Evolution Along the Crassulacean Acid Metabolism Continuum
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1.P77-84(Gibasis Pellucida).Indd
林業研究季刊 36(2):77-84, 2014 77 Research paper Gibasis pellucida (Martens & Galeotti) D.R. Hunt (Commelinaceae), A Newly Naturalized Plant in Taiwan Chien-Ti Chao1 Yu-Lan Huang1 Si-Qian Liu2 Yen-Hsueh Tseng1,* 【Abstract】Commelinaceae is a monocot family mainly distributed in tropical and temperate region. Several naturalized species were recorded in Taiwan these years. Recently we found a newly naturalized species-Gibasis pellucida (Martens & Galeotti) D.R. Hunt in Northern Taiwan. This species was native to Mexico, and introduced as ornamental plant in many countries. This is a newly naturalized species and genus for Flora of Taiwan. Line drawing, photos and distribution map were provided in this study. Finally, we revised naturalized species of Commelinaceae in Taiwan, the naturalization of them were related to ornamental activity, some species had set up large population already, especially the Tradescantia species. Thus we need pay more attention to these potentially invasive plants. 【Key words】Gibasis pellucida, Commelinaceae, naturalized plant, Taiwan 研究報告 臺灣產鴨跖草科一新馴化植物-細梗鴨跖草 趙建棣1 黃郁嵐1 劉思謙2 曾彥學1,3 【摘要】鴨跖草科為熱帶常見的單子葉草本植物,之前多位學者已相繼報導數種本科的馴化植物。 最近作者等又於臺灣北部發現一種新馴化植物,經查為原產於墨西哥之細梗鴨跖草。本種為一園藝 觀賞植物,無性繁殖容易且適應力強,推測是人為引進而逸出於野外。根據這幾年野外的調查發現 其野外族群數量有穩定成長,未來動態值得注意。對台灣的植物誌而言,細梗鴨跖草屬與細梗鴨跖 草均為本島的新記錄。 【關鍵詞】鴨跖草科、細梗鴨跖草、馴化植物、臺灣 1. 國立中興大學森林學系,40227臺灣台中市南區國光路250號 Department of Forestry, National Chung-Hsing University, 250 Kuokwang Rd.,40227 Taichung, Taiwan. 2. 國立中興大學生命科學系,40227臺灣台中市南區國光路250號 Department of Life Sciences, National Chung- Hsing University, 250 Kuokwang Rd., 40227 Taichung, Taiwan. 3. 通訊作者 (E-mail:[email protected]) * Corresponding author, e-mail: [email protected]. Phone number: (04)2284-0345#139 78 Gibasis pellucida (Martens & Galeotti) D.R. Hunt (Commelinaceae), A Newly Naturalized Plant in Taiwan Introduction (Jacq.) L. -
Monocotyledons and Gymnosperms of Puerto Rico and the Virgin Islands
SMITHSONIAN INSTITUTION Contributions from the United States National Herbarium Volume 52: 1-415 Monocotyledons and Gymnosperms of Puerto Rico and the Virgin Islands Editors Pedro Acevedo-Rodríguez and Mark T. Strong Department of Botany National Museum of Natural History Washington, DC 2005 ABSTRACT Acevedo-Rodríguez, Pedro and Mark T. Strong. Monocots and Gymnosperms of Puerto Rico and the Virgin Islands. Contributions from the United States National Herbarium, volume 52: 415 pages (including 65 figures). The present treatment constitutes an updated revision for the monocotyledon and gymnosperm flora (excluding Orchidaceae and Poaceae) for the biogeographical region of Puerto Rico (including all islets and islands) and the Virgin Islands. With this contribution, we fill the last major gap in the flora of this region, since the dicotyledons have been previously revised. This volume recognizes 33 families, 118 genera, and 349 species of Monocots (excluding the Orchidaceae and Poaceae) and three families, three genera, and six species of gymnosperms. The Poaceae with an estimated 89 genera and 265 species, will be published in a separate volume at a later date. When Ackerman’s (1995) treatment of orchids (65 genera and 145 species) and the Poaceae are added to our account of monocots, the new total rises to 35 families, 272 genera and 759 species. The differences in number from Britton’s and Wilson’s (1926) treatment is attributed to changes in families, generic and species concepts, recent introductions, naturalization of introduced species and cultivars, exclusion of cultivated plants, misdeterminations, and discoveries of new taxa or new distributional records during the last seven decades. -
GENOME EVOLUTION in MONOCOTS a Dissertation
