Boron Separation Processes

Total Page:16

File Type:pdf, Size:1020Kb

Boron Separation Processes Boron Separation Processes NALAN KABAY Ege University, Chemical Engineering Department, Faculty of Engineering, Izmir, Turkey MAREK BRYJAK Wrocław University of Technology, Faculty of Chemistry, Department of Polymer and Carbon Materials, Wrocław, Poland NIDAL HILAL Center for Water Advanced Tehnologies and Environmental Research (CWATER), College of Engineering, Swansea University, Swansea, United Kingdom Amsterdam • Boston • Heidelberg • London • New York Oxford • Paris • San Diego • San Francisco • Sydney • Tokyo Elsevier Radarweg 29, PO Box 211, 1000 AE Amsterdam, Netherlands The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK 225 Wyman Street, Waltham, MA 02451, USA Copyright Ó 2015 Elsevier B.V. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/ permissions. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notice Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility. To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein. ISBN: 978-0-444-63454-2 British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Cataloging-in-Publication Data A catalog record for this book is available from the Library of Congress For information on all Elsevier publications visit our web site at http://store.eslevier.com Printed and bound in Poland EDITORS’ PREFACE Due to the increasing demand for delivery of safe potable or irrigation water and limited available water resources, many suppliers have to face a problem to find some alternatives urgently. Hence, seawater, brackish water, and contaminated surface waters have become a target as new water resources for these activities which need fresh water. However, these alternatives may contain some trace contaminants that have not been noted so far and their removal has been not considered at the technological level. Boron is one of the target species in the list of such unwanted contaminants. This element is found in seawater at the level of 4e7 mg/L, depending on the region, and in underground water at higher levels. The World Health Organization (WHO) set the limit for boron as 0.3 mg/L in drinking water in 1993. However, in 2011, the Drinking-Water Quality Committee of WHO revised the Boron Guideline Value for potable water as 2.4 mg/L. A major limiting factor for the presence of boron in water is related to the possibility of plant damage rather than human health-related concerns. Although boron is a vital element for plant growth in trace quantities as a micronutrient and it is delivered as fertilizer, it can be detrimental to some plants at higher concentrations. According to the published literature, excess boron reduces fruit yield, induces premature ripening, and causes massive leaf damage. Therefore, boron limits for agricultural water is still kept between 0.3 and 1 mg/L, depending on the country. The main goals of this book are to focus the attention on boron-related problems and to present some challenges for safe water production in order to invoke appropriate actions in efficient innovative directions. For these reasons, this book is divided into four sections that show the impact of boron for our life, adsorption methods for water deboronation, the use of membrane processes for boron removal from water, and recent studies on process optimization. SECTION 1dBORON IN THE ENVIRONMENT Chapter 1 introduces the history of boron discovery, the environmental chemistry of the element and its biogeochemistry. The reader gets information on the impact of nature to bind and transform boron, as well as the toxicology of this element. Chemistry of boron in aqueous solution is the subject of Chapter 2. The authors discussed the distribution of boron on the Earth and the paths that boron enters into the aquatic environment. Contents of boron in surface waters, underground waters, and seawater are presented to give the general layout of the boron problem. Special attention vii viii Editors’ Preface is directed to the chemistry of boron containing compounds and the legal regulations of the boron concentration in potable water. Boron has been considered to have a negative effect on animal reproduction and development. However, boron-mediated unfavorable effects in males have not been proven for humans. It is the subject of discussion presented in Chapter 3, where the authors, based on the recently published epidemiological studies, have provided valuable data for highly boron-exposed workers in