The Solar Edition
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Final Program
FINAL PROGRAM May 3 – 8, 2008 • Town and Country Resort & Convention Center • San Diego, California SOLAR 2008 is presented by Featuring 37th ASES National Solar Conference 33rd National Passive Solar Conference 3rd Annual Renewable Energy Policy, Advocacy and Marketing Conference Solar Success! Training Event American Solar Energy Society Annual Meeting Society of Building Science Educators Annual Meeting Welcome On behalf of the American Solar Energy Society (ASES), the San Diego Renewable Energy Society (SDRES), the Northern California Solar Energy Association (NorCal Solar), the Redwood Empire Solar Living Association (RESLA), and the California Center for Sustainable Energy, welcome to SOLAR 2008! This year’s conference will build on the outstanding SOLAR successes of 2006 and 2007 where the dual role of renewable energy in climate and economic recovery, respectively, was clearly established. ASES Reports launched at these events — “Renewable Energy: A Key to Climate Recovery” and “Green Collar Jobs” — have been featured prominently in the public media. In 2008, we feel a new urgency about bringing together technology, policy and community solutions to address climate change, grow our economy and specifically look for solutions to reduce our carbon footprint. With a focus on renewable energy solutions in our communities and leadership to bring about change in our national energy policy we offer several new experiences at SOLAR 2008. First, we invite solar enthusiasts and those new to the field to participate more fully at SOLAR 2008 by opening our event on Public Days on Saturday and Sunday — at a discount for riders of mass transit! Featured will be demonstrations, films, speakers, and an exhibit hall with close to 200 booths. -
Fire Fighter Safety and Emergency Response for Solar Power Systems
Fire Fighter Safety and Emergency Response for Solar Power Systems Final Report A DHS/Assistance to Firefighter Grants (AFG) Funded Study Prepared by: Casey C. Grant, P.E. Fire Protection Research Foundation The Fire Protection Research Foundation One Batterymarch Park Quincy, MA, USA 02169-7471 Email: [email protected] http://www.nfpa.org/foundation © Copyright Fire Protection Research Foundation May 2010 Revised: October, 2013 (This page left intentionally blank) FOREWORD Today's emergency responders face unexpected challenges as new uses of alternative energy increase. These renewable power sources save on the use of conventional fuels such as petroleum and other fossil fuels, but they also introduce unfamiliar hazards that require new fire fighting strategies and procedures. Among these alternative energy uses are buildings equipped with solar power systems, which can present a variety of significant hazards should a fire occur. This study focuses on structural fire fighting in buildings and structures involving solar power systems utilizing solar panels that generate thermal and/or electrical energy, with a particular focus on solar photovoltaic panels used for electric power generation. The safety of fire fighters and other emergency first responder personnel depends on understanding and properly handling these hazards through adequate training and preparation. The goal of this project has been to assemble and widely disseminate core principle and best practice information for fire fighters, fire ground incident commanders, and other emergency first responders to assist in their decision making process at emergencies involving solar power systems on buildings. Methods used include collecting information and data from a wide range of credible sources, along with a one-day workshop of applicable subject matter experts that have provided their review and evaluation on the topic. -
Solar Energy Projects for the Evil Genius : [50 Build
Malestrom 11/1/2009 Solar Energy Projects for the Evil Genius Evil Genius Series Bionics for the Evil Genius: 25 Build-it-Yourself MORE Electronic Gadgets for the Evil Genius: Projects 40 NEW Build-it-Yourself Projects Electronic Circuits for the Evil Genius: 57 Lessons 101 Spy Gadgets for the Evil Genius with Projects 123 PIC® Microcontroller Experiments for the Evil Electronic Gadgets for the Evil Genius: Genius 28 Build-it-Yourself Projects 123 Robotics Experiments for the Evil Genius Electronic Games for the Evil Genius PC Mods for the Evil Genius: 25 Custom Builds to Electronic Sensors for the Evil Genius: Turbocharge Your Computer 54 Electrifying Projects Solar Energy Projects for the Evil Genius 50 Awesome Auto Projects for the Evil Genius 25 Home Automation Projects for the Evil Genius 50 Model Rocket Projects for the Evil Genius Mechatronics for the Evil Genius: 25 Build-it-Yourself Projects Solar Energy Projects for the Evil Genius GAVIN D. J. HARPER New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. Manufactured in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a data- base or retrieval system, without the prior written permission of the publisher. 0-07-150910-0 The material in this eBook also appears in the print version of this title: 0-07-147772-1. -
