From Controlling Elements to Transposons: Barbara Mcclintock and the Nobel Prize* Nathaniel C

Total Page:16

File Type:pdf, Size:1020Kb

From Controlling Elements to Transposons: Barbara Mcclintock and the Nobel Prize* Nathaniel C Forum TRENDS in Genetics Vol.17 No.8 August 2001 475 Science Chronicle From controlling elements to transposons: Barbara McClintock and the Nobel Prize* Nathaniel C. Comfort Why did it take so long for Barbara leaves and kernels indicated systematic McClintock to win the Nobel Prize? In alterations in mutation rates. McClintock the mid-1940s, McClintock discovered concluded that she had disrupted the cell’s genetic transposition in maize. She mechanism for regulating gene activity. published her results over several years By early 1948, difficulties in mapping the and, in 1951, gave a famous presentation loci led her to conclude that they were not, at the Cold Spring Harbor Symposium in fact, loci – sites on the chromosomes – (Figs 1,2), yet it took until 1983 for her to but chromosomal elements that moved win a Nobel Prize. The delay is widely from place to place. It soon became clear attributed to a combination of gender bias that these new elements were capable of and gendered science. McClintock’s results exerting a wide range of actions upon the were not accepted, the story goes, because genes. By 1950, McClintock had developed women in science are marginalized, a theory about how controlling elements because the idea of transposition was too orchestrated development and far-fetched and because her scientific style differentiation of the organism. The key to was too intuitive, too holistic and too her theory was coordinated transposition. feminine to be believed. In each nucleus, platoons of controlling Most scientists I know detest this story. Fig. 1. Barbara McClintoch, 1983. Photograph by elements would transpose in concert, McClintock loathed it too. She was not David Miklos, courtesy of the Cold Spring Harbor inhibiting and modulating the effects of Laboratory Archives. scorned, biologists insist, because she was the genes to execute the developmental a woman nor for any other reason, she program of the cell. was misunderstood. The intricacy of her and archived correspondence. From these Transposition was never in doubt. experiments, combined with her eccentric, and other materials, we can reconstruct the Other geneticists quickly confirmed elliptical style of presentation, made events leading up to the 1983 prize†. transposition in maize, but, at the time, her science difficult to understand. What are known today as transposable few considered it McClintock’s major Furthermore, her findings were limited to elements, McClintock called ‘controlling claim. Although McClintock was indeed maize, and their significance was not clear elements’. During the years 1945–1946, difficult to understand, all her peers until the late 1960s and early 1970s, when at the Carnegie Dept of Genetics, Cold grasped that her real point was control. transposition was found to be widespread Spring Harbor, McClintock discovered a Yet, to most scientists, transposition in Nature and of general importance. The pair of genetic loci in maize that seemed seemed a random process. By ~1953, Nobel Prize was not late; McClintock was to trigger spontaneous and reversible once McClintock had thoroughly early, ahead of her time. mutations in what had been ordinary, documented the fact of transposition, she Both of these stories are myths. Both stable alleles. In the language of the day, worked hard to prevent her controlling assume that, had things gone differently, they made stable alleles into ‘mutable’ elements from moving because their the transposition prize might have been ones. The resulting patterns in the maize effects were difficult to study when they awarded sooner. Both neglect the fact that jumped around. She never had any McClintock did not win the prize for what inclination to pursue the biochemistry she thought was most important in her of transposition. work. A closer look at how McClintock Current understanding of how gene came to receive the Nobel Prize reveals activity is regulated, of course, springs that she won only after her major from the operon, François Jacob and contribution to science was recast to fit Jacques Monod’s 1960 model of a block of better with the current understanding structural genes under the control of an of the genome. adjacent set of regulatory genes (Fig. 3) The McClintock papers in the Nobel archive will not be accessible until 2033. *Commissioned by Trends in Biochemical Sciences and However, nominators retain the rights to published in the July issue of TiBS. their nominations. Several scientists have †A fuller account of McClintock’s life and science, including the events leading up to the Nobel Prize, can be generously made their nominations and found in The Tangled Field: Barbara McClintock’s Search stories of McClintock available to me; other Fig. 2. Barbara McClintock sitting on the patio at the 1951 for the Patterns of Genetic Control by Nathaniel Comfort evidence I have gleaned from interviews Symposium. Photograph courtesy of Norton Zinder. (Harvard University Press, 2001). http://tig.trends.com 