China and Turkey. The results indicated that human boron exposure, even at the highest rate, are too low to reach the blood concentrations that would cause adverse effects on the reproduction system. SECTION 2dREMOVAL OF BORON BY ION EXCHANGE AND ADSORPTION PROCESSES This section combines chapters dealing with one of the oldest methods, which is adsorption for mitigation of boron level in aqueous solutions. Chapter 4 presents mechanisms of boron sorption on ion exchangers and gives the fundamental information on sorption equilibrium and kinetics. The reader can find there some data on the formation of polyborates and their impact on ion exchange processes. Authors of Chapter 5 focused on the use of chelating adsorbents for boron recovery. They describe properties of chelating resins and fibers bearing N-methyl-D-glucamine ligands. Using the mechanism of boron chelation, the authors elucidate such sorbent properties as adsorption rate, pH-related uptake, and adsorption capacity. The case studies presented in the chapter show application of the described materials for boron recovery from geothermal water and salt lake brines. The use of natural inorganic materials for boron removal is the subject of Chapter 6. The authors provided plenty of data on the adsorption of boron on different minerals. This chapter also addresses some studies of organic natural matter. Some data on soil or humic acids sorption are delivered at the end of the chapter. Chapter 7 is dedicated to the description of the kind of chelating materials containing iminobis-propylenediol ligands for boron binding. Three forms of tailored adsorbent are presented: linear polymer, crosslinked beads, and hairy function resins. These materials can be used at different applications such as polymer-enhanced ultrafiltration systems, batch adsorption, and fix bed columns. SECTION 3dREMOVAL OF BORON BY MEMBRANE PROCESSES The chapters in this section describe the use of membrane processes for boron removal. Chapter 8 can be considered as an introduction to the other contributions. It gives an insight to the direct use of RO membranes for desalination, application of UF and MF Editors’ Preface ix membranes for systems when boron is complexed/adsorbed on coupling agents or the use of other membrane processes. The supplementary data on the use of various membrane systems for desalination of seawater are presented in Chapter 9. The authors discussed the integrated systems, ion- exchange systems, hybrid systems, ED systems, and others. The final SWOT analysis allows us to understand the way to make the final selection of the best system. The next chapter, Chapter 10, deals with details on various hybrid systems. It presents some fundamentals on membrane-enhanced hybrid processes when coupling agents form complexes with boron and, as large substances, are removed by membrane filtration. Such hybrid systems as molecule-enhanced membrane separation (MEMS), polymer-enhanced ultrafiltration (PEUF), micellar-enhanced ultrafiltration (MEUF), colloid-enhanced ultrafiltration (CEUF), and suspension-enhanced microfiltration (SEMF) are discussed. Some hints for regeneration of coupling agents are also presented. Chapter 11 is dedicated to the application of ion exchange membranes for water deboranation. It discusses the effects of membranes, boron bearing species and process parameters. Three methods are considered by the authors: electrodialysis (ED), Donnan dialysis (DD) and electrodeionization (EDI). Finally, the chapter provides cost evaluation for processes employing ion-exchange membranes. Chapter 12 deals with boron removal from geothermal water. In this chapter, application of membrane separation methods such as reverse osmosis,
Recommended publications
  • Technical Report: Barium Diboron Tetraoxide
    Technical report: barium diboron tetraoxide Agency technical report on the classification and labelling of Barium diboron tetraoxide EC Number: 237-222-4 CAS Number: 13701-59-2 Health and Safety Executive Chemicals Regulation Division Redgrave Court Merton Road Bootle L20 7HS [email protected] Date: MAY 2021 1 Technical report: barium diboron tetraoxide Contents Brief summary ........................................................................................................................... 3 Introduction ............................................................................................................................... 4 Overview of current and proposed classification and labelling ................................................ 