Outer Planets: Uranus/Neptune

Total Page:16

File Type:pdf, Size:1020Kb

Outer Planets: Uranus/Neptune 1 Lecture 8: Uranus and Neptune • Read chapter 13 in the textbook • Exercises: Do all “Review and Discussion” and all “Conceptual Self-Test”) 1.1 Uranus • Preliminaries – Uranus: gas giants (jovian planet) like Jupiter and Saturn – discovered by British William Herschel in 1781, first discovery of a planet in over 2000 years – apparent magnitude is at the edge of the naked eye’s ability to see, if you know exactly where it is – discovered through optical telescope – orbital semimajor axis: 19.19 AU, mass: 14.54 earth masses (8.68 × 1025 kg, radius: 4.01 earth radius (25, 559 km), mean surface temperature 58 K – Voyager 2 probe flew by Uranus in 1986 giving the first close up pictures of the planet. • Physical properties: – nearly 20 AU from the sun – twice as far as Saturn – orbital period 83.75 earth years – gas giant, but much smaller than Jupiter and Saturn – SHOW RELATIVE SIZE PICTURE – like other jovian planets, Uranus has a short rotation period, 17.2hours – like all planets, lies close to the ecliptic plane inclined at 0.77◦ – unlike any other planet, the axis tilt is 98◦ – Uranus is nearly on its side – during the Uranian solstices, the northern (southern) hemisphere points toward the sun, leaving almost the entire southern (southern) hemisphere in total dark- ness – SHOW ORBIT DIAGRAM – not understood why Uranus axis tilt is so large (perhaps the result of collisions during the formation of the solar system) – Uranus appears a blue-green colour – colour of the upper atmosphere – the atmosphere rotates differentially, like Jupiter and Saturn, (but rotates faster at the poles) • The atmosphere of Uranus 1 – spectroscopic studies of reflected sunlight – outer atmosphere similar composition to Jupiter and Saturn – H2 (84%), He (14%), CH4 (2%), almost no ammonia NH4 – abundances of ammonia and methane vary systematically across the jovian plan- ets: Jupiter has much more gaseous ammonia than methane, but as we move out the amount of ammonia decreases relative to methane – temperature is the reason: ammonia freezes into crystals at 70 K, since the upper atmosphere of Uranus is 58 K, ammonia does not exist as a gas – methane is a good absorber at longer wavelengths (red light) – higher concentra- tion of methane, more blueish the colour – blue-green colour of Uranus results from methane in the atmosphere – Unlike Jupiter, Uranus lacks an internal heat source: clouds at low-lying, warmer altitudes – low amount of high level clouds means that weather patterns cannot readily be seen as they are blocked out how high atmospheric haze – high winds 200 km/h to 500 km/h do form bands like Jupiter, but are buried deeper in the atmosphere – Hubble Space Telescope discovered small dark spot indicating a storm – SHOW PICTURE OF SPOT – Uranian atmosphere is efficient at transporting energy around the planet – winter and summer sides differ by only a few K – wind speeds near the poles higher than at the equator probably due to higher amount of sunlight these regions receive • Magnetosphere and internal structure – Uranus has a fairly strong magnetic field, about 100 times stronger than the earth’s – creates a substantial magnetosphere for Uranus – Uranian magnetic field inclined 60◦ relative to the rotation axis and is not centered – SHOW MAGNETIC FIELD PICTURE – misalignment with rotation different from Jupiter and Saturn – suggests different physics is responsible – theoretical models suggest that Uranus has a rocky core similar to Jupiter and Saturn (about 10 earth masses) – rocky core of Uranus makes up a large fraction of the planet as compared to Jupiter and Saturn 2 – pressure outside the core too low to form metallic hydrogen – origin of the mag- netic field is therefore probably very different than Jupiter and Saturn – possible “slushy” outer core with ammonia dissolved in water creating a thick electrically conducting layer – circulating currents far from Uranus’s centre and rotation axis – SHOW CORE PICTURES • Moon and ring system of Uranus – As of 