GENOME EVOLUTION IN MONOCOTS A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy By Kate L. Hertweck Dr. J. Chris Pires, Dissertation Advisor JULY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled GENOME EVOLUTION IN MONOCOTS Presented by Kate L. Hertweck A candidate for the degree of Doctor of Philosophy And hereby certify that, in their opinion, it is worthy of acceptance. Dr. J. Chris Pires Dr. Lori Eggert Dr. Candace Galen Dr. Rose‐Marie Muzika ACKNOWLEDGEMENTS I am indebted to many people for their assistance during the course of my graduate education. I would not have derived such a keen understanding of the learning process without the tutelage of Dr. Sandi Abell. Members of the Pires lab provided prolific support in improving lab techniques, computational analysis, greenhouse maintenance, and writing support. Team Monocot, including Dr. Mike Kinney, Dr. Roxi Steele, and Erica Wheeler were particularly helpful, but other lab members working on Brassicaceae (Dr. Zhiyong Xiong, Dr. Maqsood Rehman, Pat Edger, Tatiana Arias, Dustin Mayfield) all provided vital support as well. I am also grateful for the support of a high school student, Cady Anderson, and an undergraduate, Tori Docktor, for their assistance in laboratory procedures. Many people, scientist and otherwise, helped with field collections: Dr. Travis Columbus, Hester Bell, Doug and Judy McGoon, Julie Ketner, Katy Klymus, and William Alexander. Many thanks to Barb Sonderman for taking care of my greenhouse collection of many odd plants brought back from the field. -
II. a Cladistic Analysis of Rbcl Sequences and Morphology
Systematic Botany (2003), 28(2): pp. 270±292 q Copyright 2003 by the American Society of Plant Taxonomists Phylogenetic Relationships in the Commelinaceae: II. A Cladistic Analysis of rbcL Sequences and Morphology TIMOTHY M. EVANS,1,3 KENNETH J. SYTSMA,1 ROBERT B. FADEN,2 and THOMAS J. GIVNISH1 1Department of Botany, University of Wisconsin, 430 Lincoln Drive, Madison, Wisconsin 53706; 2Department of Systematic Biology-Botany, MRC 166, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, Washington, DC 20013-7012; 3Present address, author for correspondence: Department of Biology, Hope College, 35 East 12th Street, Holland, Michigan 49423-9000 ([email protected]) Communicating Editor: John V. Freudenstein ABSTRACT. The chloroplast-encoded gene rbcL was sequenced in 30 genera of Commelinaceae to evaluate intergeneric relationships within the family. The Australian Cartonema was consistently placed as sister to the rest of the family. The Commelineae is monophyletic, while the monophyly of Tradescantieae is in question, due to the position of Palisota as sister to all other Tradescantieae plus Commelineae. The phylogeny supports the most recent classi®cation of the family with monophyletic tribes Tradescantieae (minus Palisota) and Commelineae, but is highly incongruent with a morphology-based phylogeny. This incongruence is attributed to convergent evolution of morphological characters associated with pollination strategies, especially those of the androecium and in¯orescence. Analysis of the combined data sets produced a phylogeny similar to the rbcL phylogeny. The combined analysis differed from the molecular one, however, in supporting the monophyly of Dichorisandrinae. The family appears to have arisen in the Old World, with one or possibly two movements to the New World in the Tradescantieae, and two (or possibly one) subsequent movements back to the Old World; the latter are required to account for the Old World distribution of Coleotrypinae and Cyanotinae, which are nested within a New World clade. -
Tips, Tricks & Propagating
TRADESCANTIEAE TRIBE TIPS, TRICKS & PROPAGATING TACOMAHOUSEPLANTCLUB.COM FB @TACOMAHOUSEPLANTCLUB IG @TACOMAHOUSEPLANT SOURCES https://www.thespruce.com/tradescantia-care-overview-1902775 https://plantcaretoday.com/wandering-jew-plant.html https://en.wikipedia.org/wiki/Tradescantia TRADESCANTIEAE TRIBE This plant is growing as a ‘ground cover’ for a pot of Caladiums in my Greenhouse. THE BASICS INCH PLANT | WANDERING ‘DUDE’ (JEW) | BOLIVIAN JEW | SPIDERWORT PURPLE HEART | MOSES-IN-A-BOAT | SPIDER LILY | OYSTER PLANT TRADESCANTIEAE Herbaceous, perennial, flowering plants in the genus Commelinaceae. Considered a noxious weed in many parts of the world because it is so easily propagated from stem fragments. *Grows in a scrambling fashion, in clumps, semi upright. *Some of the below family members may grow in slightly different ways. OTHER MEMBERS OF THE TRADESCANTIEAE TRIBE: Some are often misidentified as Tradescantia or Callisia. Some are beautiful in their own right and should be more popular in the house plant trade. Tinantia, Weldenia, Thysanthemum, Elasis, Gibasis, Tripogandra, Amischotolype, Coleotrype, Cyanotis, Belosynapsis, Dichorisandra, Siderasis, Cochliostema, Plowmanianthus, Geogenanthus, Palisota & Spatholirion This is a Cyanotis kewensis, also called the Teddy Bear Vine. It is often mislabeled as a Tradescantia or fuzzy Wandering Jew. SOURCE: WIKIPEDIA TRADESCANTIEAE TRIBE Callisia repens PROVIDING THE BEST CARE CARE IS MOSTLY THE SAME FOR THE COMMONLY FOUND TRADESCANTIA VARIETIES MATURE SIZE: 6 to 9 inches in height, 12 to 24 inches in spread. Pinching back the tips of new growth promotes a bushier plant. Callisia repens SUN EXPOSURE: Bright, indirect sun. Can become scraggly & leggy with lower sunlight levels. Also without enough light, the plants may lose their purple or red colors and variegation. -
University of Florida Thesis Or Dissertation Formatting Template
THE EVOLUTION AND SYSTEMATICS OF THE CALLISIA SECTION CUTHBERTIA COMPLEX (COMMELINACEAE) By IWAN EDUARD MOLGO A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2018 © 2018 Iwan Eduard Molgo To my family, especially to Muriel for her love and support throughout this journey; to Isabella and Callisia, my bundle of joy who kept me going; to my parents who encouraged my education and believed in my dreams ACKNOWLEDGMENTS I thank my advisors Pamela S. Soltis and Douglas E. Soltis who gave me the opportunity to continue my graduate career in their lab. Both have contributed invaluable support, critical guidance, and encouragement throughout my Ph.D. program. They introduced me to my Dissertation project, which turned out to be a great learning experience in molecular and morphological phylogenetics, niche modeling, and cytogeography. I thank my committee members Walter S. Judd and Matthew E. Smith for providing support and advice during project. I am grateful to W. Mark Whitten who has supported me tremendously and taught me different lab techniques in DNA amplification. I thank current and former members of the Soltis and Cellinese lab (Prabha Amarasinghe, Andre Chanderbali, Michael Chester, Kurt Neubig, Ryan Folk, Charlotte Germain-Aubrey, Matthew Gitzendanner, Lucas Majure, Evgeny Mavrodiev, Miao Sun, Clayton Visger), for their help with methodologies and data analyses, the FLAS herbarium (Paul Corogin, Lorena Endara, Kent Perkins, Norris Williams), and the staff of the U.F. Biology Department for their assistance, friendship and encouragement. I thank the following herbaria for access to the information on the voucher specimens of Callisia: GA, USCH, NCU, DUKE, US, AAH, FLAS, FSU, VSC, and USF. -
Facultative Crassulacean Acid Metabolism (CAM) Plants: Powerful Tools for Unravelling the Functional Elements of CAM Photosynthesis
Journal of Experimental Botany Advance Access published March 18, 2014 Journal of Experimental Botany doi:10.1093/jxb/eru063 REVIEW PAPER Facultative crassulacean acid metabolism (CAM) plants: powerful tools for unravelling the functional elements of CAM photosynthesis Klaus Winter1,* and Joseph A. M. Holtum1,2 1 Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancon, Republic of Panama 2 School of Marine and Tropical Biology, James Cook University, Townsville, Queensland 4811, Australia * To whom correspondence should be addressed. E-mail: [email protected] Received 23 September 2013; Revised 24 January 2014; Accepted 29 January 2014 Downloaded from Abstract Facultative crassulacean acid metabolism (CAM) describes the optional use of CAM photosynthesis, typically under http://jxb.oxfordjournals.org/ conditions of drought stress, in plants that otherwise employ C3 or C4 photosynthesis. In its cleanest form, the upregu- lation of CAM is fully reversible upon removal of stress. Reversibility distinguishes facultative CAM from ontogeneti- cally programmed unidirectional C3-to-CAM shifts inherent in constitutive CAM plants. Using mainly measurements of 24 h CO2 exchange, defining features of facultative CAM are highlighted in five terrestrial species, Clusia pratensis, Calandrinia polyandra, Mesembryanthemum crystallinum, Portulaca oleracea and Talinum triangulare. For these, we provide detailed chronologies of the shifts between photosynthetic modes and comment on their usefulness as experimental systems. Photosynthetic flexibility is also reviewed in an aquatic CAM plant, Isoetes howellii. Through by guest on March 19, 2014 comparisons of C3 and CAM states in facultative CAM species, many fundamental biochemical principles of the CAM pathway have been uncovered. Facultative CAM species will be of even greater relevance now that new sequencing technologies facilitate the mapping of genomes and tracking of the expression patterns of multiple genes. -