0168–9525/01/$ – see front matter © 2001 Elsevier Science Ltd. All rights reserved. PII: S0168-9525(01)02383-6 476 Forum TRENDS in Genetics Vol.17 No.8 August 2001 University of Rochester, wrote to her, (a)Controlling elements (b) Operon ‘I completely see that you are going to Repressor have many calls for many activities. You are, after all, very famous now, and it is rather astonishing how your fame has Structural gene Ds P O Structural gene increased at a time of life where in most 3 Control sites people it is on the way down’ . Ac In 1976, McClintock was nominated for Repressor the Nobel Prize by Judson van Wyk, an Structural gene Ds P O Structural gene endocrinologist at the University of North Carolina, Chapel Hill. Van Wyk had nominating privileges as a result of Ds Structural gene TRENDS in Genetics having spent the previous four years at the Karolinska Institute in Stockholm. Fig. 3. Both McClintock’s controlling elements (a) and Jacob and Monod’s operon (b) modeled gene regulation by the He nominated McClintock jointly with action of elements outside the structural gene. Here, transposition of Ds into the gene silences transcription. In the Seymour Benzer, best known for his work operon model, each set of structural genes had its own adjacent regulatory elements (O, operator; P, promoter). In on the fine structure of the gene. The this diagram, binding of a repressor to an operator sequence silences gene transcription. This figure is adapted, with permission, from Ref. 18. nomination form contained a box labeled ‘The nomination is based on the discovery of’. In this box, van Wyk entered ‘the Although subsequent studies revealed Rhoades had reservations about organization and function of the genome sometimes baroque variations in McClintock’s developmental-regulation in higher organisms’4.The summary eukaryotes, the operon remains the core theory (though not about transposition), description of McClintock’s work stated theme (also the textbooks’ historical he inserted the text. that it had led to ‘the first clear starting point) of gene regulation. That same year, James Shapiro, then enunciation of the distinction between Immediately following publication of the at the Postgraduate Medical School of structural and regulatory genetic operon model, McClintock wrote an article London, and Sankhar Adhya, at the elements’. An accompanying detailed for The American Naturalist on the University of Wisconsin, published description informed by Gordon Sato, a parallels between the control systems in their discovery of insertion sequence friend of van Wyk’s and a regular summer maize and bacteria1. For a time, she even (IS) elements in bacteria. IS elements visitor at Cold Spring Harbor, stated that referred to her elements as ‘operators’ and were discovered because of their ability McClintock had ‘laid the conceptual ‘regulators’. Jacob and Monod were not to produce strongly polar mutations groundwork for the historic achievements influenced by McClintock; when they in known operons. Subsequent recognized in the honor conferred on Jacob referred to controlling elements, it was as characterization showed distinctive and Monod by the Nobel Committee in extrachromosomal episomes, perhaps features that enabled these elements to Physiology or Medicine’. After initial viral in origin, not as components of the remove themselves from and reinsert into review, the nomination was turned down. cell’s normal regulatory machinery. the bacterial chromosome. Sequencing Meanwhile, transposable elements McClintock, however, saw her work as the and biochemistry revealed the existence were being reframed in molecular terms. conceptual predecessor of the operon. of unique base sequences – inverted In June 1976, at a Cold Spring Harbor Seven years later, in 1967, McClintock repeats – at either end of the elements meeting organized by Shapiro, Adhya and won the Kimber Medal, which was awarded that would be recognized by the enzymes muologist Ahmad Bukhari, transposable to distinguished geneticists by the National responsible for excision and ligation. By genetic elements or ‘transposons’ were Academy of Sciences each year from the mid-1970s, IS elements had been defined simply as pieces of DNA that can 1955 until 1970. McClintock had been on found in other organisms and shown to move from one place to another. By 1980, the short list since at least 1964. When function in a wide variety of ways. The transposons had become so important that the award was to be announced, Marcus rapid spread of antibiotic-resistance James Watson introduced the proceedings Rhoades, the award committee chairman genes was perhaps the most spectacular, of a Cold Spring Harbor Symposium on and McClintock’s closest colleague, asked but work on phage mu, yeast mating-type mobile genetic elements by writing that Tracy Sonneborn, the geneticist best switching and other areas of research, all such a meeting had become ‘virtually known for his investigations of cytoplasmic contributed to a rapidly developing view unavoidable’5. By now, mobile elements inheritance in Paramecium, to review the that the movement of genetic elements were mainly a subfield of microbial proposed press release.
