maggie Mosetti, NASA This book was produced to commemorate the Year of the Solar System (2011-2013, a martian year), initiated by NASA. See http://solarsystem.nasa.gov/yss. Many images and captions have been adapted from NASA’s “From Earth to the Solar System” (FETTSS) image collection. See http://fettss.arc.nasa.gov/. Additional imagery and captions compiled by Deborah Scherrer, Stanford University, California, USA. Special thanks to the people of Suntrek (www.suntrek.org,) who helped with the final editing and allowed me to use Alphonse Sterling’s awesome photograph of a solar eclipse! Cover Images: Solar System: NASA/JPL; YSS logo: NASA; Sun: Venus Transit from NASA SDO/AIA © 2013-2020 Stanford University; permission given to use for educational and non-commericial purposes. Table of Contents Why Is the Sun Green and Mars Blue? ............................................................................... 4 Our Sun – Source of Life ..................................................................................................... 5 Solar Activity ................................................................................................................... 6 Space Weather ................................................................................................................. 9 Mercury
    [Show full text]
  • Effects of the Moon on the Earth in the Past, Present, and Future
    Effects of the Moon on the Earth in the Past, Present, and Future Rina Rast*, Sarah Finney, Lucas Cheng, Joland Schmidt, Kessa Gerein, & Alexandra Miller† Abstract The Moon has fascinated human civilization for millennia. Exploration of the lunar surface played a pioneering role in space exploration, epitomizing the heights to which modern science could bring mankind. In the decades since then, human interest in the Moon has dwindled. Despite this fact, the Moon continues to affect the Earth in ways that seldom receive adequate recognition. This paper examines the ways in which our natural satellite is responsible for the tides, and also produces a stabilizing effect on Earth’s rotational axis. In addition, phenomena such as lunar phases, eclipses and lunar libration will be explained. While investigating the Moon’s effects on the Earth in the past and present, it is hoped that human interest in it will be revitalized as it continues to shape life on our blue planet. Keywords: Moon, Earth, tides, Earth’s axis, lunar phases, eclipses, seasons, lunar libration Introduction lunar phases, eclipses and libration. In recognizing and propagating these effects, the goal of this study is to rekindle the fascination humans once held for the Moon Decades have come and gone since humans’ fascination and space exploration in general. with the Moon galvanized exploration of the galaxy and observation of distant stars. During the Space Race of the 1950s and 1960s, nations strived and succeeded in reaching Four Prominent Lunar Effects on Earth Earth’s natural satellite to propel mankind to new heights. Although this interest has dwindled and humans have Effect on Oceans and Tides largely distanced themselves from the Moon’s relevance, its effects on Earth remain as far-reaching as ever.
    [Show full text]
  • Shepherd Moon Face-Off! 21 December 2012, by Jason Major
    Shepherd Moon face-off! 21 December 2012, by Jason Major Here's Pandora, as seen by Cassini on September 5, 2005: False-color image of Pandora. Credit: NASA/JPL/SSI Raw Cassini image acquired on Dec. 18, 2012. Credit: NASA/JPL/SSI …and here's Prometheus, seen during a close pass in 2010 and color-calibrated by Gordan Ugarkovic: Two of Saturn's shepherd moons face off across the icy strand of the F ring in this image, acquired by the Cassini spacecraft on December 18, 2012. In the left corner is Pandora, external shepherd of the ropy ring, and in the right is Prometheus, whose gravity is responsible for the subtle tug on the wispy ring material. (Please don't blame the moon for any recent unsatisfying sci-fi films of the same name. There's no relation, we promise.) Similar in size (Pandora is 110 x 88 x 62 km, Prometheus 148 x 100 x 68 km) both moons are porous, icy, potato-shaped bodies covered in craters—although Prometheus' surface is somewhat smoother in appearance than Pandora's, perhaps due to the gradual buildup of infalling material from the F ring. Check out some much closer images of these two moons below, acquired during earlier flybys: 1 / 2 Prometheus casting a shadow through F ring haze. Credit: NASA/JPL/SSI/Gordan Ugarvovic The external edge of the A ring with the thin Keeler gap and the wider Encke gap can be seen at the right of the top image. Both of these gaps also harbor their own shepherd moons—Daphnis and Pan, respectively.
    [Show full text]
  • On the Irrelevance of Being a PLUTO! Size Scale of Stars and Planets
    On the irrelevance of being a PLUTO! Mayank Vahia DAA, TIFR Irrelevance of being Pluto 1 Size Scale of Stars and Planets Irrelevance of being Pluto 2 1 1 AU 700 Dsun Irrelevance of being Pluto 3 16 Dsun Irrelevance of being Pluto 4 2 Solar System 109 DEarth Irrelevance of being Pluto 5 11 DEarth Venus Irrelevance of being Pluto 6 3 Irrelevance of being Pluto 7 Solar System visible to unaided eye Irrelevance of being Pluto 8 4 Solar System at the beginning of 20 th Century Irrelevance of being Pluto 9 Solar System of my text book (30 years ago) Irrelevance of being Pluto 10 5 Asteroid Belt (Discovered in 1977) Irrelevance of being Pluto 11 The ‘Planet’ Pluto • Pluto is a 14 th magnitude object. • It is NOT visible to naked eye (neither are Uranus and Neptune). • It was discovered by American astronomer Clyde Tombaugh in 1930. Irrelevance of being Pluto 12 6 Prediction of Pluto • Percival Lowell and William H. Pickering are credited with the theoretical work on Pluto’s orbit done in 1909 based on data of Neptune’s orbital changes. • Venkatesh Ketakar had predicted it in May 1911 issue of Bulletin of the Astronomical Society of France. • He modelled his computations after those of Pierre-Simon Laplace who had analysed the motions of the satellites of Jupiter. • His location was within 1 o of its correct location. • He had predicted ts orbital period was 242.28 (248) years and a distance of 38.95 (39.53) A.U. • He had also predicted another planet at 59.573 A.U.
