Dark Matter Carolyn Slivinski (Stsci)

Total Page:16

File Type:pdf, Size:1020Kb

Dark Matter Carolyn Slivinski (Stsci) Science Briefing October 5, 2017 What Lurks in the Dark? Dr. Simona Murgia (UC, Irvine) Dr. Will Dawson (Lawrence Livermore National Laboratory) An Exploration of Dark Matter Carolyn Slivinski (STScI) Facilitator: Dr. Emma Marcucci (STScI) Additional Resources http://nasawavelength.org/list/1929 Dark Matter Day: Primary Website Featured Activities: Jelly Bean Universe Find the Missing Mass – paper plate activity “Gravitational lensing” with a wine glass Basic Dark Matter Facts: Chandra Field Guide Ask an Astrophysicist Blog (archived) NASA’s Frontier Fields Additional Activities: Dark Matter Possibilities What’s the Matter? 2 Searching for Dark Matter with Gamma Rays Simona Murgia University of California, Irvine 3 Evidence for Dark Matter: A Brief Overview Evidence for dark matter is found at very different scales ‣ Galaxies ‣ Clusters of galaxies ‣ Universe 4 Galaxy Clusters The existence of dark matter was postulated by Fritz Zwicky in the 1930’s to explain the dynamics of galaxies in the Coma galaxy cluster Zwicky inferred the total mass of the cluster by measuring the velocities of its galaxies, based on Newtonian gravity. But the luminous mass (the galaxies in the cluster) was far smaller! F. Zwicky, Astrophysical Journal, vol. 86, p.217 (1937) Dark matter makes up for the missing mass Cluster DM Virial theorem: relates the velocity (dispersion, σ) of galaxies at some distance r from the cluster center to the enclosed mass Mtot(r) Velocities ~ 1000 km/s R ~ Mpcs Galaxy cluster: Distance ~100 Mpc ~1-2% stars, ~5-15% gas; the rest is dark matter (1 pc = 3.26 light yrs) 5 Rotation Curves of Galaxies Departures from the predictions of Newtonian gravity became apparent also at galactic scales with the measurement of rotation curves of galaxies (Rubin et al, 1970) However observed velocities stay Andromeda galaxy approximately constant, i.e. stars and gas move faster then predicted! Based on Newtonian dynamics, the velocity (v) of stars and gas in the galaxy should speed Rotational decrease with the distance (r) from the Distance from center center of the galaxy. and therefore: i.e. decreasing with r 6 Rotation Curves of Galaxies To reconcile theory with observations, postulate the existence of mass density not steeply falling as luminous matter density! By adding this extended matter halo, we find good agreement with observations Assume additional mass: therefore: and finally: Dark matter makes up e.g. Andromeda galaxy ➡ ~10 times more 11 Stars+gas: 1.4 ×10 M⊙ dark matter than for the missing mass 12 Total mass: 1.3×10 M⊙ luminous matter Corbelli et al (2009) Andromeda galaxy Dark matter Stellar disk Stellar bulge Gas 7 Cosmic Microwave Background Relic of a time in the early Universe when matter and radiation decoupled (protons and electron form neutral hydrogen and become transparent to photons, ~100,000s years after Big Bang) Universe was isotropic and homogeneous at large scales Very small temperature fluctuations, too small to evolve into structure observed today Require additional matter to T = 2.725 K start forming structure earlier ΔT ~ 200 μK Power spectrum of matter fluctuations Planck 2015 Observed (SDSS) baryons only Clumpiness et al et 2006 8 larger scales smaller scales Dodelson Dark Matter What data tell us about dark matter: ‣ makes up almost all of the matter in the Universe (present day Universe mostly made out of dark energy, dark matter, and small contribution from ordinary matter) ‣ interacts very weakly, and at least gravitationally, with ordinary matter ‣ is cold, i.e. non-relativistic 68% ‣ is neutral ‣ is stable (or it is very long-lived) 5% DARK ENERGY ➡But not what it is... DARK MATTER ORDINARY MATTER 27% 9 Dark Matter Candidates None of the known elementary particles has the right properties to