2007: 27 moons – most tiny, less than 25 km across – five major moons: Titania, Oberon, Ariel, Umbriel, and Miranda – all orbit close to the equatorial plane of the Uranus – almost perpendicular to the ecliptic plane – Uranian moons similar to the midsized moons of Saturn – densities 1.1 g/cm to 1.7 gm/cm – The five moons range from 1600 km in diameter to the smallest, Miranda at 480 km – SHOW MOON COMPARISON PHOTO – Uranus has no moons as large as the Galilean satellites or Saturn’s moon Titan – the outermost of these five moons, Titania and Oberon – heavily cratered, no geologic activity – radiation darkening (chemical reaction from high energy particles) thought to darken the surface of Uranus’s moons – less reflective than Saturn’s midsized moons – Ariel, close to Uranus – tidal stress, some geological activity – Miranda – very odd moon, many surface feature inconsistent with quiet geology: perhaps the result of catastrophic disruption, impacts partially breaking the moon up and with reformation – SHOW MIRANDA PHOTO – in 1977, discovery of rings around Uranus from star occultion – SHOW OCCULTATION PICTURE – rings very different from Saturn and Jupiter: rings dark and narrow with wide space between them – ring system, inside the Roche limit – density of Uranus’s rings similar to the A and B rings of Saturn – rings are much less reflective than Saturn’s – rings made up of particles all about 1cm in size – narrow rings of Uranus require shepherd moons (like Saturn’s F ring), Cordelia and Ophelia are two shepherd moons – SHOW SHEPHERD MOON DIAGRAM 3 1.2 Neptune • Preliminaries – Neptune: gas giants (jovian planet) like Jupiter and Saturn – near twin of Uranus – discovered by theoretical predictions: British physicist John Couch Adams, French physicist Urbain Le Verrier – discovered in with a telescope by German astronomer Johann Galle – apparent magnitude is too dim for the naked eye – orbital semimajor axis: 30.07 AU, mass: 17.15 earth masses (1.02 × 1026 kg, radius: 4.01 earth radius (25, 559 km), mean surface temperature 59 K (internal heat source – Voyager 2 probe flew by Uranus in 1989 giving the first close up pictures of the planet. • Physical properties: – about 30 AU from the sun – three times as far as Saturn – orbital period 163.7 earth years – gas giant, but much smaller than Jupiter and Saturn – SHOW RELATIVE SIZE PICTURE – like other jovian planets, Neptune has a short rotation period, 16.1hours – like all planets, lies close to the ecliptic plane inclined at 0.77◦ – the axis tilt similar to earth 29.6◦ – Neptune appears a blue in colour – colour of the upper atmosphere – the atmosphere rotates differentially, like the other gas giants – Neptune has an internal heat source that causes Neptune to radiate more than 2 times as much energy as it receives from the sun • The atmosphere of Neptune – spectroscopic studies of reflected sunlight – outer atmosphere similar composition to Jupiter and Saturn – H2 (83%), He (14%), CH4 (3%), almost no ammonia NH4 – as we move out of the solar system, the amount of ammonia decreases relative to methane – temperature is the reason: ammonia freezes into crystals at 70 K, since the upper atmosphere of Uranus is 58 K, ammonia does not exist as a gas – methane is a good absorber at longer wavelengths (red light) – higher concentra- tion of methane, more blueish the colour 4 – blue-green colour of Uranus results from methane in the atmosphere – Neptune’s internal heat source gives Neptune pronounced weather patterns – high level clouds observed, has several storm systems clearly visible from space – Great Dark Spot observed by Voyager 2 – disappeared in recent years – SHOW DARK SPOT AND RECENT PHOTOS – wind speeds in excess of 1,500 km/h – almost half the speed of sound in Neptune’s upper atmosphere – stormy atmosphere arises in part from the internal heat source • Magnetosphere and internal structure – Like Uranus, Neptune has a fairly strong magnetic field, about 100 times stronger than the earth’s – creates a substantial magnetosphere – Neptune’s magnetic field inclined 40◦ relative to the rotation axis