Solar Energy - Wikipedia, the Free Encyclopedia
Solar energy - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Solar_energy From Wikipedia, the free encyclopedia Solar energy, radiant light and heat from the sun, has been harnessed by humans since ancient times using a range of ever-evolving technologies. Solar energy technologies include solar heating, solar photovoltaics, solar thermal electricity and solar architecture, which can make considerable contributions to solving some of the most urgent problems the world now faces.[1] Solar technologies are broadly characterized as either passive solar or active solar depending on the way they capture, convert and distribute solar energy. Active solar techniques include the use of photovoltaic panels and solar thermal collectors to harness the energy. Passive solar Nellis Solar Power Plant in the United States, one of techniques include orienting a building to the Sun, selecting the largest photovoltaic power plants in North materials with favorable thermal mass or light dispersing properties, and designing spaces that naturally circulate air. America. In 2011, the International Energy Agency said that "the development of affordable, Renewable energy inexhaustible and clean solar energy technologies will have huge longer-term benefits. It will increase countries’ energy security through reliance on an indigenous, inexhaustible and mostly import-independent resource, enhance sustainability, reduce pollution, lower the costs of mitigating climate change, and keep fossil fuel prices lower than otherwise. These advantages are -
Solar Power Initiative Using Caltrans Right-Of-Way Final Research Report
STATE OF CALIFORNIA • DEPARTMENT OF TRANSPORTATION TECHNICAL REPORT DOCUMENTATION PAGE DRISI-2011 (REV 10/1998) 1. REPORT NUMBER 2. GOVERNMENT ASSOCIATION NUMBER 3. RECIPIENT'S CATALOG NUMBER CA20-3177 4. TITLE AND SUBTITLE 5. REPORT DATE Solar Power Initiative Using Caltrans Right-of-Way 12/09/2020 Final Research Report 6. PERFORMING ORGANIZATION CODE 7. AUTHOR 8. PERFORMING ORGANIZATION REPORT NO. Sarah Kurtz, Edgar Kraus, Kristopher Harbin, Brianne Glover, Jaqueline Kuzio, William Holik, Cesar Quiroga 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. WORK UNIT NUMBER University of California, Merced School of Engineering and Material Science 11. CONTRACT OR GRANT NUMBER 5200 North Lake Road 65A0742 Merced, CA 95343 12. SPONSORING AGENCY AND ADDRESS 13. TYPE OF REPORT AND PERIOD COVERED California Department of Transportation Final Report Division of Research, Innovation and System Information June 2019 - December 2020 P.O. Box 942873 14. SPONSORING AGENCY CODE Sacramento, CA 94273 15. SUPPLEMENTARY NOTES 16. ABSTRACT Provide guidance to the California Department of Transportation (Caltrans) on the installation of utility-scale solar electrical generation facilities in its right-of-way. Explores the current rules, regulations, and policies from regulatory agencies external to Caltrans and California utilities that affect Caltrans’ ability to install solar within its right-of-way. Determines best practices that other state departments of transportation have developed based on their experience with the deployment of solar generation facilities within their right-of-way. Outlines best practices of how to develop solar generation sites within Caltrans right-of-way. Summarizes design-build-own strategies that Caltrans could use as part of a public-private partnership to finance the installation and/or maintenance of solar sites within the Caltrans right-of-way. -
Demand-Side Management Guidebook: Renewable and Distributed Energy Technologies
enewable & Distributed Energy Tech no R lo g ie s R e n e w a b l e & D i s t r i b u t e d E n e r g y T e c h n o l o g i e s R e n e w a - b l e w & e D n i e s R t r s i b e i u g t e o l d o E n n h e c r e g T y Renewable and Distributed Energy Technologies Energy Distributed and Renewable Demand-Side Management Guidebook: Management Demand-Side enewable & Distributed Energy Tech no R lo g ie s R e n e w sarily state or reflect those of the United States government or any agency thereof. agency any or government States United the of those reflect or state sarily a b - government or any agency thereof. The views and opinions of authors expressed herein do not neces not do herein expressed authors of opinions and views The thereof. agency any or government l e not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States States United the by favoring or recommendation, endorsement, its imply or constitute necessarily not & commercial product, process, or services by trade name, trademark, manufacturer, or otherwise does does otherwise or manufacturer, trademark, name, trade by services or process, product, commercial or represents that its use would not infringe privately owned rights. Reference herein to any specific specific any to herein Reference rights. -
CSP/CPV) Spectrum Splitting Solar Collector for Power Generation