be the dark matter Need new particles and new theories beyond the Standard Model of particle physics! Image credit: G. Bertone 10 Dark Matter Searches INDIRECT SEARCHES COLLIDER SEARCHES DIRECT SEARCHES Find its annihilation Detect energy it deposits byproducts Produce it in the lab Fermi-LAT CDMS Large Hadron Collider PAMELA 11 IceCube Indirect Dark Matter Searches Very rich search strategy, multi-messenger and multi-wavelength Gamma rays are particularly good probes to learn about the particle nature of dark matter via its annihilations DARK MATTER DISTRIBUTION ANNIHILATION PROCESS Simulated Milky Way-like dark matter halo: very dense at its center, large number of substructures + Via Lactea II (Diemand et al. 2008) 1 2 12 Gamma rays from Dark Matter Annihilation Dark matter substructures Galactic center Pieri et al, arXiv:0908.0195 13 Indirect Detection Results - Gamma Ray If a signal is detected, we can learn about the mass of the dark matter particle, how often it annihilates, how it is distributed in space, and constrain underlying theories Detection! Annihilation cross section section cross Annihilation how often annihilations occur) annihilations often how ( Dark matter particle mass 14 Indirect Detection Results - Gamma Ray If a signal is not detected, we can rule out many possibilities Ruled out Allowed Annihilation cross section section cross Annihilation how often annihilations occur) annihilations often how ( Dark matter particle mass 15 Fermi Mission The Large Area Telescope The Fermi Large Area Telescope (LAT) observes the gamma-ray sky in the 20 MeV to >300 GeV energy range with unprecedented sensitivity Orbit: 565 km, 25.6o inclination, circular. The LAT observes the entire sky every ~3 hrs (2 orbits) Fermi LAT Fermi LAT is a pair conversion telescope: gamma ray converts to electron-positron pairs which are recorded by the instrument 16 The Fermi LAT Gamma-Ray Sky Fermi LAT data 4 years, E > 1 GeV A potential dark matter signal must be disentangled from other more conventional (and brighter!) processes that produce gamma rays 17 A Dark Matter Signal from the Galactic Center? An excess in the Fermi LAT GC data consistent with dark matter annihilation was first claimed in 2009 (Goodenough and Hooper, arXiv:0910.2998.) More recent analyses are consistent with these results Properties of the dark matter particle and underlying particle physics model can be inferred However, other more mundane gamma-ray sources such as pulsars could explain the excess Image credit: NASA/T. Linden, U. Chicago C. Karwin et al, arXiv:1612.05687 Annihilation cross section cross Annihilation Dark matter particle mass 18 Caveats The determination of the Galactic center excess heavily relies on modeling of the gamma- ray emission from other processes (the excess is a small fraction of the total emission observed toward the Galactic center!) ➡Modeling of the gamma-ray sky is complex, and improvements are crucial to confirm the properties of the excess and to conclusively determine whether it originates from dark matter or something else! = + + data sources galactic interstellar isotropic emission + 19 dark matter?? Dark Matter Substructures Optically observed dwarf spheroidal galaxies: largest dark matter substructures predicted by simulations Excellent targets for gamma-ray dark matter searches ‣ Very rich in dark matter ‣ Expected to be free from other gamma ray sources, and therefore a potential signal is more easily interpreted compared to the Galactic center 20 Dwarf Spheroidal Galaxies Search for a signal in 25 dwarf spheroidal galaxies. No significant emission is found The limits probe a dark matter explanation of the Galactic center excess Fermi LAT Collaboration, arXiv 1503.02641 Ruled out Allowed Annihilation cross section cross Annihilation 21 Dark matter particle mass Dwarf Spheroidal Galaxies Search for a signal in 25 dwarf spheroidal