and is not centered – SHOW MAGNETIC FIELD PICTURE – misalignment with rotation different from Jupiter and Saturn – again suggests different physics is responsible – theoretical models suggest that Neptune has a rocky core similar to Jupiter and Saturn (about 10 earth masses) – rocky core of Uranus makes up a large fraction of the planet as compared to Jupiter and Saturn – pressure outside the core too low to form metallic hydrogen – origin of the mag- netic field, like Uranus, is therefore probably very different than Jupiter and Saturn – possible “slushy” outer core with ammonia dissolved in water creating a thick electrically conducting layer – circulating currents far from Neptunes’s centre and rotation axis – SHOW CORE PICTURES AGAIN • Moon and ring system of Neptune – as of 2007: 13 moons – Neptune has only one large moon, Triton and one midsized moon, Proteus (al- though Nereid is not much smaller) – unlike other jovians, no regular moon system – orbits are inclined to the equator and Triton has a retrograde orbit – suggests that some moons and particularly Triton are captured Kuiper objects 5 – information on Triton mostly limited to the Voyager 2 probe – Triton shows a lacked mark of cratering – SHOW TRITON PICTURES – Voyager 2 observed geysers of nitrogen gas erupting – Triton has a thin atmosphere consiting mostly of nitrogen – Triton covered in nitrogen frost – solar heating causes eruptions – Triton has evidence of water ice lakes – the water erupts as lava and then solidifies – evidence of tidal stress geologic activity in the past as the result of Neptune’s gravity making the orbit more circular – retrograde orbit with tidal interactions will cause Triton to gradually move inward – it will be doomed once it approaches the Roche limit, Neptune will have end up with a ring system like Saturn! – Neptune’s rings conclusively discovered by Voyager 2 – Five dark rings – narrow like Uranus – Again, undiscovered moonlets and the inner satellites of Neptune play a role in confining the narrow rings.
Recommended publications
  • Lesson 3: Moons, Rings Relationships
    GETTING TO KNOW SATURN LESSON Moons, Rings, and Relationships 3 3–4 hrs Students design their own experiments to explore the fundamental force of gravity, and then extend their thinking to how gravity acts to keep objects like moons and ring particles in orbit. Students use the contexts of the Solar System and the Saturn system MEETS NATIONAL to explore the nature of orbits. The lesson SCIENCE EDUCATION enables students to correct common mis- STANDARDS: conceptions about gravity and orbits and to Science as Inquiry • Abilities learn how orbital speed decreases as the dis- Prometheus and Pandora, two of Saturn’s moons, “shepherd” necessary to Saturn’s F ring. scientific inquiry tance from the object being orbited increases. Physical Science • Motions and PREREQUISITE SKILLS BACKGROUND INFORMATION forces Working in groups Background for Lesson Discussion, page 66 Earth and Space Science Reading a chart of data Questions, page 71 • Earth in the Plotting points on a graph Answers in Appendix 1, page 225 Solar System 1–21: Saturn 22–34: Rings 35–50: Moons EQUIPMENT, MATERIALS, AND TOOLS For the teacher Materials to reproduce Photocopier (for transparencies & copies) Figures 1–10 are provided at the end of Overhead projector this lesson. Chalkboard, whiteboard, or large easel FIGURE TRANSPARENCY COPIES with paper; chalk or markers 11 21 For each group of 3 to 4 students 31 Large plastic or rubber ball 4 1 per student Paper, markers, pencils 5 1 1 per student 6 1 for teacher 7 1 (optional) 1 for teacher 8 1 per student 9 1 (optional) 1 per student 10 1 (optional) 1 for teacher 65 Saturn Educator Guide • Cassini Program website — http://www.jpl.nasa.gov/cassini/educatorguide • EG-1999-12-008-JPL Background for Lesson Discussion LESSON 3 Science as inquiry The nature of Saturn’s rings and how (See Procedures & Activities, Part I, Steps 1-6) they move (See Procedures & Activities, Part IIa, Step 3) Part I of the lesson offers students a good oppor- tunity to experience science as inquiry.
