A Monographic Study of Sweet- Potato Diseases and Their Control
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Texas Root Rot Compiled by Chris Anderson (NSW DPI)
Fact sheet Texas root rot Compiled by Chris Anderson (NSW DPI) What is Texas root rot? Texas root rot, caused by the fungus Phymatotrichopsis omnivora, is one of the most destructive fungal plant diseases. It is a soil-borne fungus that attacks the roots of susceptible plants. It causes sudden wilt and death of affected plants, usually during the warmer months. Texas root rot affects over 2000 species of plants. It is an important disease of cotton as well as alfalfa, Chris Anderson, I&I NSW grapes, fruit trees, and many ornamentals. Cotton plants infected with Texas root rot fungus, which have developed yellow, wilting leaves What does it look like? Plants initially wilt during hot weather as the rotted roots are unable to take up enough water and the stem may become girdled at soil level. Soon after this the plant will die. The dead leaves usually remain attached to the plant. At this stage, the roots are dead and their surface is covered with a network of white to tan fungal strands. Affected areas expand to form circular patches of dead plants. What can it be confused with? Chris Anderson, I&I NSW Tractor driver’s view of severely damaged cotton field Sudden wilt, Fusarium wilt and lightning strike. What should I look for? In the field, look for patches of dead and dying plants (often with the dead leaves still attached). Patches may expand in a circular pattern during warm weather as the fungus spreads through the soil from plant to plant. Dead plants should be pulled up and examined for the presence of white to tan fungal strands on the roots and girdling of the stem at ground level. -
Modified Atmosphere Packaging of Fresh -Cut Sweetpotatoes
Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 2000 Modified Atmosphere Packaging of Fresh -Cut Sweetpotatoes. Elif Erturk Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Erturk, Elif, "Modified Atmosphere Packaging of Fresh -Cut Sweetpotatoes." (2000). LSU Historical Dissertations and Theses. 7352. https://digitalcommons.lsu.edu/gradschool_disstheses/7352 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. -
Missouri Produce Growers Bulletin a Publication of University of Missouri SEPTEMBER 2020
Missouri Produce Growers Bulletin A Publication of University of Missouri SEPTEMBER 2020 Sweet Potato Harvest, Curing and Storage Ramón Arancibia Sweet potato [Ipomoea batatas (L.)] When to harvest? market, however, can sell all sizes as harvest is approaching, so this Sweet potato storage roots grow as fresh sweet potato, so they may delay article will review practices and long as conditions (temperature and harvest to get the highest yield, but recommendations for sweet potato moisture) are favorable, so they never when soil temperatures fall below harvest, curing and storage for produce really “mature” or “ripen”. Therefore, 60ºF, sweet potato stops growing. growers in Missouri. Sweet potato is a the highest proportion of U.S. No.1 Furthermore, sweet potatoes cannot tropical, warm-season perennial crop size (table 1) usually determines time tolerate freezing, so harvest them before originated in South America (known of harvest because of the fresh market the first freeze for best quality. as batata or camote), but grown as value. Small growers with direct sale an annual in the U.S. It is a member of the morning glory family and its Table 1 Excerpt from the U.S. Standards for Grades of Sweet Potatoes. commercial part is the enlarged storage roots. It is not a “yam”. This term is Grade Standard Size used mainly for marketing purposes. The true “yam” (Dioscorea spp.) is a completely different plant species from a U.S. Consists of sweet potatoes of 1. Maximum diameter shall be not one type which are firm, fairly more than 3-1/2 inches. different plant classification family. -
Cotton Root Rot (Phymatotrichopsis Root Rot) and Its Management
PLPA-FC010-2016 COTTON ROOT ROT (PHYMATOTRICHOPSIS ROOT ROT) AND ITS MANAGEMENT Phymatotrichopsis root rot (also known as cotton root rot, Phymatotrichum root rot, Texas root rot and Ozonium root There is white to brown fungal growth on the surface of rot) is a major fungal disease of cotton occurring within large main roots near the lower stem, consisting of strands areas of Texas and Arizona, causing annual losses in Texas and a loose, cottony growth just below the soil surface alone of up to $29 million. The causal fungus is soilborne (Fig. 3). and has a host range of more than 1800 dicot plants. This disease only occurs in the southwestern United States and several northern states of Mexico. There has been no expansion of geographic range of the disease within North America. Diagnosis and Impact The disease develops late in the spring or early summer, as soil temperatures approach 82°F. About a day before the onset of visible symptoms , the leaves of infected plants feel noticeably hotter than surrounding, non-infected plants. The Fig. 3 Growth of cotton root rot fungus on root and first visible symptom is wilting (Fig. 1), which becomes base of stem. permanent by the third day, Wilt is usually seen when plants are flowering, sometimes earlier in the season, but not when plants are seedlings. A large number of plants may wilt simultaneously, but even within an affected area, wilting among plants is not simultaneous, sometimes occurring weeks apart. It is also possible to see non- symptomatic plants surrounded by diseased plants. -
Phymatotrichum Omni- Vorum