UNIVERSITY OF CALIFORNIA, MERCED A hybrid (CSP/CPV) spectrum splitting solar collector for power generation A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Environmental Systems (E.S.) by Bennett K. Widyolar Committee: Professor Gerardo Diaz, Chair Professor Elliot Campbell Professor Yanbao Ma Professor Roland Winston Spring 2018 A hybrid (CSP/CPV) spectrum splitting solar collector for power generation Copyright 2018 by Bennett K. Widyolar The dissertation of Bennett K. Widyolar, titled “A hybrid (CSP/CPV) spectrum splitting solar collector for power generation,” is approved: Chair Date Gerardo Diaz Date Yanbao Ma Date Elliot Campbell Date Roland Winston University of California, MERCED iii Contents Abstract ...................................................................................................................................................... viii Curriculum Vita ........................................................................................................................................... ix Acknowledgements ....................................................................................................................................... x List of Symbols ............................................................................................................................................ xi List of Figures ........................................................................................................................................... -
ACAP Annual Report
Australian Centre for Advanced Photovoltaics Australia-US Institute for Advanced Photovoltaics Annual Report 2014 Never Stand Still Engineering Photovoltaic and Renewable Energy Engineering Stanford University Table of Contents 1. Director’s Report 2 2. Highlights 4 40% Sunlight to Electricity Conversion 4 First 20% Efficient Cells Using Low-Cost Solar-Grade Silicon 4 Stuart Wenham receives Harvey Research Prize 5 Student Awards 2014 5 High Impact Papers 5 High Performance Organic Photovoltaics Using Nematic Liquid Crystals 6 Compact CH3NH3PbI3 for High Efficiency Perovskite Cells 6 High Efficiency Perovskite Solar Cell 7 3D Printing of Perovskite Solar Cells 7 3. Organisational Structure and Research Overview 8 4. Affiliated Staff and Students 10 University of New South Wales 10 Australian National University 11 CSIRO (Materials Science and Engineering, Melbourne) 12 University of Melbourne 12 Monash University 12 University of Queensland 13 Arizona State University (QESST 13 National Renewable Energy Laboratory 13 Sandia National Laboratories 13 Molecular Foundry 13 Stanford University 13 Georgia Technology Institute 13 University of California, Santa Barbara 13 Wuxi Suntech Power Co. Ltd. 13 BT Imaging 13 Changzhou Trina Solar Energy Co. Ltd. 13 Australian Centre for Advanced Photovoltaics - Annual Report 2014 BlueScope Steel 13 5. Research Reports 14 Program Package 1 Silicon Cells 14 PP1.1 Solar Silicon 15 PP1.2 Rear Contact Silicon Cells 17 PP1.3 Silicon Tandem Cells 21 Program Package 2 Thin-Film, Third Generation and Hybrid Devices -
Future of the Pacific Alliance Report Comes at a Crucial Time
Future of the Pacific Alliance: Integration for productive growth www.pwc.com/mx/alianza-pacifico Table of Contents 3 7 13 27 Executive Chapter 1 Chapter 2 Chapter 3 Summary Recent Evolution Ambition of the Sector of the Region Pacific Alliance Breakdown 123 133 141 145 Chapter 4 Chapter 5 Chapter 6 Chapter 7 The Role of the The Role of Pacific Alliance Conclusion: Private Sector Government 2035 A Call to Action 148 Appendix 1 Research Methodology 150 Appendix 2 List of Interviews 151 Appendix 3 PwC Contributors Message from Bob Moritz The Future of the Pacific Alliance report comes at a crucial time. While a number of growth markets are uneasy, volatile and lacking inspiration, the Pacific Alliance countries—Mexico, Chile, Peru and Colombia—stand out as an influential economic and social bloc advancing renewal and integration. This study examines the market promise of the Pacific Alliance and analyzes nine sectors that are exceptionally well positioned to benefit from the Alliance’s multiplier effect. These nations have far more in common than a Pacific coastline. They aspire to progress as democracies and free market economies. Together, they constitute a market of more than $2 trillion—as large as the Indian sub-continent—1 and by virtue of their presence in the North American market (via Mexico), they are well positioned to influence the Trans-Pacific Partnership (TPP) and provide economic and cultural leadership for the region. Over the next 20 years, their populations will climb to nearly 265 million citizens, an increasing number of whom will be middle class and will join the workforce. -
Ieee Chilean Conference on Electrical, Electronics Engineering, Information and Communication Technologies