    [Show full text]
  • Pheres Giant Planets
    15 pheres Giant Planets Andrew P. Ingersoll H E GIANT PLANETS - Jupiter, Saturn, Uranus, and Nep­ tune - are fluid objects. They have no solid surfaces 201 because the light elements constituting them do not condense at solar-system temperatures. Instead, their deep atmospheres grade downward until the distinction Tbetween gas and liquid becomes meaningless. The preceding chapter delved into the hot, dark interiors of the Jovian planets. This one focuses on their atmospheres, especially the observable layers from the base of the clouds to the edge of space. These veneers are only a few hundred kilometers thick, less than one percent of each planet's radius, but they exhibit an incredible variety of dynamic phenomena. The mixtures of elements in these outer layers resemble a cooled-down piece of the Sun. Clouds precipitate out of this gaseous soup in a variety of colors. The cloud patterns are orga­ nized by winds, which are powered by heat derived from sun­ light (as on Earth) and by internal heat left over from planetary formation. Thus the atmospheres of the Jovian planets are dis­ tinctly different both compositionally and dynamically from those of the terrestrial planets. Such differences make them fas­ cinating objects for study, providing clues about the origin and evolution of the planets and the formation oftl1e solar system. aturally, atmospheric scientists are interested to see how well the principles of our field apply beyond the Earth. For Neptune and its Great Dark Spot, as recorded by Voyager 2 example, the Jovian planets are ringed by multiple cloud bands in 1989.
    [Show full text]
  • Shepherd Moon Face-Off! 21 December 2012, by Jason Major
    Shepherd Moon face-off! 21 December 2012, by Jason Major Here's Pandora, as seen by Cassini on September 5, 2005: False-color image of Pandora. Credit: NASA/JPL/SSI Raw Cassini image acquired on Dec. 18, 2012. Credit: NASA/JPL/SSI …and here's Prometheus, seen during a close pass in 2010 and color-calibrated by Gordan Ugarkovic: Two of Saturn's shepherd moons face off across the icy strand of the F ring in this image, acquired by the Cassini spacecraft on December 18, 2012. In the left corner is Pandora, external shepherd of the ropy ring, and in the right is Prometheus, whose gravity is responsible for the subtle tug on the wispy ring material. (Please don't blame the moon for any recent unsatisfying sci-fi films of the same name. There's no relation, we promise.) Similar in size (Pandora is 110 x 88 x 62 km, Prometheus 148 x 100 x 68 km) both moons are porous, icy, potato-shaped bodies covered in craters—although Prometheus' surface is somewhat smoother in appearance than Pandora's, perhaps due to the gradual buildup of infalling material from the F ring. Check out some much closer images of these two moons below, acquired during earlier flybys: 1 / 2 Prometheus casting a shadow through F ring haze. Credit: NASA/JPL/SSI/Gordan Ugarvovic The external edge of the A ring with the thin Keeler gap and the wider Encke gap can be seen at the right of the top image. Both of these gaps also harbor their own shepherd moons—Daphnis and Pan, respectively.
    [Show full text]
  • Jovian Planets
    Northeastern Illinois University Jovian Planets Greg Anderson Department of Physics & Astronomy Northeastern Illinois University Winter-Spring 2020 c 2012-2020 G. Anderson Universe: Past, Present & Future – slide 1 / 81 Northeastern Illinois Outline University Overview Jovian Planets Jovian Moons Ring Systems Review c 2012-2020 G. Anderson Universe: Past, Present & Future – slide 2 / 81 Northeastern Illinois University Outline Overview Orbital Periods Solar System Jovian Planets Jovian Moons Ring Systems Review Overview c 2012-2020 G. Anderson Universe: Past, Present & Future – slide 3 / 81 Northeastern Illinois Orbital Properties of Planets University Name Distance (AU) Period (years) Speed (AU/yr) Mercury 0.387 0.2409 10.09 Venus 0.723 0.6152 7.384 Earth 1.0 1.0 6.283 Mars 1.524 1.881 5.09 Jupiter 5.203 11.86 2.756 Saturn 9.539 29.42 2.037 Uranus 19.19 84.01 1.435 Neptune 30.06 164.8 1.146 c 2012-2020 G. Anderson Universe: Past, Present & Future – slide 4 / 81 M J S M J U S M J N Northeastern Illinois University Outline Overview Jovian Planets Jovian Planets Planetary Densities Composition Composition H & He Formation Escape Velocity Jovian Planets Formation 2 Q: Jovian Interiors Jovian Densities 02A 02 Q: Jupiter and Saturn Q: Jupiter’s composition Jovian Interiors Jovian Interiors Jupiter Jupiter Lithograph Jupiter Jupiter Jupiter from Io Interior c 2012-2020 G. Anderson Universe: Past, Present & Future – slide 6 / 81 Northeastern Illinois Jovian Planets University Jupiter Saturn Uranus Neptune 3 d⊙ R⊕ M⊕ ρ (g/cm ) tilt T (K) Jupiter 5.20 AU 11.21 317.9 1.33 3.1◦ 125 Saturn 9.54 AU 9.45 95.2 0.71 26.7◦ 75 Uranus 19.19 AU 4.01 14.5 1.24 97.9◦ 60 Neptune 30.06 AU 3.88 17.1 1.67 29.◦ 60 c 2012-2020 G.
