Why Study Astronomy?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lesson 1: Length English Vs
Lesson 1: Length English vs. Metric Units Which is longer? A. 1 mile or 1 kilometer B. 1 yard or 1 meter C. 1 inch or 1 centimeter English vs. Metric Units Which is longer? A. 1 mile or 1 kilometer 1 mile B. 1 yard or 1 meter C. 1 inch or 1 centimeter 1.6 kilometers English vs. Metric Units Which is longer? A. 1 mile or 1 kilometer 1 mile B. 1 yard or 1 meter C. 1 inch or 1 centimeter 1.6 kilometers 1 yard = 0.9444 meters English vs. Metric Units Which is longer? A. 1 mile or 1 kilometer 1 mile B. 1 yard or 1 meter C. 1 inch or 1 centimeter 1.6 kilometers 1 inch = 2.54 centimeters 1 yard = 0.9444 meters Metric Units The basic unit of length in the metric system in the meter and is represented by a lowercase m. Standard: The distance traveled by light in absolute vacuum in 1∕299,792,458 of a second. Metric Units 1 Kilometer (km) = 1000 meters 1 Meter = 100 Centimeters (cm) 1 Meter = 1000 Millimeters (mm) Which is larger? A. 1 meter or 105 centimeters C. 12 centimeters or 102 millimeters B. 4 kilometers or 4400 meters D. 1200 millimeters or 1 meter Measuring Length How many millimeters are in 1 centimeter? 1 centimeter = 10 millimeters What is the length of the line in centimeters? _______cm What is the length of the line in millimeters? _______mm What is the length of the line to the nearest centimeter? ________cm HINT: Round to the nearest centimeter – no decimals. -
Units and Magnitudes (Lecture Notes)
physics 8.701 topic 2 Frank Wilczek Units and Magnitudes (lecture notes) This lecture has two parts. The first part is mainly a practical guide to the measurement units that dominate the particle physics literature, and culture. The second part is a quasi-philosophical discussion of deep issues around unit systems, including a comparison of atomic, particle ("strong") and Planck units. For a more extended, profound treatment of the second part issues, see arxiv.org/pdf/0708.4361v1.pdf . Because special relativity and quantum mechanics permeate modern particle physics, it is useful to employ units so that c = ħ = 1. In other words, we report velocities as multiples the speed of light c, and actions (or equivalently angular momenta) as multiples of the rationalized Planck's constant ħ, which is the original Planck constant h divided by 2π. 27 August 2013 physics 8.701 topic 2 Frank Wilczek In classical physics one usually keeps separate units for mass, length and time. I invite you to think about why! (I'll give you my take on it later.) To bring out the "dimensional" features of particle physics units without excess baggage, it is helpful to keep track of powers of mass M, length L, and time T without regard to magnitudes, in the form When these are both set equal to 1, the M, L, T system collapses to just one independent dimension. So we can - and usually do - consider everything as having the units of some power of mass. Thus for energy we have while for momentum 27 August 2013 physics 8.701 topic 2 Frank Wilczek and for length so that energy and momentum have the units of mass, while length has the units of inverse mass. -
Measurement Units Style Guide a Writer’S Guide to the Correct Usage of Metric Measurement Units
Measurement units style guide A writer’s guide to the correct usage of metric measurement units This guidance is based on British and internationally agreed standards and represents best practice. It gives advice on how to use and write metric units, mistakes to avoid, what to do about conversions, and where to find further information. A brief explanation of how the metric system works is also given. Some common units Basic rules name symbol Capitals and lower case millimetre mm Names of metric units, whether alone or combined with a prefix, always start with a lower case letter (except at centimetre cm length the beginning of a sentence) - e.g. metre, milligram, watt. metre m kilometre km The symbols for metric units are also written in lower case - except those that are named after persons - e.g. milligram mg m for metre, but W for watt (the unit of power, named after the Scottish engineer, James Watt). Note that this mass gram g rule applies even when the prefix symbol is in lower case, (weight) kilogram kg as in kW for kilowatt. The symbol for litre (L) is an exception. tonne t Symbols for prefixes meaning a million or more are square metre 2 m written in capitals, and those meaning a thousand or less area hectare ha are written in lower case - thus, mL for millilitre, kW for kilowatt, MJ for megajoule (the unit of energy). square kilometre km 2 Plurals millilitre mL or ml Symbols do not change and are never pluralised : 3 cubic centimetre cm 25 kg (but 25 kilograms) volume litre L or l cubic metre m3 Punctuation and spacing watt W Do not put a full stop (period) after a unit symbol (except power kilowatt kW at the end of a sentence). -
Measuring in Metric Units BEFORE Now WHY? You Used Metric Units