Recommended publications
  • NIHAA Summer 1993
    The Newsletter of the NIH Alumni Association Summer 1993 Vol. 5, No . 2 date Nobel Laureate Harold Varmus Nominated as 14th NIH Director Ruth Kirschstein Named Acting Director President Clinton on A ug. 3 announced his intention to nominate Dr. Harold Eliot Varmus as the 14th director of th e National Institutes of Health. A Senate confirmation process must precede Yarmus· taking over leadership of the institutes. Winner of the Nobel Prize in 1989 for his work in cancer research. Va1111us. 53. is a professor of microbi­ ology. biochemistry. and biophysics. and the American Cancer Society pro­ fessor vfmoh:cu/ur >1iro/O£)' iJI l/Je Uni versity of California, San Francisco. He is a leader in the stu dy of cancer­ causing genes called "oncogenes," and an intemationall-y fecogni:z.ed authof\t-y Dr. Ruth l. Kirschsteln , acting NIH director on retroviruses. the viruses that cause Dr. Harold E. Varmus , direclor-designale AIDS and many cancers in animnl.. FIC 25 Years Old In '93 Thirty-eight-year NIH veteran Dr. Research Festival '93 Schedule Ruth Kirschstein. director of NIGM S Scholars-in-Residence (See Director p. 6) NIHAA Members Invited Program Celebrates To Alumni Symposium In This Issue Tile fas\ morning ofNCH Rc:-.c;\rch Nursing cell/er /J1·1·111111•s Festival '93-Monday. Sept. 20-has This year. the Fogarty Intern ational 17th i11s1it11tc• 111 NII/ p. ? been designated National lnsritute of Center (FIC) is 25 years old . T he cen­ Greeri11gs from 1/,11 1w11• NII /AA prl'sidt'lll. Diabetes and Digestive and Kidney Tltolll(IS .I.
    [Show full text]
  • The Creation of Neuroscience
    The Creation of Neuroscience The Society for Neuroscience and the Quest for Disciplinary Unity 1969-1995 Introduction rom the molecular biology of a single neuron to the breathtakingly complex circuitry of the entire human nervous system, our understanding of the brain and how it works has undergone radical F changes over the past century. These advances have brought us tantalizingly closer to genu- inely mechanistic and scientifically rigorous explanations of how the brain’s roughly 100 billion neurons, interacting through trillions of synaptic connections, function both as single units and as larger ensem- bles. The professional field of neuroscience, in keeping pace with these important scientific develop- ments, has dramatically reshaped the organization of biological sciences across the globe over the last 50 years. Much like physics during its dominant era in the 1950s and 1960s, neuroscience has become the leading scientific discipline with regard to funding, numbers of scientists, and numbers of trainees. Furthermore, neuroscience as fact, explanation, and myth has just as dramatically redrawn our cultural landscape and redefined how Western popular culture understands who we are as individuals. In the 1950s, especially in the United States, Freud and his successors stood at the center of all cultural expla- nations for psychological suffering. In the new millennium, we perceive such suffering as erupting no longer from a repressed unconscious but, instead, from a pathophysiology rooted in and caused by brain abnormalities and dysfunctions. Indeed, the normal as well as the pathological have become thoroughly neurobiological in the last several decades. In the process, entirely new vistas have opened up in fields ranging from neuroeconomics and neurophilosophy to consumer products, as exemplified by an entire line of soft drinks advertised as offering “neuro” benefits.