    [Show full text]
  • Essays Essay on Museum in Modern Era, Museum
    Essays Essay on museum In modern era, Museum approach as a prominent aspect of education and entertainment. It contributes to the attraction of country and beneficial for the enhancement of educational knowledge. There is a tendency to believe that museums must be utilized for entertainment as well as for education. Lets delve deeper into the topic to seek more clarification. To begin with, One of the main arguments in favor of that museums are meant for entertainment because museums are tourists attraction and their aim to exhibit the collection of things which majority of people wish to see. It is favorable to enhance economical growth of a particular country and raise the standard of living due to numerous visitors from various countries. It sounds as adventurous activity and more enjoyable for visitors.Moreover,visitors can get information about history and biography of country. On the other hand, Some people argued that museums should focus on education because its a huge source of knowledge which they did not previously know.Usually this means history behind the museum exhibits need to explained and this can be done in various ways. Some museums employ special guides to give information, while other museums offer headsets so that people can listen to detailed commentary about the exhibition. In this way, museums play an important role in teaching people about history,culture, science and many other aspects of life. In an ultimate analysis, the above argument would indicate that museum must be utilize for both purposes entertainment and education. These both aspects beneficial in different ways.
    [Show full text]
  • Index of Astronomia Nova
    Index of Astronomia Nova Index of Astronomia Nova. M. Capderou, Handbook of Satellite Orbits: From Kepler to GPS, 883 DOI 10.1007/978-3-319-03416-4, © Springer International Publishing Switzerland 2014 Bibliography Books are classified in sections according to the main themes covered in this work, and arranged chronologically within each section. General Mechanics and Geodesy 1. H. Goldstein. Classical Mechanics, Addison-Wesley, Cambridge, Mass., 1956 2. L. Landau & E. Lifchitz. Mechanics (Course of Theoretical Physics),Vol.1, Mir, Moscow, 1966, Butterworth–Heinemann 3rd edn., 1976 3. W.M. Kaula. Theory of Satellite Geodesy, Blaisdell Publ., Waltham, Mass., 1966 4. J.-J. Levallois. G´eod´esie g´en´erale, Vols. 1, 2, 3, Eyrolles, Paris, 1969, 1970 5. J.-J. Levallois & J. Kovalevsky. G´eod´esie g´en´erale,Vol.4:G´eod´esie spatiale, Eyrolles, Paris, 1970 6. G. Bomford. Geodesy, 4th edn., Clarendon Press, Oxford, 1980 7. J.-C. Husson, A. Cazenave, J.-F. Minster (Eds.). Internal Geophysics and Space, CNES/Cepadues-Editions, Toulouse, 1985 8. V.I. Arnold. Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics (60), Springer-Verlag, Berlin, 1989 9. W. Torge. Geodesy, Walter de Gruyter, Berlin, 1991 10. G. Seeber. Satellite Geodesy, Walter de Gruyter, Berlin, 1993 11. E.W. Grafarend, F.W. Krumm, V.S. Schwarze (Eds.). Geodesy: The Challenge of the 3rd Millennium, Springer, Berlin, 2003 12. H. Stephani. Relativity: An Introduction to Special and General Relativity,Cam- bridge University Press, Cambridge, 2004 13. G. Schubert (Ed.). Treatise on Geodephysics,Vol.3:Geodesy, Elsevier, Oxford, 2007 14. D.D. McCarthy, P.K.