Measuring in Metric Units BEFORE Now WHY? You used metric units. You’ll measure and estimate So you can estimate the mass using metric units. of a bike, as in Ex. 20. Themetric system is a decimal system of measurement. The metric Word Watch system has units for length, mass, and capacity. metric system, p. 80 Length Themeter (m) is the basic unit of length in the metric system. length: meter, millimeter, centimeter, kilometer, Three other metric units of length are themillimeter (mm) , p. 80 centimeter (cm) , andkilometer (km) . mass: gram, milligram, kilogram, p. 81 You can use the following benchmarks to estimate length. capacity: liter, milliliter, kiloliter, p. 82 1 millimeter 1 centimeter 1 meter thickness of width of a large height of the a dime paper clip back of a chair 1 kilometer combined length of 9 football fields EXAMPLE 1 Using Metric Units of Length Estimate the length of the bandage by imagining paper clips laid next to it. Then measure the bandage with a metric ruler to check your estimate. 1 Estimate using paper clips. About 5 large paper clips fit next to the bandage, so it is about 5 centimeters long. ch O at ut! W 2 Measure using a ruler. A typical metric ruler allows you to measure Each centimeter is divided only to the nearest tenth of into tenths, so the bandage cm 12345 a centimeter. is 4.8 centimeters long. 80 Chapter 2 Decimal Operations Mass Mass is the amount of matter that an object has. The gram (g) is the basic metric unit of mass. -
The Square Kilometre Array (SKA) Will Be an I
INVITED PAPER TheSquareKilometreArray This telescope, to be the largest in the world, will probe the evolution of black holes as well as the basic properties, birth and death of the Universe. By Peter E. Dewdney, Peter J. Hall, Richard T. Schilizzi, and T. Joseph L. W. Lazio ABSTRACT | The Square Kilometre Array (SKA) will be an I. INTRODUCTION ultrasensitive radio telescope, built to further the understand- Advances in astronomy over the past decades have brought ing of the most important phenomena in the Universe, the international community to the verge of charting a including some pertaining to the birth and eventual death of complete history of the Universe. In order to achieve this the Universe itself. Over the next few years, the SKA will make goal, the world community is pooling resources and ex- the transition from an early formative to a well-defined design. pertise to design and construct powerful observatories that This paper outlines how the scientific challenges are translated will probe the entire electromagnetic spectrum, from radio to into technical challenges, how the application of recent gamma-rays, and even beyond the electromagnetic spectrum, technology offers the potential of affordably meeting these studying gravitational waves, cosmic rays, and neutrinos. challenges, and how the choices of technology will ultimately The Square Kilometre Array (SKA) will be one of these be made. The SKA will be an array of coherently connected telescopes, a radio telescope with an aperture of up to a antennas spread over an area about 3000 km in extent, with an million square meters. The SKA was formulated from the 2 aggregate antenna collecting area of up to 106 m at centimeter very beginning as an international, astronomer-led (Bgrass and meter wavelengths. -
Time in the Digital Age of Architecture
Master’s Thesis TIME IN THE DIGITAL AGE OF ARCHITECTURE by Katerina Konstantopoulos Graduate Degree of Architectural Engineering National Technical University Of Athens, 2011. Submitted to the department of architectural engineering in partial fulfillment of the requirements for The Postgraduate Degree of "Architecture – Spatial Design" Option: “Architectural Design – Space – Culture” At the National Technical University Of Athens - School of Architecture OCTOBER 2014 Master’s Committee: Advisor: Dimitris Papalexopoulos Co-Advisor: Giorgos Parmenidis Time in the Digital Age of Architecture Table of Contents ABSTARCT........................................................................................................................................3 INTRODUCTION..............................................................................................................................3 CULTURAL CONTEXT...................................................................................................................8 CONCEPTS OF SPACE AND TIME IN PHYSICS.....................................................................11 PRE-RELATIVE PHYSICS: NEWTON AND EUCLIDEAN GEOMETRY ................12 RELATIVE PHYSICS: EINSTEIN AND NON-EUCLIDEAN GEOMETRY ..............15 PHILOSOPHY OF TIME IN THE 20TH CENTURY.................................................................20 BERGSON.......................................................................................................................20 DELEUZE........................................................................................................................23 -
Measuring Distances Using Parallax 1 Introduction