galaxies. No significant emission is found The limits probe a dark matter explanation of the Galactic center excess Fermi LAT Collaboration, arXiv 1503.02641 Dark matter interpretation of Galactic center excess Annihilation cross section Annihilation cross 22 Dark matter particle mass Summary/Outlook Evidence for dark matter is overwhelming Many experiments have been relentlessly searching for dark matter particle candidates Gamma rays have been able to test and rule out many possibilities An intriguing excess originating from the Galactic center has been found; however, more work and improved understanding of the gamma-ray sky are necessary to determine its nature, dark matter or otherwise Thank you! 23 Will Dawson Lawrence Livermore National Lab LLNL-PRES-739383 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC Galaxy Cluster Mass ~ 1015 Solar Masses Abell 1689 25 NASA, ESA, E. Jullo (JPL/LAM), P. Natarajan (Yale) and J-P. Kneib (LAM) Most people are familiar with 26 Credit: NASA CXC Astronomer’s Periodic Table 27 Credit: NASA CXC A new component to clusters 28 Accelerating electrons emit photons 29 Chandra X-ray Map of the Cluster Plasma Abell 1689 30 X-ray: NASA/CXC/MIT/E.-H Peng et al; Optical: NASA/STScI Far more of the mass is in the X-ray emitting intracluster plasma 31 Cosmologist’s Periodic Table Dark Matter 32 Gravitational lensing best tool for studying dark matter 33 Zwicky (1937) Mass warps space-time and alters the path of light 34 Gravitational lensing distorts galaxy images 35 36 37 38 39 Gravitational lensing of clusters not observed until 1990 Tony Tyson 40 Weighing clusters with weak gravitational lensing Abell 1689 41 Tyson et al. (1990) The first gravitational lensing mass map Abell 1689 42 Tyson et al. (1990) Thanks to Hubble a lot has improved in past 20 years Abell 1689 43 NASA, ESA, E. Jullo (JPL/LAM), P. Natarajan (Yale) and J-P. Kneib (LAM) Much higher resolution mass maps Abell 1689 44 NASA, ESA, E. Jullo (JPL/LAM), P. Natarajan (Yale) and J-P. Kneib (LAM) For some clusters the X-ray plasma and dark matter distributed similarly X-ray Plasma Dark Matter Abell 1689 Abell 1689 X-ray: NASA/CXC/MIT/E.-H Peng et al; Optical: NASA/STScI NASA, ESA, E.
Recommended publications
  • MC^ 2: Galaxy Imaging and Redshift Analysis of the Merging Cluster CIZA J2242. 8+ 5301
    LLNL-DOC-661846-DRAFT A Preprint typeset using LTEX style emulateapj v. 8/13/10 MC2: GALAXY IMAGING AND REDSHIFT ANALYSIS OF THE MERGING CLUSTER CIZA J2242.8+5301 William A. Dawson1, M. James Jee2, Andra Stroe3, Y. Karen Ng2, Nathan Golovich2, David Wittman2, David Sobral3,4,5, M. Bruggen¨ 6, H. J. A. Rottgering¨ 3, R. J. van Weeren7 (Dated: Draft June 21, 2021) LLNL-DOC-661846-DRAFT ABSTRACT X-ray and radio observations of CIZA J2242.8+5301 suggest that it is a major cluster merger. Despite being well studied in the X-ray, and radio, little has been presented on the cluster structure and dynamics inferred from its galaxy population. We carried out a deep (i< 25) broad band imaging survey of the system with Subaru SuprimeCam (g & i bands) and the Canada France Hawaii Telescope (r band) as well as a comprehensive spectroscopic survey of the cluster area (505 redshifts) using Keck DEIMOS. We use this data to perform a comprehensive galaxy/redshift analysis of the system, which is the first step to a proper understanding the geometry and dynamics of the merger, as well as using the merger to constrain self-interacting dark matter. We find that the system is dominated by two ′+0.7 +0.13 subclusters of comparable richness with a projected separation of6.9 −0.5 (1.3−0.10 Mpc). We find that the north and south subclusters have similar redshifts of z 0.188 with a relative line-of-sight velocity difference of 69 190kms−1. We also find that north and south≈ subclusters have velocity dispersions of +100 −±1 +100 −1 +4.6 14 1160−90 kms and 1080−70 kms , respectively.