Biological Control Agents for Tradescantia Fluminensis November 2012
EPA staff report Biological control agents for Tradescantia fluminensis November 2012 Advice to the decision making committee on application APP201362: – To import and release the yellow leaf spot fungus Kordyana sp. as a biological control agent for the weed tradescantia (Tradescantia fluminensis) under section 34 of the Hazardous Substances and New Organisms Act 1996 www.epa.govt.nz 2 EPA staff advice: APP201362 Executive Summary and Recommendation In September 2012, Auckland Council made an application to the Environmental Protection Authority (EPA) seeking to import and release the yellow leaf spot fungus Kordyana sp. as a biological control agent for the weed tradescantia (Tradescantia fluminensis). Host range testing shows that no native and/or taonga plants will be adversely affected by this agent, and we recommend that it be approved for release. November 2012 3 EPA staff advice: APP201362 Table of Contents Executive Summary and Recommendation ........................................................................................ 2 Table of Contents .................................................................................................................................. 3 1. The application process ............................................................................................................. 4 Purpose of this document .............................................................................................................. 4 Submission process ..................................................................................................................... -
Survey of Ornamental Plants in Resorts and Hotels Saint Lucia, 2012
Survey of Ornamental Plants in Resorts and Hotels Saint Lucia, 2012 carried out under the project Mitigating the Threats of Invasive Alien Species in the Insular Caribbean Project No. GFL / 2328 – 2713-4A86, GF-1030-09-03 Roger Graveson - Botanist (Consultants) Forestry Department Union, October 2012 Table of Contents Abstract ......................................................................................................................................................... 2 1. Introduction .............................................................................................................................................. 4 2. Property Visits and Follow-ups ................................................................................................................. 4 3. Results ....................................................................................................................................................... 4 4. Discussion of Results ................................................................................................................................. 7 5. Conclusions and Recommendations ....................................................................................................... 13 6. Recommendations Summary. ................................................................................................................. 15 7. Acknowledgements ................................................................................................................................. 15 8. -
Callisia Repens) Which Is Described in the Subsequent Article
StreamlinesNewsletter of the Pullen Pullen Catchments Group Inc. November 2020 Welcome to the final issue of Streamlines for 2020. Our first article by one of the ‘activists’ of the period, John Griffiths, describes the beginning of the Woodcrest Estate on Moggill Road, Pullenvale and the establishment of Pullenvale Forest Park. John and Rachel have been staunch supporters of PPCG since its inception. We thank them for their contribution and wish them well as they move away from the area. If other readers would like to add to this story, please feel free to do so in future issues of Streamlines. Next, Brian Dean entertains us with a description of over