    [Show full text]
  • Advertising (PDF)
    Neuroscience 2013 SEE YOU IN San Diego November 9 – 13, 2013 Join the Society for Neuroscience Are you an SfN member? Join now and save on annual meeting registration. You’ll also enjoy these member-only benefits: • Abstract submission — only SfN members can submit abstracts for the annual meeting • Lower registration rates and more housing choices for the annual meeting • The Journal of Neuroscience — access The Journal online and receive a discounted subscription on the print version • Free essential color charges for The Journal of Neuroscience manuscripts, when first and last authors are members • Free online access to the European Journal of Neuroscience • Premium services on NeuroJobs, SfN’s online career resource • Member newsletters, including Neuroscience Quarterly and Nexus If you are not a member or let your membership lapse, there’s never been a better time to join or renew. Visit www.sfn.org/joinnow and start receiving your member benefits today. www.sfn.org/joinnow membership_full_page_ad.indd 1 1/25/10 2:27:58 PM The #1 Cited Journal in Neuroscience* Read The Journal of Neuroscience every week to keep up on what’s happening in the field. s4HENUMBERONECITEDJOURNAL INNEUROSCIENCE s4HEMOSTNEUROSCIENCEARTICLES PUBLISHEDEACHYEARNEARLY in 2011 s )MPACTFACTOR s 0UBLISHEDTIMESAYEAR ,EARNMOREABOUTMEMBERAND INSTITUTIONALSUBSCRIPTIONSAT *.EUROSCIORGSUBSCRIPTIONS *ISI Journal Citation Reports, 2011 The Journal of Neuroscience 4HE/FlCIAL*OURNALOFTHE3OCIETYFOR.EUROSCIENCE THE HISTORY OF NEUROSCIENCE IN AUTOBIOGRAPHY THE LIVES AND DISCOVERIES OF EMINENT SENIOR NEUROSCIENTISTS CAPTURED IN AUTOBIOGRAPHICAL BOOKS AND VIDEOS The History of Neuroscience in Autobiography Series Edited by Larry R. Squire Outstanding neuroscientists tell the stories of their scientific work in this fascinating series of autobiographical essays.
    [Show full text]
  • Discovery of DNA Structure and Function: Watson and Crick By: Leslie A
    01/08/2018 Discovery of DNA Double Helix: Watson and Crick | Learn Science at Scitable NUCLEIC ACID STRUCTURE AND FUNCTION | Lead Editor: Bob Moss Discovery of DNA Structure and Function: Watson and Crick By: Leslie A. Pray, Ph.D. © 2008 Nature Education Citation: Pray, L. (2008) Discovery of DNA structure and function: Watson and Crick. Nature Education 1(1):100 The landmark ideas of Watson and Crick relied heavily on the work of other scientists. What did the duo actually discover? Aa Aa Aa Many people believe that American biologist James Watson and English physicist Francis Crick discovered DNA in the 1950s. In reality, this is not the case. Rather, DNA was first identified in the late 1860s by Swiss chemist Friedrich Miescher. Then, in the decades following Miescher's discovery, other scientists--notably, Phoebus Levene and Erwin Chargaff--carried out a series of research efforts that revealed additional details about the DNA molecule, including its primary chemical components and the ways in which they joined with one another. Without the scientific foundation provided by these pioneers, Watson and Crick may never have reached their groundbreaking conclusion of 1953: that the DNA molecule exists in the form of a three-dimensional double helix. The First Piece of the Puzzle: Miescher Discovers DNA Although few people realize it, 1869 was a landmark year in genetic research, because it was the year in which Swiss physiological chemist Friedrich Miescher first identified what he called "nuclein" inside the nuclei of human white blood cells. (The term "nuclein" was later changed to "nucleic acid" and eventually to "deoxyribonucleic acid," or "DNA.") Miescher's plan was to isolate and characterize not the nuclein (which nobody at that time realized existed) but instead the protein components of leukocytes (white blood cells).