    [Show full text]
  • Arxiv:1705.02358V2 [Hep-Ph] 24 Nov 2017
    Dark Matter Self-interactions and Small Scale Structure Sean Tulin1, ∗ and Hai-Bo Yu2, y 1Department of Physics and Astronomy, York University, Toronto, Ontario M3J 1P3, Canada 2Department of Physics and Astronomy, University of California, Riverside, California 92521, USA (Dated: November 28, 2017) Abstract We review theories of dark matter (DM) beyond the collisionless paradigm, known as self-interacting dark matter (SIDM), and their observable implications for astrophysical structure in the Universe. Self- interactions are motivated, in part, due to the potential to explain long-standing (and more recent) small scale structure observations that are in tension with collisionless cold DM (CDM) predictions. Simple particle physics models for SIDM can provide a universal explanation for these observations across a wide range of mass scales spanning dwarf galaxies, low and high surface brightness spiral galaxies, and clusters of galaxies. At the same time, SIDM leaves intact the success of ΛCDM cosmology on large scales. This report covers the following topics: (1) small scale structure issues, including the core-cusp problem, the diversity problem for rotation curves, the missing satellites problem, and the too-big-to-fail problem, as well as recent progress in hydrodynamical simulations of galaxy formation; (2) N-body simulations for SIDM, including implications for density profiles, halo shapes, substructure, and the interplay between baryons and self- interactions; (3) semi-analytic Jeans-based methods that provide a complementary approach for connecting particle models with observations; (4) merging systems, such as cluster mergers (e.g., the Bullet Cluster) and minor infalls, along with recent simulation results for mergers; (5) particle physics models, including light mediator models and composite DM models; and (6) complementary probes for SIDM, including indirect and direct detection experiments, particle collider searches, and cosmological observations.
    [Show full text]
  • Annual Report 2013 Cover Photo: the International LOFAR Telescope (ILT) & Big Data, Danielle Futselaar © ASTRON
    Annual report 2013 Cover photo: The International LOFAR Telescope (ILT) & Big Data, Danielle Futselaar © ASTRON. Photo on this page: prototype for the Apertif phased array feed. The Westerbork Synthesis Radio Telescope (WSRT) will be upgraded with Phased Array Feeds (PAFs), which will allow scientists to perform much faster observations with the telescope with a wider field of view. More information is available on the ASTRON/ JIVE daily image: http://www.astron.nl/ dailyimage/main.php?date=20130624. 2 ASTRON Annual report 2013 Facts and figures of 2013 8 Awards or grants 163 employees 162 refereed articles Funding: € 17,420,955 Expenditure: € 17,091,022 Balance: € 329.33 25 press releases 3 ASTRON Annual report 2013 Contents Facts and figures 2013 3 Director’s report 5 ASTRON Board and Management Team 7 ASTRON in brief 8 Contribution to top sectors 11 Performance indicators 12 Astronomy Group 17 Radio Observatory 22 R&D Laboratory 30 Connected legal entities 36 NOVA Optical/ Infrared Instrumentation Group 38 Joint Institute for VLBI in Europe 41 Outreach and education 43 Appendices 58 Appendix 1: financial summary 59 Appendix 2: personnel highlights 60 Appendix 3: WSRT & LOFAR proposals in 2013 62 Appendix 4: board, committees & staff in 2013 65 Appendix 5: publications 67 4 ASTRON Annual report 2013 Report 2013 was a year in which earlier efforts began to bear fruit. In particular, the various hardware and firmware changes made to the LOFAR telescope system in 2012, resulted in science quality data being delivered to the various Key Science Projects, and in particular the EoR (Epoch of Reionisation) Team.