    [Show full text]
  • Retrograde-Rotating Exoplanets Experience Obliquity Excitations in an Eccentricity- Enabled Resonance
    The Planetary Science Journal, 1:8 (15pp), 2020 June https://doi.org/10.3847/PSJ/ab8198 © 2020. The Author(s). Published by the American Astronomical Society. Retrograde-rotating Exoplanets Experience Obliquity Excitations in an Eccentricity- enabled Resonance Steven M. Kreyche1 , Jason W. Barnes1 , Billy L. Quarles2 , Jack J. Lissauer3 , John E. Chambers4, and Matthew M. Hedman1 1 Department of Physics, University of Idaho, Moscow, ID, USA; [email protected] 2 Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, Atlanta, GA, USA 3 Space Science and Astrobiology Division, NASA Ames Research Center, Moffett Field, CA, USA 4 Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC, USA Received 2019 December 2; revised 2020 February 28; accepted 2020 March 18; published 2020 April 14 Abstract Previous studies have shown that planets that rotate retrograde (backward with respect to their orbital motion) generally experience less severe obliquity variations than those that rotate prograde (the same direction as their orbital motion). Here, we examine retrograde-rotating planets on eccentric orbits and find a previously unknown secular spin–orbit resonance that can drive significant obliquity variations. This resonance occurs when the frequency of the planet’s rotation axis precession becomes commensurate with an orbital eigenfrequency of the planetary system. The planet’s eccentricity enables a participating orbital frequency through an interaction in which the apsidal precession of the planet’s orbit causes a cyclic nutation of the planet’s orbital angular momentum vector. The resulting orbital frequency follows the relationship f =-W2v , where v and W are the rates of the planet’s changing longitude of periapsis and longitude of ascending node, respectively.
    [Show full text]
  • Lunar Polar Ice and the Obliquity History of the Moon
    EPSC Abstracts Vol. 6, EPSC-DPS2011-1615, 2011 EPSC-DPS Joint Meeting 2011 c Author(s) 2011 Lunar Polar Ice and the Obliquity History of the Moon M.A. Siegler (1), B.G. Bills2 (2) and D.A. Paige (1) (1)UCLA Dept. of Earth and Planetary Sciences, Los Angeles, CA, 90095, (2)NASA Jet Propulsion Laboratory, Pasadena, CA, 91109 ([email protected]) Abstract sis [1] of these orbital models combines these orbital parameters to create a history of the axial tilt (maxi- Water ice is currently stable from sublimation loss mum yearly sun angle) as seen in Figure 1. in shadowed environments near the lunar poles. However, most current temperature environments are generally too cold to allow efficient diffusive migra- tion into the subsurface by that would protect water from non-sublimation loss. This has not always the case. Higher past lunar obliquities caused currently shadowed polar regions to have warmer thermal envi- ronments. These past environments may have been both cold enough to be able to capture surface ice, but warm enough to drive it into the subsurface. Figure 1: Axial tilt (with respect to the ecliptic) history of the Moon. The large increase at approximately 30 RE semimajor 1. Lunar Orbit History axis is a result of a transition between two Cassini States. The current tilt is roughly 1.54o. Roughly halfway through its outward migration (due to tidal interaction with the Earth) the Moon was 2. Thermal Model tilted (currently 1.54o) up to 83o with respect to the ecliptic. During this time, all polar craters would ful- Next, we examine the thermal environments re- ly illuminated at some point in the year and have sulting from the slow orbital evolution since the Cas- been far too warm to preserve water ice [1].