    [Show full text]
  • 19650022424.Pdf
    General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) NEW MEXICO S'K'ATE UNIVERSiT`f q OBSERVATORY TE^EPMONE; UN VERSITY PARK ► LAS CRUCES, N. NEW MEXICO JACKSON 6-6611 d807G ' TN-701-66-9 A RAPIDLY MOVING SPOT ON JUPITER`S NORTH TEMPERATE BELT Elmer J, Reese and Bradford A. Smith - $ ------ - CFSTI PRICE(S) $ Hard copy INC) ^^ July 1965 Microfiche (MF) f-5 ff 653 July 65 Supported by NASA Grant Nst;-142 -61 _l n b5 3211) 25 (ACCESSION NUMBER) (TNRU) E /0 s -- A^G EL^S) (COD r X^ / ^^^ (NASA CR OR TMX OR AD NUMBER) (CATEGORY) A RAPIDLY MOVING SPOT ON JUPITER°S NORTH TEMPERATE BELT Elmer J. Reese and Bradford A. Smith New Mexico State University Observatory University Park, New-Mexico A very rapid ch-i f t in the longi tude o f a smal l dai* spot on the south Edge c-e Jupiter's I'forth Temperate Belt (I Bs.
    [Show full text]
  • Astronomy Online Flexbook
    8: Astronomy Laura Enama Colleen Haag Julie Sandeen Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) www.ck12.org AUTHORS Laura Enama To access a customizable version of this book, as well as other Colleen Haag interactive content, visit www.ck12.org Julie Sandeen CONTRIBUTORS David Bethel Mary Lusk CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide. Using an open-source, collaborative, and web-based compilation model, CK-12 pioneers and promotes the creation and distribution of high-quality, adaptive online textbooks that can be mixed, modified and printed (i.e., the FlexBook® textbooks). Copyright © 2015 CK-12 Foundation, www.ck12.org The names “CK-12” and “CK12” and associated logos and the terms “FlexBook®” and “FlexBook Platform®” (collectively “CK-12 Marks”) are trademarks and service marks of CK-12 Foundation and are protected by federal, state, and international laws. Any form of reproduction of this book in any format or medium, in whole or in sections must include the referral attribution link http://www.ck12.org/saythanks (placed in a visible location) in addition to the following terms. Except as otherwise noted, all CK-12 Content (including CK-12 Curriculum Material) is made available to Users in accordance with the Creative Commons Attribution-Non-Commercial 3.0 Unported (CC BY-NC 3.0) License (http://creativecommons.org/ licenses/by-nc/3.0/), as amended and updated by Creative Com- mons from time to time (the “CC License”), which is incorporated herein by this reference.
    [Show full text]
  • Saturns Rings Observed by the Cassini Spacecraft (I.S.S.)
    SF2A 2013 L. Cambr´esy,F. Martins, E. Nuss and A. Palacios (eds) SATURNS RINGS OBSERVED BY THE CASSINI SPACECRAFT (I.S.S.) Andr´eBrahic1 Abstract. After 9 years of observations by the Cassini spacecraft Imaging Sub System (ISS), we review the main discoveries on Saturns rings. We have been able to follow the evolution of the rings as a function of time with variations on time scales as short as days. This exploration provided new information on the structure of the rings, on waves, on resonances phenomena, and on ring - satellites interactions. A detailed study of the rings edges, of the spokes and of the F, G, E and D rings has been performed. The discovery of propellers, meteoroid impacts, and of the opposition effect gave new insights on rings evolution. New ideas about the nature of the particles and the age of the rings have been developed. Keywords: planetary rings, Cassini ISS observations 1 Introduction The disc around Saturn is a system of colliding particles submitted to the gravitational influence of Saturn and of small nearby satellites. It can be considered as a natural laboratory of dynamics, cosmogony, granular flow and particle and field physics. The structure of the rings is determined by their origin and by dynamical processes which depend upon the sizes and collisional properties of the ring particles, and on the gravitational effects of the satellites. Electromagnetic processes play a role on the motion of charged particles. Since they were first discovered by Galileo in 1610, the nature of Saturns rings has been a continuing challenge to observation and theory.