    [Show full text]
  • Astronomy Magazine 2012 Index Subject Index
    Astronomy Magazine 2012 Index Subject Index A AAR (Adirondack Astronomy Retreat), 2:60 AAS (American Astronomical Society), 5:17 Abell 21 (Medusa Nebula; Sharpless 2-274; PK 205+14), 10:62 Abell 33 (planetary nebula), 10:23 Abell 61 (planetary nebula), 8:72 Abell 81 (IC 1454) (planetary nebula), 12:54 Abell 222 (galaxy cluster), 11:18 Abell 223 (galaxy cluster), 11:18 Abell 520 (galaxy cluster), 10:52 ACT-CL J0102-4915 (El Gordo) (galaxy cluster), 10:33 Adirondack Astronomy Retreat (AAR), 2:60 AF (Astronomy Foundation), 1:14 AKARI infrared observatory, 3:17 The Albuquerque Astronomical Society (TAAS), 6:21 Algol (Beta Persei) (variable star), 11:14 ALMA (Atacama Large Millimeter/submillimeter Array), 2:13, 5:22 Alpha Aquilae (Altair) (star), 8:58–59 Alpha Centauri (star system), possibility of manned travel to, 7:22–27 Alpha Cygni (Deneb) (star), 8:58–59 Alpha Lyrae (Vega) (star), 8:58–59 Alpha Virginis (Spica) (star), 12:71 Altair (Alpha Aquilae) (star), 8:58–59 amateur astronomy clubs, 1:14 websites to create observing charts, 3:61–63 American Astronomical Society (AAS), 5:17 Andromeda Galaxy (M31) aging Sun-like stars in, 5:22 black hole in, 6:17 close pass by Triangulum Galaxy, 10:15 collision with Milky Way, 5:47 dwarf galaxies orbiting, 3:20 Antennae (NGC 4038 and NGC 4039) (colliding galaxies), 10:46 antihydrogen, 7:18 antimatter, energy produced when matter collides with, 3:51 Apollo missions, images taken of landing sites, 1:19 Aristarchus Crater (feature on Moon), 10:60–61 Armstrong, Neil, 12:18 arsenic, found in old star, 9:15
    [Show full text]
  • Double Galaxy Clusters
    DOUBLE GALAXY CLUSTERS Gary A. Wegner Department of Physics & Astronomy Dartmouth College KIAS 5 November 2014 OUTLINE 1. Examples of some double clusters 2. Simulations 3. What we can hope to learn 4. Star formation in mergers 5. Abell 2465 6. Conclusions Best known case: the “Bullet” cluster Clowe etal. 2006, ApJ, 648, 109 Separation of X-ray, galaxies, matter profile from strong and weak lensing Two more examples, RX J 1347.5-1145 (Bradac et al. 2006, ApJ, 681, 187) MACS J0025.4-1222, “Baby bullet” (Bradac et al. 2008, ApJ, 687, 959) Abell 2744, Owers et al. 2011, ApJ, 728, 27 Abell 2146 Russell et al 2012 MNRAS, 423, 236 DLSCL J00916.2+2951 (Musket ball cluster) Dawson et al. 2012, ApJ, 747, L42 (See also for many further examples.) Abell 2744: Example of a more complicated merging Merten et al. 2011, MNRAS, 417, 33 Sloshing: Markevitch & Vikhlinin 2007, Phys. Rep., 443, 1 Abell 1644, Johnson et al. 710, 1776 Radio relics MACS J1752+4440 More examples see Merging cluster collaboration http://www.mergingclustercollaboration.org/ Radial infall model Simplest method used by many for estimate Beers, Geller & Huchra 1982, ApJ, 257, 23 (Abell 98) (See also Dawson 2013, ApJ, 772, 131) Early merger models, Roettiger et al. 1997, ApJS, 109, 307 2:1 mass ratio Left: gas density ; Right: gas density and dark matter evolution Off-centre collisions showing dark matter and gas densities. Ricker & Sarazin 2001, ApJ, 561, 621 m1:m2 = 1:1 m1:m2 = 1:3 X-ray emission for the 1:1 case (left) LX and TX (right) Gas surface density (top) for 1:1 mass ratio Projected temperature (below) Poole et al.