fifty years of developing his and Nola’s property in Anstead. He particularly mentions inch weed (Callisia repens) which is described in the subsequent article. John Ness brings the immense numbers involved in global warning down to more understandable terms as a property owner walks along one boundary of her 1 ha block of land. Finally, our Wildlife Officer, Irene Darlington, describes the consequences for household pets and wildlife of using conventional rat poisons. Streamlines would never make it to publication if it weren’t for the members who contribute items, Brian Dean who proofreads every issue, the ladies at PEEC who print the hard copies to go by mail and Nola Dean and Liz Dominguez who between them make sure email announcements of each issue are sent out and each issue is uploaded to our website. Thank you all. You make my job very easy. All members are welcome to submit articles to Streamlines via [email protected]. -
Ornamental Garden Plants of the Guianas, Part 4
Bromeliaceae Epiphytic or terrestrial. Roots usually present as holdfasts. Leaves spirally arranged, often in a basal rosette or fasciculate, simple, sheathing at the base, entire or spinose- serrate, scaly-lepidote. Inflorescence terminal or lateral, simple or compound, a spike, raceme, panicle, capitulum, or a solitary flower; inflorescence-bracts and flower-bracts usually conspicuous, highly colored. Flowers regular (actinomorphic), mostly bisexual. Sepals 3, free or united. Petals 3, free or united; corolla with or without 2 scale-appendages inside at base. Stamens 6; filaments free, monadelphous, or adnate to corolla. Ovary superior to inferior. Fruit a dry capsule or fleshy berry; sometimes a syncarp (Ananas ). Seeds naked, winged, or comose. Literature: GENERAL: Duval, L. 1990. The Bromeliads. 154 pp. Pacifica, California: Big Bridge Press. Kramer, J. 1965. Bromeliads, The Colorful House Plants. 113 pp. Princeton, New Jersey: D. Van Nostrand Company. Kramer, J. 1981. Bromeliads.179pp. New York: Harper & Row. Padilla, V. 1971. Bromeliads. 134 pp. New York: Crown Publishers. Rauh, W. 1919.Bromeliads for Home, Garden and Greenhouse. 431pp. Poole, Dorset: Blandford Press. Singer, W. 1963. Bromeliads. Garden Journal 13(1): 8-12; 13(2): 57-62; 13(3): 104-108; 13(4): 146- 150. Smith, L.B. and R.J. Downs. 1974. Flora Neotropica, Monograph No.14 (Bromeliaceae): Part 1 (Pitcairnioideae), pp.1-658, New York: Hafner Press; Part 2 (Tillandsioideae), pp.663-1492, New York: Hafner Press; Part 3 (Bromelioideae), pp.1493-2142, Bronx, New York: New York Botanical Garden. Weber, W. 1981. Introduction to the taxonomy of the Bromeliaceae. Journal of the Bromeliad Society 31(1): 11-17; 31(2): 70-75. -
Angiosperm Latin Name: Callisia Fragrans Common Name: Basket
Latin Name: Callisia fragrans Common Name: Basket Plant Family: Commelinaceae Geographic Origin: South Africa Soil: Use a well-draining soil mix. Temperature: Temperatures during the day should be between 70°-80°F and should be between 60°-70°F at night. Light: Place this plant in an area of full to partial shade. Moisture: Water every two to three days. Fertilization: This plant should be fertilized every other week, alternating between fish and seaweed fertilizers. Grooming: Repot every year or two. Thin out excess growth so remaining growth will be more vigorous. Seasonal Care: Reduce watering and fertilizing during winter months. These plants can stand weather outdoors in the summer Propagation: Propagate from stem cuttings or plantlets. Pests and Diseases: Check for scale and mealy bugs. Angiosperm Latin Name: Tradescantia spathacea Common Name: Moses-in-the- Cradle Family: Commelinaceae Geographic Origin: Mexico Soil: Use a well-draining soil mix. Temperature: Temperatures during the day should be between 70°-80°F and should be between 60°-70°F at night. Light: This plant prefers full sun to partial shade. Moisture: Water every two to three days. Fertilization: This plant should be fertilized every other week, alternating between fish and seaweed fertilizers. Grooming: Repot every two years. Prune in early spring if needed. Seasonal Care: Reduce watering and fertilizing during winter months. Propagation: Propagate from stem cuttings, seeds, or division. Pests and diseases: Check for mealy bugs, whitefly, and root rot. Angiosperm .