    [Show full text]
  • Cold Spring Harbor Symposia on Quantitative Biology
    COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY VOLUME XL COLD SPRING HARBOR SYMPOSIA 0 N Q UA NTITA T1VE BIOLO G Y Founded in 1933 by REGINALD G. HARRIS Director of the Biological Laboratory 1924 to 1936 Volume I (1933).Surface Phenomena Volume II (1934) Aspects of Growth Volume III (1935) Photochemical Reactions Volume IV (1936) Excitation Phenomena Volume V (1937) Internal Secretions Volume VI (1938) Protein Chemistry Volume VII (1939) Biological Oxidations Volume VIII (1940) Permeability and the Nature of Cell Membranes Volume IX (1941) Genes and Chromosomes: Structure and Organization Volume X (1942) The Relation of Hormones to Development Volume XI (1946) Heredity and Variation in Microorganisms Volume XII (1947) Nucleic Acids and Nucleoproteins Volume XIII (1948) Biological Applications of Tracer Elements Volume XIV (1949) Amino Acids and Proteins Volume XV (1950) Origin and Evolution of Man Volume XVI (1951) Genes and Mutations Volume XVII (1952) The Neuron Volume XVIII (1953) Viruses Volume XIX (1954) The Mammalian Fetus: Physiological Aspects of Development Volume XX (1955) Population Genetics: The Nature and Causes of Genetic Variability in Population Volume XXI (1956) Genetic Mechanisms: Structure and Function Volume XXII (1957) Population Studies: Animal Ecology and Demography Volume XXIII (1958) Exchange of Genetic Material: Mechanism and Consequences Volume XXIV (1959) Genetics and Twentieth Century Darwinism Volume XXV (1960) Biological Clocks Volume XXVI (1961) Cellular Regulatory Mechanisms Volume XXVII (1962) Basic
    [Show full text]
  • Mobile DNA Elements in Shigella Flexneri and Emergence of An- Tibiotic Resistance Crisis
    International Journal of Genomics and Data Mining Palchauduri S, et al. Int J Genom Data Min 01: 111. Research Article DOI: 10.29011/2577-0616.000111 Mobile DNA Elements in Shigella flexneri and Emergence of An- tibiotic Resistance Crisis Sunil Palchaudhuri1*, Anubha Palchaudhuri2, Archita Biswas2 1Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, USA 2Atlanta Health Centre, Kolkata, India *Corresponding author: Sunil Palchaudhuri,Department of Immunology and Microbiology, Wayne State University School of Medicine, 540 E Canfield St, Detroit, MI 48201, USA. Tel: +13135771335; Email: [email protected] Citation:Palchaudhuri S, Palchaudhuri A, Biswas A (2017)Mobile DNA Elements in Shigella flexneri and Emergence of Antibiotic Resistance Crisis. Int J Genom Data Min 01: 111. DOI: 10.29011/2577-0616.000111 Received Date: 18October, 2017; Accepted Date: 23 October, 2017; Published Date: 30 October, 2017 Introduction F Plasmid-Lederberg’s Fertility factor F of E. coli K-12. Prokaryotic mobile DNA elements were initially observed by • 100 Kb. Nobel Prize Winner Professor Barbara McClintock in 1983. Both • ori F-origin of F plasmid replication. (With the sequence for IS and Tn elements are defined as mobile DNA elements capable dna A gene to function) of inserting into many different sites of a single chromosome or different chromosomes as discrete, non-permuted DNA segments • rep-replication functions. [1,2]. In 1952 Dr Joshua Lederberg (a noble prize winner of 1958) • IS-insertion sequence (IS2, IS3 and IS1copies present in the has shown the presence of such elements IS1, IS2, IS3 and Tn host E. coli K-12.