4 General substance information: ................................................................................................ 6 Background ................................................................................................................................ 6 Scientific assessment of the physical, human health and environmental hazard classes ........ 7 Physical Hazards ........................................................................................................................ 7 Health Hazards .......................................................................................................................... 7 Acute toxicity ......................................................................................................................... 7 Specific
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2017/0037303 A1 Waller Et Al
    US 20170037303A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2017/0037303 A1 Waller et al. (43) Pub. Date: Feb. 9, 2017 (54) COMPOSITIONS AND METHODS FOR E2IB 43/267 (2006.01) DELAYED CROSSLINKING IN HYDRAULC C09K 8/90 (2006.01) FRACTURING FLUIDS E2IB 37/06 (2006.01) (52) U.S. Cl. (71) Applicant: Ecolab USA Inc., St. Paul, MN (US) CPC ................. C09K 8/685 (2013.01); C09K 8/68 (2013.01); C09K 8/90 (2013.01); C09K 8/887 (72) Inventors: Christopher Waller, Houston, TX (2013.01); E2IB 37/06 (2013.01); E2IB 43/26 (US); Kirk E. Wells, Sugar Land, TX (2013.01); E2IB 43/267 (2013.01); E2IB (US); Brian Mueller, Missouri City, 33/138 (2013.01) TX (US); Trinh Tran, Manrel, TX (US); Pablo Munoz, Katy, TX (US) (57) ABSTRACT (21) Appl. No.: 15/225,879 Disclosed herein are compositions and methods for delaying (22) Filed: Aug. 2, 2016 crosslinking in injectable compositions for hydraulic frac turing and related applications. The compositions and meth Related U.S. Application Data ods are effective in injectable compositions comprising or Substantially excluding dissolved reactive species. The com (60) Provisional application No. 62/200,172, filed on Aug. positions and methods provide delayed crosslinking at high 3, 2015, provisional application No. 62/362.691, filed temperatures and pressures, such as those encountered by on Jul. 15, 2016. hydraulic fracturing compositions injected into Subterranean O O environments. Compositions include injectable solutions Publication Classification comprising a competing agent that is the reaction product of (51) Int. Cl. a dialdehyde having 2 to 4 carbon atoms with a non C09K 8/68 (2006.01) polymeric cis-hydroxyl compound.
    [Show full text]
  • Laboratory Evaluation of Borate:Amine:Copper Derivatives In
    LABORATORY EVALUATION OF BORATE:AMINE:COPPER DERIVATIVES IN WOOD FOR FUNGAL DECAY PROTECTION George Chen Research Chemist Performance Enhanced Biopolymers USDA Forest Service, Forest Products Laboratory 1 Gifford Pinchot Drive Madison, WI 53726 (Received December 2010) Abstract. This study aimed to evaluate borate:amine:copper derivatives in wood for fungal decay protection as well as the permanence of copper and boron in wood. Each of four derivatives of borate: amine:copper prevented fungal decay in wood. Disodium tetraborate decahydrate (borax):amine:copper derivatives with 0.61-0.63% retention after water leaching prevented decay by Gloeophyllum trabeum (Gt) and with 0.64% retention prevented decay by Trametes versicolor (Tv). Leaching did not decrease decay resistance for either Gt or Tv. Disodium octaborate tetrahydrate (DOT):amine:copper derivatives with 1.14-2.93% retention after water leaching prevented decay by Gt and with 0.54-1.19% retention prevented decay by Tv. Leaching decreased decay resistance to Gt but not to Tv. Higher copper and boron in disodium borax:amine:copper derivatives contributed to more decay resistance to Gt and Tv than that of DOT:amine:copper derivatives as evidenced by elemental analysis. IR spectra of wood treated with 5% borate:amine:copper derivatives after water leaching showed increased absorption at 1632-1635 cmÀ1 compared with the control. This increased absorption was partly attributable to carbonyl of copper carboxylates from oxidation of hemiacetals of hemicelluloses and cellulose by copper (II) ions and carbonyls of copper (II) quinone methides by oxidation of guaicyls by copper (II) ions. It was also partly attributable to carbonyls of copper carboxylates from hemicelluloses and phenolates from lignin through ion exchange reactions.
