<<

Gibb’s paradox for distinguishable

K. M. Udayanandan1, R. K. Sathish1, A. Augustine2 1Department of Physics, Nehru Arts and Science College, Kerala-671 314, India. 2Department of Physics, University of Kannur, Kerala 673 635, India.

E-mail: [email protected]

(Received 22 March 2014, accepted 17 November 2014)

Abstract Boltzmann Correction Factor (BCF) N! is used in micro canonical ensemble and canonical ensemble as a dividing term to avoid Gibbs paradox while finding the number of states and partition function for . For harmonic oscillators this factor does not come since they are considered to be distinguishable. We here show that BCF comes twice for harmonic oscillators in for to be extensive in classical statistics. Then we extent this observation for all distinguishable systems.

Keywords: Gibbs paradox, harmonic oscillator, distinguishable particles.

Resumen El factor de corrección de Boltzmann (BCF) N! se utiliza en ensamble microcanónico y ensamble canónico como un término divisor para evitar la paradoja de Gibbs, mientras se busca el número de estados y la función de partición para un gas ideal. Para osciladores armónicos este factor no viene sin que éstos sean considerados para ser distinguibles. Mostramos aquí que BCF llega dos veces para osciladores armónicos en ensamble gran canónico para que la entropía sea ampliamente usada en la estadística clásica. Luego extendemos esta observación para todos los sistemas distinguibles.

Palabras clave: paradoja de Gibbs, oscilador armónico, partículas distinguibles.

PACS: 03.65.Ge, 05.20-y ISSN 1870-9095

I. INTRODUCTION

Statistical mechanics is a mathematical formalism by which II. CANONICAL ENSEMBLE one can determine the macroscopic properties of a system from the information about its microscopic states. The energy of a harmonic oscillator is: According to various system conditions, in we have three ensembles micro canonical 2 p 1 2 2 ensemble (MCE), canonical ensemble (CE) and grand    m q , (1) canonical ensemble (GCE) to find the thermodynamics. 2m 2 Properties of a given system should be the same in all ensembles. This equivalence of ensembles is a fundamental where ‘p’ is the , ‘q’ is the position and ‘m’ is principle in statistical mechanics. Another fundamental the mass of particle. For a single oscillator, partition concept is the extensivity of entropy. In an earlier function is given by: communication [1] R. K. Sathish et al. had shown that for harmonic oscillator in MCE and CE the extensivity of   2   pr 1 2 2  entropy can be established without dividing the number of Q1  exp     m qr  , (2)   2m 2  micro states and partition function by BCF but in GCE the r    partition function has to be multiplied by BCF. In [1] they considered harmonic oscillator as a quantum system in where ‘r’ represents all the possible states of the oscillator. GCE. Solving this, we get [2]: In this article we do the GCE considering harmonic 3 oscillator as a classical system. We found that the BCF  kT  comes twice to make the entropy extensive. This interesting Q1    . (3) observation is found to be common for all systems which    consist of distinguishable particles. Lat. Am. J. Phys. Educ. Vol. 8, No. 4, Dec. 2014 4302-1 http://www.lajpe.org

K. M. Udayanandan, R. K. Sathish, A. Augustine The partition function of the N oscillator system would then Rearranging: be: 3 N  kT  3N z    . (14)  kT  N 1    QN    . (4)    The Landau free energy and entropy are given by [3]: The Helmholtz free energy is given by:   kT ln Z , (15) A  kT lnQN , (5)    S        . (16) A  3NkT ln  . (6)  T T ,  kT   Then we get: The entropy is given by: [2]

  kT   A  S  3Nk1 ln   Nk ln N  Nk lnN 1 . (17) S    . (7)      T  V , N This entropy is not extensive and is not identical to the Solving we get: value obtained in the case of CE but will be the same for large N.   kT   S  3Nkln  1 . (8)      IV. MODIFICATION

We have the GCE partition function as: III. GRAND CANONICAL ENSEMBLE  The grand partition function is given by [2]: Z  z Nr Q . (18)  Nr  Nr 0 N Z  z r Q . (9)  Nr If this partition function is modified by multiplying Nr 0 externally by BCF and dividing the CE partition function by BCF we get the modified partition function as: Substituting the value of QN we get:  QN 1 Z '  N! z Nr r Z  , (10) , (19) 3  N r !  kT  Nr o 1 z     3N  kT   3     kT   N    ln Z   ln1 z   . (11)  N! z r , (20)       N r !   Nr 0

3   kT   Number of particles: Z '  N!expz   , (21) ln Z       N  z , (12)   z 3 '  kT  3 Z  N ln N  N  z  . (22)  kT  z        N  . (13) 3  kT  Number of particles: 1 z      N  z ln Z ' , (23) z

Lat. Am. J. Phys. Educ. Vol. 8, No. 4, Dec. 2014 4302-2 http://www.lajpe.org

Gibb’s paradox for distinguishable we get: 3  kT  NkT Q1 N  z  . (24) S  Nk lnQ1  . (33)    Q1 T

Rearranging: For harmonic oscillators: 3    3 z  N  . (25)  kT   kT  Q    , (34) 1    Using the expression for entropy we get: and then we get:

  kT  S  3Nk1 ln  . (26)   kT      S  3Nk1 ln  . (35)      This is extensive and equal to the equation obtained for CE. The Equation 33 is common for any system and we can obtain the entropy very easily. Similarly general formula V. ENTROPY OF THE SYSTEM OF for any thermodynamic quantity can be obtained for all distinguishable systems. DISTINGUISHABLE PARTICLES. GENERAL

TECHNIQUE VI. CONCLUSIONS For all distinguishable particles there is no need to divide

the canonical partition function by N! as per the definition In this short article we showed that, in the case of classical of Gibb’s paradox. But we observe that this create some harmonic oscillator and for all distinguishable particles the discomfort in the derivation. We show that if we divide the partition function has to be multiplied and divided by BCF canonical partition function by N! inside the summation and in GCE to make the entropy extensive. But this then multiply by N! outside the summation this discomfort multiplication is not visible in MCE and CE since they can be avoided. So let us consider a general system with cancel of. In the case of GCE it is not cancelled because of single partition function Q . Then the general grand 1 the summation in the partition function. Thus to find the partition function will be: thermodynamics we suggest that the grand partition

function for all distinguishable particles must be modified   zQ Nr  as: Z  N!  1  , (27)  N !   r   Nr 0 QN Then: Z '  N! Z Nr r . (36)  N ! zQ1 r Z  N!e , (28) Nr 0

ln Z  ln N! zQ1 , (29) REFERENCES

N  zQ1 , (30) [1] Prabitha, V. V., Vibha, A. V., Sathish, R. K. &

Udayanandan, K. M., Thermodynamics of Planck oscillator   kT ln N! kTzQ1  . (31) in , Lat. Am. J. Phys. Educ. 6, 78- 81 (2012). [2] Pathria, R. K. & Beale, P. D., Statistical Mechanics, Substituting and using: 3rd. Ed. (Elsevier, India, 2011). [3] Greiner, W., Neise, L. & Stoker, H., Thermodynamics   kT ln z , (32) and Statistical Mechanics, (Springer, USA, 1997).

Lat. Am. J. Phys. Educ. Vol. 8, No. 4, Dec. 2014 4302-3 http://www.lajpe.org