    [Show full text]
  • 1.3 Self-Interacting Dark Matter
    Durham E-Theses The Cosmological Implications of Self-Interacting Dark Matter ROBERTSON, ANDREW How to cite: ROBERTSON, ANDREW (2017) The Cosmological Implications of Self-Interacting Dark Matter, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/12305/ Use policy This work is licensed under a Creative Commons Attribution 3.0 (CC BY) Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk The Cosmological Implications of Self-Interacting Dark Matter Andrew Alexander Robertson Abstract In this thesis I study how dark matter particles that interact through forces other than just gravity would affect the formation of structure in the Universe. This begins with a theoret- ical calculation of the location and rate at which these interactions take place throughout cosmic history. Giant galaxy clusters are expected to have the highest rates of dark matter interactions, at least for the simplest dark matter particle models. Predicting the formation of structure with non-standard dark matter requires the use of N-body simulations. I therefore introduce and test a set of modifications to the GAD- GET code that allow it to simulate a class of dark matter models known as self-interacting dark matter (SIDM). I focus particular attention on rarely discussed aspects of simulating SIDM; including how to handle particles scattering multiple times within a single time-step and how to implement scattering across processors. I also discuss how best to choose nu- merical parameters associated with the SIDM implementation and the range of numerical parameters that produce converged results.
    [Show full text]
  • January 2013
    El Gordo January 2013 This young galaxy cluster, nicknamed “El Gordo” for the “big” or S M T W Th F Sa “fat” one in Spanish, is a remarkable object. Found about 7.2 bil - 1 2 3 4 5 lion light years away, El Gordo appears to be the most massive, hottest, and most powerful X-ray emitter of any known cluster at its 6 7 8 9 10 11 12 distance or beyond. In this composite image, X-rays are blue, opti - 13 14 15 16 17 18 19 cal data from the Very Large Telescope are red, green, and blue, and infrared emission from Spitzer is red. The comet-like shape of 20 21 22 23 24 25 26 the X-rays, along with optical data, shows that El Gordo is actually two galaxy clusters in the process of colliding at several million 27 28 29 30 31 miles per hour. NGC 3627 February 2013 NGC 3627 is a spiral galaxy located about 30 million light years S M T W Th F Sa from Earth. A survey of 62 galaxies with Chandra revealed that 1 2 many of these galaxies contained supermassive black holes that previously were undetected. This study showed the value of X-ray 3 4 5 6 7 8 9 observations for finding central black holes that have relatively low- 10 11 12 13 14 15 16 er masses, as is the case for NGC 3627. This composite image of NGC 3627 includes data from Chandra (blue), Spitzer (red), as well 17 18 19 20 21 22 23 as optical data from Hubble and the Very Large Telescope (yellow).
    [Show full text]
  • The Universe Contents 3 HD 149026 B
    History . 64 Antarctica . 136 Utopia Planitia . 209 Umbriel . 286 Comets . 338 In Popular Culture . 66 Great Barrier Reef . 138 Vastitas Borealis . 210 Oberon . 287 Borrelly . 340 The Amazon Rainforest . 140 Titania . 288 C/1861 G1 Thatcher . 341 Universe Mercury . 68 Ngorongoro Conservation Jupiter . 212 Shepherd Moons . 289 Churyamov- Orientation . 72 Area . 142 Orientation . 216 Gerasimenko . 342 Contents Magnetosphere . 73 Great Wall of China . 144 Atmosphere . .217 Neptune . 290 Hale-Bopp . 343 History . 74 History . 218 Orientation . 294 y Halle . 344 BepiColombo Mission . 76 The Moon . 146 Great Red Spot . 222 Magnetosphere . 295 Hartley 2 . 345 In Popular Culture . 77 Orientation . 150 Ring System . 224 History . 296 ONIS . 346 Caloris Planitia . 79 History . 152 Surface . 225 In Popular Culture . 299 ’Oumuamua . 347 In Popular Culture . 156 Shoemaker-Levy 9 . 348 Foreword . 6 Pantheon Fossae . 80 Clouds . 226 Surface/Atmosphere 301 Raditladi Basin . 81 Apollo 11 . 158 Oceans . 227 s Ring . 302 Swift-Tuttle . 349 Orbital Gateway . 160 Tempel 1 . 350 Introduction to the Rachmaninoff Crater . 82 Magnetosphere . 228 Proteus . 303 Universe . 8 Caloris Montes . 83 Lunar Eclipses . .161 Juno Mission . 230 Triton . 304 Tempel-Tuttle . 351 Scale of the Universe . 10 Sea of Tranquility . 163 Io . 232 Nereid . 306 Wild 2 . 352 Modern Observing Venus . 84 South Pole-Aitken Europa . 234 Other Moons . 308 Crater . 164 Methods . .12 Orientation . 88 Ganymede . 236 Oort Cloud . 353 Copernicus Crater . 165 Today’s Telescopes . 14. Atmosphere . 90 Callisto . 238 Non-Planetary Solar System Montes Apenninus . 166 How to Use This Book 16 History . 91 Objects . 310 Exoplanets . 354 Oceanus Procellarum .167 Naming Conventions . 18 In Popular Culture .