    [Show full text]
  • Volume 42, Number 4, 2010
    BULGARIAN CHEMICAL COMMUNICATIONS 2010 Volume 42 / Number 4 Journal of the Chemical Institutes of the Bulgarian Academy of Sciences and of the Union of Chemists in Bulgaria Announcement Seventh National Conference on Chemistry and 2nd International Conference on Green Technologies and Environmental Protection INVITATION 2. Organic chemistry: V. Dimitrov, P. K. The Union of Chemists in Bulgaria (UCB) Sharma extends a cordial invitation to all scientists 3. Inorganic chemistry: D. Todorovsky, R. in the field of chemistry to participate in the K. Sharma Seventh National Conference on Chemistry 4. Analytical chemistry: D. Tsalev, R. K. to be held at the University of Chemical Mahajan Technology and Metallurgy in Sofia 5. Catalysis: S. Damyanova, R. D. Kaushik (Bulgaria) from 26 to 29 May 2011. 6. Chemical engineering: V. Beshkov, M. Parallely the 2nd International Conference A. Abdullaha on Green Technologies and Environmental 7. Chemistry and environmental protection: Protection co-organized with the Chaudhary Y. Pelovsky, A. Mittal Charan Singh University, Meerut (India) 8. Polymers (plastics, rubbers, chemical and Devam Foundation – Bulgarian-Indian fibres, cellulose): N. Dishovsky, R. K. Soni Art & Culture Centre will take place. 9. Chemical technologies: G. Vissokov, A. Muddoo ORGANIZATION INSTITUTIONS 10. Oil processing, petrochemistry and Union of Chemists in Bulgaria, Union of organic synthesis: G. Cholakov, A. P. Gupta Scientists in Bulgaria, Bulgarian Academy 11. Chemical education: B. Toshev, A. K. of Sciences, Chaudhary Charan Singh Halve University, Meerut (India), Devam Foundation, University of Chemical GENERAL SCOPE Technology and Metallurgy, Sofia, Prof. A. The Seventh National Conference on Zlatarov University of Burgas, Faculty of Chemistry is organized within the Chemistry at St.
    [Show full text]
  • Select Reactions of Organoboranes and Organostannanes
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-2012 Select Reactions of Organoboranes and Organostannanes David W. Blevins [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Organic Chemistry Commons Recommended Citation Blevins, David W., "Select Reactions of Organoboranes and Organostannanes. " PhD diss., University of Tennessee, 2012. https://trace.tennessee.edu/utk_graddiss/1412 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by David W. Blevins entitled "Select Reactions of Organoboranes and Organostannanes." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Chemistry. George W. Kabalka, Major Professor We have read this dissertation and recommend its acceptance: Shane Foister, Craig Barnes, Kimberly Gwinn Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Select Reactions of Organoboranes and Organostannanes A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville David W. Blevins August 2012 DEDICATION I dedicate this work to Lisa, Preston, and Clarissa Blevins. ii ACKNOWLEDGEMENTS I would like to thank Dr.
    [Show full text]
  • Tannins-Boron Networks for Long-Term and Low-Environmental Impact Wood Preservatives Jinbo Hu
    Tannins-boron networks for long-term and low-environmental impact wood preservatives Jinbo Hu To cite this version: Jinbo Hu. Tannins-boron networks for long-term and low-environmental impact wood preservatives. Materials. Université Montpellier, 2015. English. NNT : 2015MONTS248. tel-02127899 HAL Id: tel-02127899 https://tel.archives-ouvertes.fr/tel-02127899 Submitted on 13 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ DE MONTPELLIER T H È S E Pour obtenir le grade de DOCTEUR DE L'UNIVERSITE DE MONTPELLIER Spécialité : Mécanique et Génie Civil Ecole Doctorale : Information, Structures, Systèmes Associations tanins-bore pour des produits de protection du bois à faible impact environnemental Par Jinbo HU Soutenance prévue le 01 Septembre 2015 JURY Bertrand CHARRIER (Université de Pau et des Pays l’Adour) Rapporteur Pierre-Jean MEAUSOONE (Université de Lorraine) Rapporteur Joseph GRIL (Université de Montpellier) Examinateur Yiqiang WU (Université du Centre-Sud de la science et de la technologie (Chine)) Examinateur Gianluca TONDI (Université de Salzbourg (Autriche)) Invité Marie-France THEVENON (CIRAD, Montpellier) Directrice de Thèse Acknowledgement First and foremost I would like to thank my PhD advisors, Dr.