    [Show full text]
  • Jovian Planets
    Northeastern Illinois University Jovian Planets Greg Anderson Department of Physics & Astronomy Northeastern Illinois University Winter-Spring 2020 c 2012-2020 G. Anderson Universe: Past, Present & Future – slide 1 / 81 Northeastern Illinois Outline University Overview Jovian Planets Jovian Moons Ring Systems Review c 2012-2020 G. Anderson Universe: Past, Present & Future – slide 2 / 81 Northeastern Illinois University Outline Overview Orbital Periods Solar System Jovian Planets Jovian Moons Ring Systems Review Overview c 2012-2020 G. Anderson Universe: Past, Present & Future – slide 3 / 81 Northeastern Illinois Orbital Properties of Planets University Name Distance (AU) Period (years) Speed (AU/yr) Mercury 0.387 0.2409 10.09 Venus 0.723 0.6152 7.384 Earth 1.0 1.0 6.283 Mars 1.524 1.881 5.09 Jupiter 5.203 11.86 2.756 Saturn 9.539 29.42 2.037 Uranus 19.19 84.01 1.435 Neptune 30.06 164.8 1.146 c 2012-2020 G. Anderson Universe: Past, Present & Future – slide 4 / 81 M J S M J U S M J N Northeastern Illinois University Outline Overview Jovian Planets Jovian Planets Planetary Densities Composition Composition H & He Formation Escape Velocity Jovian Planets Formation 2 Q: Jovian Interiors Jovian Densities 02A 02 Q: Jupiter and Saturn Q: Jupiter’s composition Jovian Interiors Jovian Interiors Jupiter Jupiter Lithograph Jupiter Jupiter Jupiter from Io Interior c 2012-2020 G. Anderson Universe: Past, Present & Future – slide 6 / 81 Northeastern Illinois Jovian Planets University Jupiter Saturn Uranus Neptune 3 d⊙ R⊕ M⊕ ρ (g/cm ) tilt T (K) Jupiter 5.20 AU 11.21 317.9 1.33 3.1◦ 125 Saturn 9.54 AU 9.45 95.2 0.71 26.7◦ 75 Uranus 19.19 AU 4.01 14.5 1.24 97.9◦ 60 Neptune 30.06 AU 3.88 17.1 1.67 29.◦ 60 c 2012-2020 G.
    [Show full text]
  • A PRE-DAWN PERSPECTIVE — VESTA and the Heds 6:00 P.M
    42nd Lunar and Planetary Science Conference (2011) sess605.pdf Thursday, March 10, 2011 POSTER SESSION II: A PRE-DAWN PERSPECTIVE — VESTA AND THE HEDs 6:00 p.m. Town Center Exhibit Area Wilson L. Keil K. McCoy T. Explosive Volcanism on Asteroids Re-Visited: Sizes of Pyroclasts Lost or Retained [#1362] We calculate the sizes expected for pyroclasts from explosive eruptions on large and small asteroids and specify the sizes of clasts that should be retained on the asteroid surfaces. Hammergren M. Gyuk G. Solontoi M. Puckett A. W. Basaltic Asteroids in the Middle and Outer Main Belt Observed by the AVAST Survey [#2821] We present the preliminary results of reflectance spectroscopy of basaltic asteroids obtained in the Adler V-Type Asteroid (AVAST) survey. In particular, we note several basaltic asteroids in the middle and outer main belt, including 105041 (2000 KO41) and 63085. Raymond C. A. Russell C. T. Rayman M. D. Mase R. A. Dawn Team Dawn’s Exploration of Vesta [#2730] The Dawn spacecraft will reach Vesta in mid-2011 and begin a comprehensive geological and geophysical characterization to investigate the geologic history, interior structure, and evolution of this minor planet in the main asteroid belt. Jaumann R. Pieters C. M. Neukum G. Mottola S. DeSanctis M. C. Russell C. T. Raymond C. A. McSween H. Y. Roatsch T. Nathues A. Preusker F. Scholten F. Blewett D. Buczkowski D. L. Hiesinger H. McCord T. Rayman M. Schenk P. Stephan K. Turrini D. Yingst R. A. Dawn Science Team Geoscientific Mapping of Vesta by the Dawn Mission [#1213] The geologic objectives of the Dawn mission (orbiting Vesta in 2011/2012) are to derive Vesta’s shape, map the surface geology, understand the geological context, and contribute to the determination of the asteroids’ origin and evolution.
    [Show full text]
  • Axial and Orbital Precession
    CS_Ch11_Astronomy 2/28/05 4:01 PM Page 689 Activity 3 Orbits and Effects The precession of Geo Words 41,000 year the Earth’s axis is cycle orbital plane: (also 25˚ axis now axis in one part of the 23.5˚ called the ecliptic or 22˚ range of 13,000 years plane of the ecliptic). precession cycle. axial tilt A plane formed by Another part is the path of the Earth the precession of around the Sun. the Earth’s orbit. orbital orbital inclination: the angle As the Earth plane plane between the orbital plane of the solar moves around the system and the actual Sun in its elliptical orbit of an object Obliquity Cycle Axial Precession orbit, the major around the Sun. axis of the Earth’s orbital ellipse is January July rotating about the conditions now Sun. In other Sun words, the orbit January July itself rotates conditions in about around the Sun! Earth 11,000 years These two Orbital Precession Combined Precession precessions (the Effects axial and orbital precessions) Figure 3 The tilt of the Earth’s axis and its orbital path about the combine to affect Sun go through several cycles of change. how far the Earth is from the Sun during the different seasons.This combined effect is called precession of the equinoxes, and this change goes through one complete cycle about every 22,000 years.Ten thousand years from now, about halfway through the precession cycle, winter will be from June to September, when the Earth will be farthest from the Sun during the Northern Hemisphere winter.That will make winters there even colder, on average.
    [Show full text]