    [Show full text]
  • Torsten Wiesel (1924– ) [1]
    Published on The Embryo Project Encyclopedia (https://embryo.asu.edu) Torsten Wiesel (1924– ) [1] By: Lienhard, Dina A. Keywords: vision [2] Torsten Nils Wiesel studied visual information processing and development in the US during the twentieth century. He performed multiple experiments on cats in which he sewed one of their eyes shut and monitored the response of the cat’s visual system after opening the sutured eye. For his work on visual processing, Wiesel received the Nobel Prize in Physiology or Medicine [3] in 1981 along with David Hubel and Roger Sperry. Wiesel determined the critical period during which the visual system of a mammal [4] develops and studied how impairment at that stage of development can cause permanent damage to the neural pathways of the eye, allowing later researchers and surgeons to study the treatment of congenital vision disorders. Wiesel was born on 3 June 1924 in Uppsala, Sweden, to Anna-Lisa Bentzer Wiesel and Fritz Wiesel as their fifth and youngest child. Wiesel’s mother stayed at home and raised their children. His father was the head of and chief psychiatrist at a mental institution, Beckomberga Hospital in Stockholm, Sweden, where the family lived. Wiesel described himself as lazy and playful during his childhood. He went to Whitlockska Samskolan, a coeducational private school in Stockholm, Sweden. At that time, Wiesel was interested in sports and became the president of his high school’s athletic association, which he described as his only achievement from his younger years. In 1941, at the age of seventeen, Wiesel enrolled at Karolinska Institutet (Royal Caroline Institute) in Solna, Sweden, where he pursued a medical degree and later pursued his own research.
    [Show full text]
  • Introduction and Historical Perspective
    Chapter 1 Introduction and Historical Perspective “ Nothing in biology makes sense except in the light of evolution. ” modified by the developmental history of the organism, Theodosius Dobzhansky its physiology – from cellular to systems levels – and by the social and physical environment. Finally, behaviors are shaped through evolutionary forces of natural selection OVERVIEW that optimize survival and reproduction ( Figure 1.1 ). Truly, the study of behavior provides us with a window through Behavioral genetics aims to understand the genetic which we can view much of biology. mechanisms that enable the nervous system to direct Understanding behaviors requires a multidisciplinary appropriate interactions between organisms and their perspective, with regulation of gene expression at its core. social and physical environments. Early scientific The emerging field of behavioral genetics is still taking explorations of animal behavior defined the fields shape and its boundaries are still being defined. Behavioral of experimental psychology and classical ethology. genetics has evolved through the merger of experimental Behavioral genetics has emerged as an interdisciplin- psychology and classical ethology with evolutionary biol- ary science at the interface of experimental psychology, ogy and genetics, and also incorporates aspects of neuro- classical ethology, genetics, and neuroscience. This science ( Figure 1.2 ). To gain a perspective on the current chapter provides a brief overview of the emergence of definition of this field, it is helpful
    [Show full text]
  • Eighty Years of Fighting Against Cancer in Serbia Ovarian Cancer Vaccine
    News Eighty years of fighting against cancer Recent study by Kunle Odunsi et al., Roswell Park Cancer Institute, Buffalo, in Serbia New York, USA, showed an effects of vaccine based on NY-ESO-1, a „cancer This year on December 10th, Serbian society for the fight against cancer has testis“ antigen in preventing the recurrence of ovarian cancer. NY-ESO-1 is a ovarian celebrated the great jubilee - 80 years of its foundation. The celebration took „cancer-testis“ antigen expressed in epithelial cancer (EOC) and is place in Crystal Room of Belgrade’s Hyatt hotel, gathering many distinguished among the most immunogenic tumor antigens defined to date. presence + guests from the country and abroad. This remarkable event has been held Author’s previous study point to the role of of intraepithelial CD8 - under the auspices of the President of Republic of Serbia, Mr. Boris Tadić. infiltrating T lymphocytes in tumors that was associated with improved survival of The whole ceremony was presided by Prof. Dr. Slobodan Čikarić, actual presi- patients with the disease. The NY-ESO-1 peptide epitope, ESO157–170, is recog- + + dent of Society, who greeted guests and wished them a warm welcome. Than nized by HLA-DP4-restricted CD4 T cells and HLA-A2- and A24-restricted CD8 + followed the speech of Serbian health minister, Prof. Dr. Tomica Milosavljević T cells. To test whether providing cognate helper CD4 T cells would enhance who pointed out the importance of preventive measures and public education the antitumor immune response, Odunsi et al., conducted a phase I clinical trial along with timely diagnosis and multidisciplinary treatment in global fight of immunization with ESO157–170 mixed with incomplete Freund's adjuvant + against cancer in Serbia.