    [Show full text]
  • Premio Tesi Di Dottorato – 45 – PREMIO TESI DI DOTTORATO Commissione Giudicatrice, Anno 2013
    premio tesi di dottorato – 45 – PREMIO TESI DI DOTTORATO Commissione giudicatrice, anno 2013 Luigi Lotti, presidente della Commissione Tito Arecchi, Area Scientifica Franco Cambi, Area Umanistica Paolo Felli, Area Tecnologica Michele Arcangelo Feo, Area Umanistica Roberto Genesio, Area Tecnologica Luigi Lotti, Area Scienze Sociali Mario Pio Marzocchi, Area Scientifica Adolfo Pazzagli, Area Biomedica Mario Giuseppe Rossi, Area Umanistica Salvatore Ruggieri, Area Biomedica Saulo Sirigatti, Area Biomedica Piero Tani, Area Scienze Sociali Fiorenzo Cesare Ugolini, Area Tecnologica Vincenzo Varano, Area Scienze Sociali Graziella Vescovini, Area Umanistica Roberta Martelli Characteristics of raw and cooked fillets in species of actual and potential interest for italian aquaculture Rainbow trout (Oncorhynchus mykiss) and meagre (Argyrosomus regius) Firenze University Press 2014 Characteristics of raw and cooked fillets in species of actual and potential interest for Italian aquaculture : rainbow trout (Oncorhynchus mykiss) and meagre (Argyrosomus regius) / Roberta Martelli. – Firenze : Firenze University Press, 2014. (Premio Tesi di Dottorato; 45) http://digital.casalini.it/9788866556961 ISBN 978-88-6655-695-4 (print) ISBN 978-88-6655-696-1 (online) Peer Review Process All publications are submitted to an external refereeing process under the responsibility of the FUP Editorial Board and the Scientific Committees of the individual series. The works published in the FUP catalogue are evaluated and approved by the Editorial Board of the publishing house. For a more detailed description of the refereeing process we refer to the official documents published in the online catalogue of the FUP (www.fupress.com). Firenze University Press Editorial Board G. Nigro (Co-ordinator), M.T. Bartoli, M. Boddi, R. Casalbuoni, C.
    [Show full text]
  • Table of Contents
    UNIVERSITÀ DEGLI STUDI DI TRIESTE XXXII CICLO DEL DOTTORATO DI RICERCA IN NANOTECNOLOGIE MOLECULAR PROPERTIES OF CHITOSAN AND ITS DERIVATIVES AND THEIR POTENTIAL FOR BIOMEDICAL APPLICATIONS Settore scientifico-disciplinare: BIO/10 - BIOCHIMICA DOTTORANDO FRANCO FURLANI COORDINATORE PROF. ALBERTO MORGANTE SUPERVISORE DI TESI PROF. IVAN DONATI COSUPERVISORI DI TESI PROF.SSA ELEONORA MARSICH DOTT. PASQUALE SACCO ANNO ACCADEMICO 2018/2019 ii PREFACE This thesis is submitted in fulfilment to the requirements of the Graduate School of Nanotechnology for the academic title of Ph.D. in Nanotechnology at the University of Trieste. The work has been carried out mainly at the Department of Life Sciences at the University of Trieste under the supervision of Prof. Ivan Donati and co-supervised by Prof. Eleonora Marsich and Dr. Pasquale Sacco. Part of the activity was performed at the Center for Translational Medicine (CTM), International Clinical Research Center (ICRC) of St. Anne's University Hospital, Brno, Czech Republic under the supervision of Dr. Giancarlo Forte. The thesis consists of a general introduction, aim of the study and a detailed discussion of results divided into four chapters. iii SUMMARY Macro- and micro/nano-hydrogels are highly hydrated networks consisting of polymers and solvents. They are widely studied for different applications, especially for biomedical ones. One of the most challenging uses of hydrogels regards cartilage regeneration. Indeed, cartilage degeneration represents a severe burden for the healthcare worldwide. None of the currently proposed treatments is able to fully satisfy patients’ needs, probably since most of treatments lack of peculiar spatial complexity and mechanical properties of native tissues, i.e.