    [Show full text]
  • Open the Solar System App Swipe the Screen to the Left Name
    Name _________________________________________ Date ____________ Hour______ Table______ Open the Solar System App Swipe the screen to the left Cosmic Relations (Select each location and record how the Earth fits into the universe.) 1. Earthà__People live on Earth____ 2. Solar Systemà___The Earth orBits the Sun and is part of the Solar System______ 3. Milky Wayà____The Solar System is part of the Milky Way Galaxy______ 4. Universeà____The Milky Way is one of more than 100 Billion Galaxies in the universe_____ Swipe the screen to the left The Milky Way is the home of Earth’s solar system! 5. What type of galaxy is the Milky Way? _____barred spiral Galaxy______ 6. The Milky Way, like most galaxies, probably has what at its center? ___super massive Black hole_____ 7. A ‘regular’ spiral galaxy has a circular center. What shape does a barred spiral galaxy have?___elongated Galactic center____ Swipe the screen to the left 8. The Solar System is a collection of what? ___is a collection of planets, dwarf planets, asteroids, and other material orBitinG the sun _________ 9. List the terrestrial planets. __Mercury, Venus, Earth, Mars____ 10. Describe the terrestrial planets__The inner planets are closer to the Sun and are rocky in nature. Only Earth and Venus have a significant atmosphere ____________________________________________ 11. List the Gas Giant planets. ___Jupiter, Saturn, Uranus, Neptune______________________________ 12. Describe the Gas Giants.____outer planets are much larGer than the terrestrial planets and are composed mostly of Gas______ 13. What occurs between the terrestrial planets and the gas giants? ___an asteroid Belt___ Swipe the screen to the left Name __________________________________________ Date ___________ Hour______ Table______ 14.
    [Show full text]
  • Planets Solar System Paper Contents
    Planets Solar system paper Contents 1 Jupiter 1 1.1 Structure ............................................... 1 1.1.1 Composition ......................................... 1 1.1.2 Mass and size ......................................... 2 1.1.3 Internal structure ....................................... 2 1.2 Atmosphere .............................................. 3 1.2.1 Cloud layers ......................................... 3 1.2.2 Great Red Spot and other vortices .............................. 4 1.3 Planetary rings ............................................ 4 1.4 Magnetosphere ............................................ 5 1.5 Orbit and rotation ........................................... 5 1.6 Observation .............................................. 6 1.7 Research and exploration ....................................... 6 1.7.1 Pre-telescopic research .................................... 6 1.7.2 Ground-based telescope research ............................... 7 1.7.3 Radiotelescope research ................................... 8 1.7.4 Exploration with space probes ................................ 8 1.8 Moons ................................................. 9 1.8.1 Galilean moons ........................................ 10 1.8.2 Classification of moons .................................... 10 1.9 Interaction with the Solar System ................................... 10 1.9.1 Impacts ............................................ 11 1.10 Possibility of life ........................................... 12 1.11 Mythology .............................................
    [Show full text]
  • PDF Transcript
    You are cordially invited to the ~rrurru[lJl~~ M®®frarru~ Friends of the Malcolm A. Love Library, SDSU and the f->~©rru~©arru fr~®· ~~fr~@ Faculty Staff Center Saturday, June 3,1989 11:45 Punch in the Patio, Courtesy of the Board 12:30 Luncheon in Dining Room "The Voyager Guide to Giant Worlds" will be presented by Dr. Mark Littmann, author of Planets Beyond: Discovering the Outer Solar System, from which his talk is adapted. NASA's 12-year Voyager mission will be completing its tour of the giants Jupiter, Saturn, and Uranus with a fly-by of Neptune this August. Dr. Littmann's timely and entertaining talk will be accompanied by slides. An accomplished author, Dr. Littmann is President of Starmaster Corporation, a publisher and distributer of educational materials, with a special interest in astronomy education. Among other positions, for eighteen years he was Director of the Hansen Planetarium in Salt Lake City. ;,U)Kt.LAKD fOR VUYAGl:R 2 DISCOVERIES AT NEPTUNE Best lrdormstion Data from before Voyager 2 Voyager 2 Encounter Encounter Ifill in! Nept1me Diameter 30,800 miles 149,600 kilometers) Mass [Earth e l ] 17.2 Density (water =11 1.76 Rotation period 17.0 hours (based on clouds]: about 18.0 hours suspected for interior Magnetic field not detectable from Earth; suspected to be similar to Uranus' in strength Satellites 2; shepherd moon lsi for ring arcs expected to exist Ring arcs 3 reasonably certain; materia! fills about 20 percent of orbit; ring particles expected to be black Distance from center of planet 25,000 to 44,000 miles
    [Show full text]