IEEE CHILECON 2019 IEEE Contribution in COP 25 year “Suitable Technology Transfer for a Sustainable Development” Valparaíso, octubre 29-31, 2019. Pontificia Universidad Católica de Valparaíso, Chile IEEE CHILEAN CONFERENCE ON ELECTRICAL, ELECTRONICS ENGINEERING, INFORMATION AND COMMUNICATION TECHNOLOGIES Valparaíso, Chile, October 29-31, 2019 Organizers IEEE Consejo Cono Sur IEEE Consejo Chile Asociación Chilena de Control Automático ACCA IEEE Chilean Chapter on Control Systems IEEE Chilean Chapter on SMC Escuela de Ingeniería Informática Facultad de Ingeniería Pontificia Universidad Católica de Valparaíso, Chile (PUCV) IEEE Chilecon2019 Program pág. 1 INDEX INDEX 2 Welcome by Gastón Lefranc, IEEE Cono Sur President, IEEE Chile Council Prersident, and IEEE 3 IEEE Chilecon2019 Co-Chair Welcome by Dr. José Ceroni, Decano de la Facultad de Ingeniería PUCV, IEEE Chilecon2019 Co- 4 Chair Preface of Dr. Claudio Cubillos, Escuela Informática PUCV, IEEE Chilecon2019 Co-Chair 5 Honorary President of IEEE Chilecon 2017: Dr. René Nóbile, Premio IEEE AIE Ingeniero 6 Sobresaliente 2018: Samir Kuoro Premio IEEE Ingeniero Eminente de Latinoamerica 2019: Dr. Pablo Estévez 7 IEEE IEEE Chilecon2019 Organization, IEEE Chile Section, IEEE Chilean Chapters, Asociación 8 Chilena de Control automático ACCA. Sponsorships IPC Chairs Reviewers 9 Program by Tracks IEEE Chilecon2019 Tracks 10 IEEE Chilecon2019 8 General Program Tuesday 29 11 IEEE Chilecon2019 8 General Program Wednesday 30 and Thursday 31 12 Keynote 1: Pablo Estévez Keynote 2: Samir Kuoro 54 Keynote 3: Marcos Díaz Keynote 4: Pamela Guevara Keynote 5: Mario Peña Keynote 6: Fernando Passold Keynote 7: Luis Kun Keynote 8: Fernando Guarín Keynote 9: Rafael Sotelo Keynote 10: Gustavo Gianastassio Keynote11: Juan Perdomo Keynote 12: Critian Edouard Rusu IEEE Chilecon2019 Program pág. -
The First Practical Solar Power Satellite Via Arbitrarily Large Phased Array (A 2011-2012 NASA NIAC Phase 1 Project)
SPS-ALPHA: The First Practical Solar Power Satellite via Arbitrarily Large Phased Array (A 2011-2012 NASA NIAC Phase 1 Project) FINAL REPORT to 15 September 2012 by Mr. John C. Mankins, Principal Investigator Artemis Innovation Management Solutions LLC P.O. Box 6660 Santa Maria, California 93456 email: [email protected] phone: (+1) 805-929-3121 NASA Innovative Advanced Concepts Program SPS via Arbitrarily Large Phased Array NIAC Phase 1 Final Report 15 September 2012 SPS-ALPHA: The First Practical Solar Power Satellite via Arbitrarily Large Phased Array (A 2011-2012 NASA NIAC Phase 1 Project) ABSTRACT The vision of delivering solar power to Earth from platforms in space has been known for decades. However, early architectures to accomplish this vision were technically complex and unlikely to prove economically viable. Some of the issues with these earlier solar power satellite (SPS) concepts – particularly involving technical feasibility – were addressed by NASA’s space solar power (SSP) studies and technology research in the mid-to-late 1990s. Despite that progress, ten years ago a number of key technical and economic uncertainties remained. A new SPS concept has been proposed that resolves many, if not all, of those uncertainties: “SPS ALPHA” (Solar Power Satellite by means of Arbitrarily Large Phased Array). During 2011-2012 the NASA Innovative Advanced Concepts (NIAC) Program supported a Phase 1 “SPS-ALPHA” project, the goal of which was to establish the technical and economic viability of the SPS-ALPHA concept to an early TRL 3 – analytical proof-of-concept – and provide a framework for further study and technology development. -
July 30, 2015 the Honorable Barack H. Obama the White House 1600
July 30, 2015 The Honorable Barack H. Obama The White House 1600 Pennsylvania Avenue N.W. Washington, DC 20500 Dear President Obama, As solar power installers, manufacturers, designers, aggregators, product suppliers, and consultants, we welcome the U.S. Environmental Protection Agency’s Clean Power Plan, the first-ever federal limits on carbon pollution from power plants. Power plants account for 40 percent of America’s carbon pollution. The solar industry offers a wide range of technologies to generate energy pollution-free from the sun and reduce the need for polluting sources of energy. This plan is a critical step toward transforming our energy system to one that protects our health and environment, and that of our children. As state and community leaders begin to seek effective measures to reach these goals, we wish to underscore the tremendous potential of solar energy in cutting carbon pollution. At the White House Solar Summit in April 2014, you highlighted that every four minutes, another American home or business goes solar. As the nation’s fastest growing source of renewable energy, solar can play a major role in meeting our nation’s energy and environmental challenges. Solar energy already provides enough pollution-free electricity to displace 18 billion pounds of coal, and could be a game-changer in a well-crafted Clean Power Plan. With 143,000 Americans employed in the solar industry in more than 6,100 businesses across the nation, we stand by Gina McCarthy’s remarks that “we have never—nor will we ever—have to choose between a healthy economy and a healthy environment.” The rate of job growth in the solar industry is unmatched by any other sector in the nation.