    [Show full text]
  • DNA: the Timeline and Evidence of Discovery
    1/19/2017 DNA: The Timeline and Evidence of Discovery Interactive Click and Learn (Ann Brokaw Rocky River High School) Introduction For almost a century, many scientists paved the way to the ultimate discovery of DNA and its double helix structure. Without the work of these pioneering scientists, Watson and Crick may never have made their ground-breaking double helix model, published in 1953. The knowledge of how genetic material is stored and copied in this molecule gave rise to a new way of looking at and manipulating biological processes, called molecular biology. The breakthrough changed the face of biology and our lives forever. Watch The Double Helix short film (approximately 15 minutes) – hyperlinked here. 1 1/19/2017 1865 The Garden Pea 1865 The Garden Pea In 1865, Gregor Mendel established the foundation of genetics by unraveling the basic principles of heredity, though his work would not be recognized as “revolutionary” until after his death. By studying the common garden pea plant, Mendel demonstrated the inheritance of “discrete units” and introduced the idea that the inheritance of these units from generation to generation follows particular patterns. These patterns are now referred to as the “Laws of Mendelian Inheritance.” 2 1/19/2017 1869 The Isolation of “Nuclein” 1869 Isolated Nuclein Friedrich Miescher, a Swiss researcher, noticed an unknown precipitate in his work with white blood cells. Upon isolating the material, he noted that it resisted protein-digesting enzymes. Why is it important that the material was not digested by the enzymes? Further work led him to the discovery that the substance contained carbon, hydrogen, nitrogen and large amounts of phosphorus with no sulfur.
    [Show full text]
  • Jewels in the Crown
    Jewels in the crown CSHL’s 8 Nobel laureates Eight scientists who have worked at Cold Max Delbrück and Salvador Luria Spring Harbor Laboratory over its first 125 years have earned the ultimate Beginning in 1941, two scientists, both refugees of European honor, the Nobel Prize for Physiology fascism, began spending their summers doing research at Cold or Medicine. Some have been full- Spring Harbor. In this idyllic setting, the pair—who had full-time time faculty members; others came appointments elsewhere—explored the deep mystery of genetics to the Lab to do summer research by exploiting the simplicity of tiny viruses called bacteriophages, or a postdoctoral fellowship. Two, or phages, which infect bacteria. Max Delbrück and Salvador who performed experiments at Luria, original protagonists in what came to be called the Phage the Lab as part of the historic Group, were at the center of a movement whose members made Phage Group, later served as seminal discoveries that launched the revolutionary field of mo- Directors. lecular genetics. Their distinctive math- and physics-oriented ap- Peter Tarr proach to biology, partly a reflection of Delbrück’s physics train- ing, was propagated far and wide via the famous Phage Course that Delbrück first taught in 1945. The famous Luria-Delbrück experiment of 1943 showed that genetic mutations occur ran- domly in bacteria, not necessarily in response to selection. The pair also showed that resistance was a heritable trait in the tiny organisms. Delbrück and Luria, along with Alfred Hershey, were awarded a Nobel Prize in 1969 “for their discoveries concerning the replication mechanism and the genetic structure of viruses.” Barbara McClintock Alfred Hershey Today we know that “jumping genes”—transposable elements (TEs)—are littered everywhere, like so much Alfred Hershey first came to Cold Spring Harbor to participate in Phage Group wreckage, in the chromosomes of every organism.
    [Show full text]
  • Genes, Genomes and Genetic Analysis
    © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION UNIT 1 © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FORDefining SALE OR DISTRIBUTION and WorkingNOT FOR SALE OR DISTRIBUTION with Genes © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Chapter 1 Genes, Genomes, and Genetic Analysis Chapter 2 DNA Structure and Genetic Variation © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Molekuul/Science Photo Library/Getty Images. © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION 9781284136609_CH01_Hartl.indd 1 08/11/17 8:50 am © Jones & Bartlett Learning, LLC
    [Show full text]