Measuring Distances Using Parallax Name: Date: 1 Introduction How do astronomers know how far away a star or galaxy is? Determining the distances to the objects they study is one of the the most difficult tasks facing astronomers. Since astronomers cannot simply take out a ruler and measure the distance to any object, they have to use other methods. Inside the solar system, astronomers can simply bounce a radar signal off of a planet, asteroid or comet to directly measure the distance to that object (since radar is an electromagnetic wave, it travels at the speed of light, so you know how fast the signal travels{you just have to count how long it takes to return and you can measure the object's distance). But, as you will find out in your lecture sessions, some stars are hun- dreds, thousands or even tens of thousands of \light years" away. A light year is how far light travels in a single year (about 9.5 trillion kilometers). To bounce a radar signal of a star that is 100 light years away would require you to wait 200 years to get a signal back (remember the signal has to go out, bounce off the target, and come back). Obviously, radar is not a feasible method for determining how far away stars are. In fact, there is one, and only one direct method to measure the distance to a star: \parallax". Parallax is the angle that something appears to move when the observer looking at that object changes their position. By observing the size of this angle and knowing how far the observer has moved, one can determine the distance to the object. -
Base Units All Measurements Consist of Two Parts: A. the Number B. The
Measurements – Base Units All measurements consist of two parts: a. the number b. the unit There are two systems of measurements used in the United States today. - English System – inches, feet, gallons, etc. - The Metric System or SI (International System of Units) – meters, liters, kilograms, etc. In scientific work, the metric system or the revised version of this system called the SI is used. The metric system is a decimal unit system, which means that conversion from one unit to another can be accomplished by multiplying or dividing by multiples of 10. There are seven base units; the other units are derived from these seven base units. During this course, we will use the first five. Base Units Quantity Quantity Symbol Unit Name Unit Abbreviation Length l meter m Mass m kilogram kg Time t second s Temperature T kelvin K Amount of Substance n mole mol Electric Current I ampere A Luminous Intensity Iv candela cd The meter is the SI unit of length. Kilometer, centimeter, or millimeter can also be used to measure lengths much larger or smaller than the meter. Length is a measure of distance. The kilogram is the SI unit of mass. The gram or milligram can also be used for smaller masses. Mass is not the same as Weight. Mass is the amount of matter in an object. Weight is a measure of the gravitational pull on matter. The second is the SI unit of time. In chemistry, chemical reactions may take seconds or fractions of a second to complete, so time can be measured in seconds, milliseconds, nanoseconds, or less. -
Orders of Magnitude (Length) - Wikipedia
03/08/2018 Orders of magnitude (length) - Wikipedia Orders of magnitude (length) The following are examples of orders of magnitude for different lengths. Contents Overview Detailed list Subatomic Atomic to cellular Cellular to human scale Human to astronomical scale Astronomical less than 10 yoctometres 10 yoctometres 100 yoctometres 1 zeptometre 10 zeptometres 100 zeptometres 1 attometre 10 attometres 100 attometres 1 femtometre 10 femtometres 100 femtometres 1 picometre 10 picometres 100 picometres 1 nanometre 10 nanometres 100 nanometres 1 micrometre 10 micrometres 100 micrometres 1 millimetre 1 centimetre 1 decimetre Conversions Wavelengths Human-defined scales and structures Nature Astronomical 1 metre Conversions https://en.wikipedia.org/wiki/Orders_of_magnitude_(length) 1/44 03/08/2018 Orders of magnitude (length) - Wikipedia Human-defined scales and structures Sports Nature Astronomical 1 decametre Conversions Human-defined scales and structures Sports Nature Astronomical 1 hectometre Conversions Human-defined scales and structures Sports Nature Astronomical 1 kilometre Conversions Human-defined scales and structures Geographical Astronomical 10 kilometres Conversions Sports Human-defined scales and structures Geographical Astronomical 100 kilometres Conversions Human-defined scales and structures Geographical Astronomical 1 megametre Conversions Human-defined scales and structures Sports Geographical Astronomical 10 megametres Conversions Human-defined scales and structures Geographical Astronomical 100 megametres 1 gigametre -
TESINA MIAD Modular Systems in Architecture.Indd