    [Show full text]
  • Effects of Rotation Arund the Axis on the Stars, Galaxy and Rotation of Universe* Weitter Duckss1
    Effects of Rotation Arund the Axis on the Stars, Galaxy and Rotation of Universe* Weitter Duckss1 1Independent Researcher, Zadar, Croatia *Project: https://www.svemir-ipaksevrti.com/Universe-and-rotation.html; (https://www.svemir-ipaksevrti.com/) Abstract: The article analyzes the blueshift of the objects, through realized measurements of galaxies, mergers and collisions of galaxies and clusters of galaxies and measurements of different galactic speeds, where the closer galaxies move faster than the significantly more distant ones. The clusters of galaxies are analyzed through their non-zero value rotations and gravitational connection of objects inside a cluster, supercluster or a group of galaxies. The constant growth of objects and systems is visible through the constant influx of space material to Earth and other objects inside our system, through percussive craters, scattered around the system, collisions and mergers of objects, galaxies and clusters of galaxies. Atom and its formation, joining into pairs, growth and disintegration are analyzed through atoms of the same values of structure, different aggregate states and contiguous atoms of different aggregate states. The disintegration of complex atoms is followed with the temperature increase above the boiling point of atoms and compounds. The effects of rotation around an axis are analyzed from the small objects through stars, galaxies, superclusters and to the rotation of Universe. The objects' speeds of rotation and their effects are analyzed through the formation and appearance of a system (the formation of orbits, the asteroid belt, gas disk, the appearance of galaxies), its influence on temperature, surface gravity, the force of a magnetic field, the size of a radius.
    [Show full text]
  • Colliding Clusters and Dark Matter Self-Interactions
    Mon. Not. R. Astron. Soc. 000, 000{000 (0000) Printed 20 January 2014 (MN LATEX style file v2.2) Colliding clusters and dark matter self-interactions Felix Kahlhoefer,1? Kai Schmidt-Hoberg,2 Mads T. Frandsen3 and Subir Sarkar1;4 1 Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom 2 Theory Division, CERN, 1211 Geneva 23, Switzerland 3 CP3-Origins and the Danish Institute for Advanced Study, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark 4 Niels Bohr Institute, Blegdamsvej 17, 2100 København Ø, Denmark 20 January 2014 ABSTRACT When a dark matter halo moves through a background of dark matter particles, self- interactions can lead to both deceleration and evaporation of the halo and thus shift its centroid relative to the collisionless stars and galaxies. We study the magnitude and time evolution of this shift for two classes of dark matter self-interactions, viz. frequent self-interactions with small momentum transfer (e.g. due to long-range interactions) and rare self-interactions with large momentum transfer (e.g. contact interactions), and find important differences between the two cases. We find that neither effect can be strong enough to completely separate the dark matter halo from the galaxies, if we impose conservative bounds on the self-interaction cross-section. The majority of both populations remain bound to the same gravitational potential and the peaks of their distributions are therefore always coincident. Consequently any apparent separation is mainly due to particles which are leaving the gravitational potential, so will be largest shortly after the collision but not observable in evolved systems.
