Protection of C5-Sugars in Oxidation Process Development Master's
Total Page:16
File Type:pdf, Size:1020Kb
Lappeenranta University of Technology LUT School of Engineering Science Degree programme in Chemical and Process Engineering Kaukiainen, Antti Protection of C5-sugars in oxidation process development Master’s thesis 2018 Examiner: Professor Tuomas Koiranen Supervisors: Professor Tuomas Koiranen D. Sc. (Tech) Abayneh Demesa Abstract Lappeenranta University of Technology School of Engineering Science Degree Programme in Chemical and Process Engineering Antti Kaukiainen Protection of C5-sugars in oxidation process development Master’s Thesis 2018 Examiner: Professor Tuomas Koiranen Supervisors: Professor Tuomas Koiranen D. Sc. (Tech) Abayneh Demesa 93 pages, 32 figures, 13 tables, 3 appendices Keywords: carbohydrates, oxidation, protective groups, ultrasound, biorefining This study focuses on oxidation reaction of lactose selectively to galarose, which is lower sugar. Boric acid was used in the reaction as catalyst for lactose and protective group for galarose, and ultrasound was used to intensify the reaction. The first aim was to study parameter changes to make the reaction as efficient as possible. The second objective was to find more general applications for such oxidation process. The literature part gives background for protective groups, ultrasound processes and use of carbohydrates. The experimental part presents the experiments on the reaction. The reactor, experiment conditions and analysis method for HPLC are described. The main experimental results are presented in conversion of lactose and yield and selectivity of galarose. The discussion part highlights important results, show possible applications and gives recommendations for further studies on the subject. The increases in temperature and boric acid concentration gave positive results in the experiments. The use of ultrasound was also found out to be beneficial for the reaction, especially as it enable use of milder conditions like reduction of H2O2 concentration while giving good results. The best intensified results gave galarose at 95 % selectivity. Based on the experimental results the reaction works well already in 10 min processing with the sonication, and it should be developed further. Some possible applications for the process were given. II Graphic abstract III Tiivistelmä Lappeenrannan teknillinen yliopisto School of Engineering Science Kemiantekniikan koulutusohjelma Antti Kaukiainen Viisihiilisten sokerien suojaus hapetus prosessin kehityksessä Diplomityö 2018 Tarkastaja: Professori Tuomas Koiranen Ohjaajat: Professori Tuomas Koiranen TkT Abayneh Demesa 93 sivua, 32 kuvaajaa, 13 taulukkoa, 3 liitettä Avainsanat: hiilihydraatit, hapetus, suojaryhmät, ultraääni, biojalostus Tämä työ keskittyy tutkimaan laktoosin selektiivistä hapetusreaktiota galaroosiksi, joka on alempi sokeri. Boorihappo toimi katalyyttinä laktoosille ja suojaryhmänä galaroosille, ja ultraääntä käytettiin reaktion tehostamisessa. Ensimmäinen tavoite oli tutkia reaktion parametreja sen saamiseksi mahdollisimman tehokkaaksi. Toinen tavoite oli löytää yleisempiä sovelluskohteita kyseiselle hapetusprosessille. Työn kirjallisuusosa taustoittaa suojaryhmien, ultraääniprosessien sekä hiilihydraattien käyttöä. Kokeellinen osa esittelee reaktiolle tehdyt kokeet. Käytetty reaktori, koeolosuhteet ja analyysimenetelmä nestekromatografialla on kuvailtuna. Tulokset on esitetty laktoosin konversiona ja galaroosin saantona sekä selektiivisyytenä. Työn keskusteluosa tuo esiin tärkeimmät koetulokset, sekä esittää sovelluskohteita ja suosituksia lisätutkimuksille. Lämpötilan ja boorihapon konsentraation nostolla oli kokeissa positiivisia vaikutuksia. Ultraäänen käyttö havaittiin reaktiossa hyödylliseksi, sillä se erityisesti mahdollisti hyvien koetulosten saamisen miedommissa koeolosuhteissa, kuten vetyperoksidin konsentraatiota laskemalla. Paras ultraäänellä tehostettu tulos tuotti galaroosia 95 % selektiivisyydellä. Kokeellisten tulosten perusteella reaktio toimii jo 10 minuutin prosessoinnissa ultraäänen vaikutuksessa, ja sitä tulisi kehittää eteenpäin. Muutamia sovelluskohteita on esitelty. IV Acknowledgements The research was done at LUT’s Department of Chemical Engineering in Lappeenranta. The project was done in three parts; it was started in summer 2017, then continued in early spring of spring 2018 and finally continued and brought to end in early autumn 2018. For first and foremost, I want to sincerely thank Professor Tuomas Koiranen for his work on the thesis project. During it we have not always agreed on everything, but I judge that I have been always treated fairly. I am also really grateful for the flexibility in the project, so that I was capable of starting the thesis project early enough and also able to work on some other important projects alongside this thesis. He has shown patience towards me that I want to thank him for. I am also grateful that he was able to take so much time for our meetings on the thesis and to give me ideas what to include in the thesis. I want to also thank Abayneh Demesa for his part in the project. His assistance in the HPLC analysis was integral for the progress of the project, and I am really grateful that he was able to help me even during summer weekend evenings and early mornings. His advice was also valuable. His kindness and encouragement helped me during the times that I was myself doubting the success of the project. I want to also thank the other staff in the Department of Chemical Engineering at LUT. These include especially Tuomas Nevalainen, Eero Kaipainen, Liisa Puro, Kari Vahteristo and Maaret Paakkunainen. They gave me help in various things both big and small that came along the project. Finally I want to thank my friends and family for the interest they have shown towards my thesis project, and for the support that I have got outside of it. Antti Kaukiainen Lappeenranta (Finland), 12th of November 2018 V Contents Abstract ............................................................................................................................. II Graphic abstract .............................................................................................................. III Tiivistelmä ...................................................................................................................... IV Acknowledgements .......................................................................................................... V Contents .......................................................................................................................... VI Acronyms ......................................................................................................................... X LITERATURE REVIEW ................................................................................................. 1 1. Introduction .............................................................................................................. 1 2. Protective groups ...................................................................................................... 3 2.1. General description of protective groups ........................................................... 3 2.2. Selection of protective groups ........................................................................... 5 2.3. Critiques and alternatives ................................................................................. 10 2.4. Boron acids as protective group ....................................................................... 11 3. Ultrasound assisted reactions ................................................................................. 14 3.1. Description ....................................................................................................... 14 3.2. Cavitation and bubble collapse ........................................................................ 15 3.3. Chemical and physical effects ......................................................................... 18 3.4. Operating parameters ....................................................................................... 21 3.5. Sonochemical reactors ..................................................................................... 22 VI 3.6. Combination of ultrasound with other intensification methods ....................... 25 3.7. Applications of ultrasound ............................................................................... 26 3.8. Development .................................................................................................... 28 4. Carbohydrates in industrial use .............................................................................. 29 4.1. Carbohydrate sources ....................................................................................... 29 4.2. Application to industry .................................................................................... 32 EXPERIMENTAL ......................................................................................................... 35 5. Conventional batch reactor experiments ................................................................ 35 5.1. Experiment setup ............................................................................................. 35 5.2. Materials used .................................................................................................. 39 5.3. Conventional experiments taken ...................................................................... 39 5.4. Sample pre-treatment ......................................................................................