MODULAR SYSTEMS IN ARCHITECTURE An overview of modularity through case studies ESCUELA TÉCNICA SUPERIOR DE ARQUITECTURA LA SALLE TRABAJO FINAL DE MÁSTER PROYECTO INTEGRADO DE ARQUITECTURA MODULAR SYSTEMS IN ARCHITECTURE An overview of modularity through case studies ALUMNO/A DIRECTOR/A Cecilia Lema Scarsi David García Martinez 34°28’01” S 56°15’52” O A los de allí... Figure 1.1 George Nelson. Experimental House - Vitra Design Museum. 1950 6 ABSTRACT. Inside the atmosphere of architectural The paradigm that supports this work is based design often appears a singular concept mainly on the conceptual approach of modular systems surrounded by contradictions, vaguely defi ned and in architecture, primarily understood as those ambiguously applied. This term is used frequently architectural designs that comply with the property to qualify not one but multiple conditions of an of modularity in three major aspects simultaneously: architectural object, causing major dissonances and modular space indeterminacy, prefabricated modular becoming inevitably a question mark. building system and modular growth and adaptability. After having witnessed multiple approaches to the topic, it became clear that the same adjective was Synthetically, modular systems are identifi ed with their used to express different features of the objects search for undetermined spaces which dimensions in question. The overlap between the uses and and form are based on a strict modular design that meanings of the same term pointed out that there was subdivides the whole into equal parts. These systems a widespread and inaccurate usage of it: modularity in require the minimum number of prefabricated building architecture is from now on the concept under study. -
KS2 Converting Units
Measurement… @whisto_maths Converting Units What do I need to be able to do? Keywords By the end of this unit you should be able Length: the distance from one point to another to: Mass: a measure of how much matter is in an object. • Recognise metric measures Capacity: the amount an object can contain (normally liquids) • Convert metric measures • Calculate with metric measures Volume: the amount of 3-dimensional space an object takes up (units of length cubed) • Understand Miles and Kilometre Convert: to change a value or expression from one value to another. relationships Imperial: a system of weights and measures originally developed in England. • Recognise Imperial measures and Metric: a system of measuring that replaced the imperial system to fall in line with the rest of Europe. conversions Proportion: values of two items that increase in the same ratio Metric measures Metric conversions Length Common units of length or distance are Length ÷ 10 ÷ 100 ÷ 1000 Millimetres (mm) – “Milli” prefix means one thousandth or ÷ 1000 mm cm m km Centimetres (cm) – “Centi” prefix means one hundredth or ÷ 100 Average height of Metres (m) a man is 2m Kilometres (km) – “Kilo” prefix means a thousand ×1000 Mass × 10 × 100 × 1000 ÷ 1000 ÷ 1000 Mass (Weight) Average weight of g kg t Grams (g) an apple is 100g Kilograms (kg) – “Kilo” prefix means a thousand ×1000 Tonnes (t) × 1000 × 1000 Capacity ÷ 1000 Capacity Average bottle of Milli – thousandth water holds 500ml l Millilitre (ml) - “Milli” prefix means one thousandth or ÷ 1000 ml Centi – hundredth Litre (l) Kilo - thousand × 1000 ÷ 1000 Calculations tips: Metric calculations The final weight is in grams g kg • Do all calculations in the same unit (often A package weighs 350g. -
Measuring the World Music and Lyrics by Graeme Thompson
Mathematical Melodies Measuring the World Music and Lyrics by Graeme Thompson Measuring the World A foot has 12 inches A foot has 5 toes A foot has 30 centimeters As your ruler knows 1 foot 12 inches 30 centimeters ruler knows We’re measuring the world Your little pinkie finger Is a centimeter wide A meter has one hundred centimeters stored inside 1 meter one hundred centimeters all a pinkie wide We’re measuring the world A kilometer is one thousand Meters laid out straight We use them when the distance We are measuring is great 1 kilometer is 1000 meters laid out side by side We’re measuring the world A millimeters less than A centimeter long 10 millimeters And your centimeters strong 10 millimeters are a centimeter long We’re measuring the world Measuring the World 1 Measuring the World Junior: Grade 5 and Grade 6 The Big Ideas Curriculum Connections Measurement Teaching metric conversion Measurement Relationships can be particularly tricky. Grade 5 • select and justify the most appropriate Creating opportunities for standard unit (i.e., millimetre, students to practice purposeful conversion is centimetre, decimetre, metre, kilometre) to the key. Helping students engage through measure length, activities that are meaningful and encourage height, width, and decision making around picking which unit to distance, and to measure the perimeter use in a reasonable way is helpful. Pointing of various polygons; out common or practical uses for metric • solve problems requiring conversion from metres to centimetres and conversion in the students‘ daily lives from kilometres to metres (Sample encourages problem solving and reinforces a problem: Describe the multiplicative relevant personal connection.