    [Show full text]
  • Proceedingscss2018.Pdf
    PROGRAM OF THE CONFERENCE Proceedings of the International Conference Wednesday, September 26 Thursday, September 27 Friday, September 28 9.00 Opening 9.00 A. A. Starobinsky 9.00 A. D. A. M. Spallicci Cosmology on Small Scales 2018 9.15 P. Kroupa 9.45 L. Marochnik 9.45L. Bratek 10.00 M. López-Corredoira 10.30 Coffee Break 10.30 Coffee Break Dark Matter Problem and Selected COSMOLOGY ON SMALL SCALES 2018 10.45 Coffee Break 10.55 Y. V. Dumin 11.00 A. Maeder 11.15 S. Capozziello 11.15 S. J. Roblez-Perez 12.00 P. Magain Controversies in Cosmology 12.00 M. S. Pawlowski 12.00 K. Morawetz 12.15 Lunch Break 12.20 Lunch Break 12.20 Lunch Break 14.00 S. McGaugh 14.00 F. Lelli 14.00 B. Famaey 14.45 O. Tsupko Prague, September 26–29, 2018 14.45 I. Goldman 14.45 I. Karachentsev 15.15 T. Prevenslik 15.30 W. Oehm 15.30 L. Makarova 15.30 R. J. Wojtak 16.00 D. Makarov 15.45 A. Mészáros 15.50 Coffee Break Edited by 16.20 J. Dabringhausen 16.30 Coffee Break 16.00 Coffee Break 16.40 M. Haslbauer 17.00 A. Maeder 16.30 Short Michal Křížek and Yurii V. Dumin 17.00 Y. V. Dumin Communications 17.20 M. Feldman 17.40 E. J. Lerner 18.00 M. Křížek Saturday, September 29 9.00 – 12.00 Excursion to the astronomical and cosmological sights of Prague Prague’s Horologe: Cosmological model from the 15th cen- tury ISBN 978-80-85823-68-4 Institute of Mathematics Czech Academy of Sciences 9 788085 823684 Proceedings of the International Conference COSMOLOGY ON SMALL SCALES 2018 Dark Matter Problem and Selected Controversies in Cosmology Prague, September 26–29, 2018 Edited by Michal Kˇr´ıˇzek and Yurii V.
    [Show full text]
  • THE DYNAMICS of MERGING CLUSTERS: a MONTE CARLO SOLUTION APPLIED to the BULLET and MUSKET BALL CLUSTERS William A
    Draft version June 11, 2018 Preprint typeset using LATEX style emulateapj v. 5/2/11 THE DYNAMICS OF MERGING CLUSTERS: A MONTE CARLO SOLUTION APPLIED TO THE BULLET AND MUSKET BALL CLUSTERS William A. Dawson University of California, Davis,Physics Department, One Shields Av., Davis, CA 95616, USA Draft version June 11, 2018 ABSTRACT Merging galaxy clusters have become one of the most important probes of dark matter, providing evidence for dark matter over modified gravity and even constraints on the dark matter self-interaction cross-section. To properly constrain the dark matter cross-section it is necessary to understand the dynamics of the merger, as the inferred cross-section is a function of both the velocity of the collision and the observed time since collision. While the best understanding of merging system dynamics comes from N-body simulations, these are computationally intensive and often explore only a limited volume of the merger phase space allowed by observed parameter uncertainty. Simple analytic models exist but the assumptions of these methods invalidate their results near the collision time, plus error propagation of the highly correlated merger parameters is unfeasible. To address these weaknesses I develop a Monte Carlo method to discern the properties of dissociative mergers and propagate the uncertainty of the measured cluster parameters in an accurate and Bayesian manner. I introduce this method, verify it against an existing hydrodynamic N-body simulation, and apply it to two known dissociative mergers: 1ES 0657-558 (Bullet Cluster) and DLSCL J0916.2+2951 (Musket Ball Cluster). I find that this method surpasses existing analytic models | providing accurate (10% level) dynamic parameter and uncertainty estimates throughout the merger history.
    [Show full text]