    [Show full text]
  • Borax by the Forest Service from 2000 to 2004
    SERA TR-056-15-03c Sporax® and Cellu-Treat® (Selected Borate Salts) Human Health and Ecological Risk Assessment FINAL REPORT Submitted to: Dr. Harold Thistle USDA Forest Service Forest Health Technology Enterprise Team 180 Canfield St. Morgantown, WV 26505 Email: [email protected] USDA Forest Service Contract: AG-3187-C-12-0009 USDA Forest Order Number: AG-3187-D-15-0074 SERA Internal Task No. 56-15 Submitted by: Patrick R. Durkin Syracuse Environmental Research Associates, Inc. 8125 Solomon Seal Manlius, New York 13104 E-Mail: [email protected] Home Page: www.sera-inc.com October 17, 2016 Table of Contents LIST OF TABLES ......................................................................................................................... vi LIST OF FIGURES ....................................................................................................................... vi LIST OF APPENDICES ................................................................................................................ vi LIST OF ATTACHMENTS .......................................................................................................... vi ACRONYMS, ABBREVIATIONS, AND SYMBOLS .............................................................. viii COMMON UNIT CONVERSIONS AND ABBREVIATIONS ................................................... xi CONVERSION OF SCIENTIFIC NOTATION .......................................................................... xii EXECUTIVE SUMMARY ........................................................................................................
    [Show full text]
  • Committee for Risk Assessment RAC Annex 1 Background Document To
    Committee for Risk Assessment RAC Annex 1 Background document to the Opinion proposing harmonised classification and labelling at EU level of barium diboron tetraoxide EC Number: 237-222-4 CAS Number: 13701-59-2 CLH-O-0000006847-60-01/F The background document is a compilation of information considered relevant by the dossier submitter or by RAC for the proposed classification. It includes the proposal of the dossier submitter and the conclusion of RAC. It is based on the official CLH report submitted to public consultation. RAC has not changed the text of this CLH report but inserted text which is specifically marked as ‘RAC evaluation’. Only the RAC text reflects the view of RAC. Adopted 17 September 2020 P.O. Box 400, FI-00121 Helsinki, Finland | Tel. +358 9 686180 | Fax +358 9 68618210 | echa.europa.eu [04.01-ML-009.02] ANNEX 1 - BACKGROUND DOCUMENT TO RAC OPINION ON BARIUM DIBORON TETRAOXIDE CLH report Proposal for Harmonised Classification and Labelling Based on Regulation (EC) No 1272/2008 (CLP Regulation), Annex VI, Part 2 International Chemical Identification: Barium diboron tetraoxide EC Number: 237-222-4 CAS Number: 13701-59-2 Index Number: Not assigned Contact details for dossier submitter: Swedish Chemicals Agency Esplanaden 3a, P.O Box 2 SE-172 13 Sundbyberg, Sweden [email protected] +46 8 519 41 100 Version number: 2 Date: 2019-08-09 ANNEX 1 - BACKGROUND DOCUMENT TO RAC OPINION ON BARIUM DIBORON TETRAOXIDE CONTENTS 1 IDENTITY OF THE SUBSTANCE ...................................................................................................................... 6 1.1 NAME AND OTHER IDENTIFIERS OF THE SUBSTANCE .............................................................................................. 6 1.2 COMPOSITION OF THE SUBSTANCE .......................................................................................................................
    [Show full text]
  • Protection of C5-Sugars in Oxidation Process Development Master's
    Lappeenranta University of Technology LUT School of Engineering Science Degree programme in Chemical and Process Engineering Kaukiainen, Antti Protection of C5-sugars in oxidation process development Master’s thesis 2018 Examiner: Professor Tuomas Koiranen Supervisors: Professor Tuomas Koiranen D. Sc. (Tech) Abayneh Demesa Abstract Lappeenranta University of Technology School of Engineering Science Degree Programme in Chemical and Process Engineering Antti Kaukiainen Protection of C5-sugars in oxidation process development Master’s Thesis 2018 Examiner: Professor Tuomas Koiranen Supervisors: Professor Tuomas Koiranen D. Sc. (Tech) Abayneh Demesa 93 pages, 32 figures, 13 tables, 3 appendices Keywords: carbohydrates, oxidation, protective groups, ultrasound, biorefining This study focuses on oxidation reaction of lactose selectively to galarose, which is lower sugar. Boric acid was used in the reaction as catalyst for lactose and protective group for galarose, and ultrasound was used to intensify the reaction. The first aim was to study parameter changes to make the reaction as efficient as possible. The second objective was to find more general applications for such oxidation process. The literature part gives background for protective groups, ultrasound processes and use of carbohydrates. The experimental part presents the experiments on the reaction. The reactor, experiment conditions and analysis method for HPLC are described. The main experimental results are presented in conversion of lactose and yield and selectivity of galarose. The discussion part highlights important results, show possible applications and gives recommendations for further studies on the subject. The increases in temperature and boric acid concentration gave positive results in the experiments. The use of ultrasound was also found out to be beneficial for the reaction, especially as it enable use of milder conditions like reduction of H2O2 concentration while giving good results.
    [Show full text]
  • Potential Advantages of Peroxoborates and Their Ester Adducts Over Hydrogen Peroxide As Therapeutic Agents in Oral Healthcare Pr
    dentistry journal Commentary Potential Advantages of Peroxoborates and Their Ester Adducts Over Hydrogen Peroxide as Therapeutic Agents in Oral Healthcare Products: Chemical/Biochemical Reactivity Considerations In Vitro, Ex Vivo And In Vivo Martin Grootveld 1,2,* , Edward Lynch 1,2, Georgina Page 1, Wyman Chan 1, Benita Percival 1 , Eugenia Anagnostaki 1 , Valina Mylona 1 , Sonia Bordin-Aykroyd 1 and Kerry L. Grootveld 1 1 Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; [email protected] (E.L.); [email protected] (G.P.); [email protected] (W.C.); [email protected] (B.P.); [email protected] (E.A.); [email protected] (V.M.); [email protected] (S.B.-A.); [email protected] (K.L.G.) 2 School of Dental Medicine, University of Nevada, Las Vegas, NV 89106, USA * Correspondence: [email protected] Received: 19 April 2020; Accepted: 4 August 2020; Published: 7 August 2020 Abstract: Peroxides present in oral healthcare products generally exert favourable protective activities against the development and progression of tooth decay, plaque, gingivitis, and halitosis, etc. However, despite the high level of research focus on hydrogen and carbamide peroxides as therapeutically active (and tooth-whitening) agents, to date the use of alternative chemical forms of peroxides such as peroxoborates for these purposes has received only scant attention. Intriguingly, peroxoborate and its esters with polyols, such as glycerol, have a very diverse chemistry/biochemistry in aqueous solution, for which there is an increasing amount of evidence that it remains distinctive from that of hydrogen peroxide; such properties include self-associative and hydrolytic equilibria, and their abilities to participate in electrophile- or nucleophile-scavenging, metal ion-complexing, redox and free radical reactions, for example.
    [Show full text]