PERSISTENT STRANDS OF THE COTTON ROOT-ROT FUNGUS IN TEXAS' By HoMHR C. MCNAMARA, associate agronomist^ and R. E. WESTER and K. C. GuNN, assistant scientific aids, Division of Cotton and Other Fiber Crops and Diseases, Bureau of Plant Industry, United States Department of Agriculture INTRODUCTION The ability of the cotton root-rot fungus (Phymatotrichum omni- vorum (Shear) Dug.) (2) ^ to remain in the soil in a viable and infec- tious condition for a period of years, even when the fields are planted to nonsusceptible crops or kept in clean fallow, has been a problem of much concern to all mvestigators of this disease. Further observa- tions on the ability of this fungus to perpetuate itself in the soil for long periods were made possible during the summer of 1932, when plots that had been in clean fallow for several years or planted to nonsusceptible crops were returned to cotton. Even after a 5-year clean fallow, several centers of infection appeared in a half-acre plot during July and August. In the planning of experimental work on the control of cotton root rot, the nature and stage of the organism that is being dealt with must be considered. Clean fallows covering from 1 to 5 years and the use of nonsusceptible crops on infested areas have furnished con- ditions under which it has been possible to study the fungus in the soil on both cropped and uncropped plots. The colloidal nature of the Wilson and Houston clay soils presented special opportunities for studying the fungus in its natural state of growth. -
Septal Characteristics and General Ultrastructure of Phymatotrichum Omnivorum (Shear) Duggar
Septal characteristics and general ultrastructure of Phymatotrichum omnivorum (Shear) Duggar Item Type text; Thesis-Reproduction (electronic) Authors Dong, Sophie, 1952- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 28/09/2021 18:41:54 Link to Item http://hdl.handle.net/10150/348212 SEPTAL CHARACTERISTICS AND GENERAL ULTRASTRUCTURE OF PRYMATOTRICHUM OMNIVORUM (SHEAR) DUGGAR by - Sophie Dong A Thesis Submitted to the Faculty of the DEPARTMENT OF PLANT PATHOLOGY In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 1 9 7 7 STATEMENT BY AUTHOR This thesis has. been submitted in partial fulfillment of re quirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library, Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judg ment the proposed use of the material is in the interests of scholar ship, In all other instances, however, permission must be obtained from the author. SIGNED s_ I?- APPROVED BY THESIS DIRECTOR This thesis has been approved on the date shown below: g / W 7 7 H. -
Sweet Potato Technical Manual Sweet Potato Technical Manual
p u o Sweet Potato r G y t Technical i d o m m Manual o C r e b u T d a n t o o C A R D I R CTA | Sweet Potato Technical Manual Sweet Potato Technical Manual CARDI Root and Tuber Commodity Group Caribbean Agricultural Research and Development Institute (CARDI) April 2010 iii | Sweet Potato Technical Manual The Caribbean Agricultural Research and Development Institute (CARDI) was founded in 1975 as an autonomous institution of 12 member countries of the Caribbean Community (CARICOM). The member countries are: Antigua and Barbuda, Barbados, Belize, Dominica, Grenada, Guyana, Jamaica, Montserrat, St. Kitts and Nevis, St. Lucia, St. Vincent and the Grenadines, Trinidad and Tobago. The Institute is governed by a Governing Body comprised of the Ministers responsible for agriculture and a Board of Directors comprised of Representatives nominated by member govern- ments and key collaborating agencies. CARDI P.O. Bag 212, Frederick Hardy Building University of the West Indies St Augustine Campus, St. Augustine Trinidad and Tobago, W.I. The publication of this document was made possible through the kind courtesy of the Technical Centre for Agricultural and Rural Cooperation (CTA). CTA was established in 1983 under the Lomé Convention between the African, Caribbean and Pacific (ACP) Group of States and the Europen Union (EU) Member States. Since 2000 it has oper- ated within the framework of the ACP-EU Cotonou Agreement. CTA, Postbus 380, 6700 AJ Wageningen, The Netherlands Contributing Authors: CARDI Root and Tuber Commodity Group Ms Pathleen Titus, -
Texas Root Rot FS Viticulture
Fact sheet Texas root rot What is it? Texas root rot, caused by the fungus Phymatotrichum omnivora, is one of the most destructive fungal plant diseases. It causes sudden wilt and death of affected plants, usually during the warmer months. It is a soil-borne fungus that attacks the roots of susceptible plants. Texas root rot affects over 2000 species of plants including fruit and nut trees, oleander and roses. This is an important disease of cotton, alfalfa, grapes, fruit trees, and many ornamentals. All varieties of grapes are susceptible, but Vitis vinifera varieties seem to be exceptionally susceptible. Department of Plant Pathology, University of Arizona Plant Pathology,Department of of University © What do I look for? Grapevines affected by Texas root rot As the damaged roots are unable to take up enough water to maintain the plant in warm weather, symptoms only become obvious during the summer. The leaves wilt and the plant dies. University of Arizona of University The dead leaves usually remain attached to the plant. At this stage, the roots are dead and their surface is covered with a network of tan fungal strands. Affected areas expand to form circular areas of dead plants. Department of Plant Pathology,Department of © Mycelial strands of Texas root rot How does it spread? Locally, the disease spreads from infected to healthy roots via fungal strands which grow through the soil. Long-distance spread most often occurs through the movement of soil or roots of infected host plants. The fungus does not spread readily from one location to another. Bugwood.org Where is it found? S.D. -
Cotton Root Rot
Cotton Root Rot plantdiseasehandbook.tamu.edu /problems-treatments/problems-affecting-multiple-crops/cotton-root-rot/ This fungal disease is also known as Phymatotrichum root rot, Texas root rot and Ozonium root rot. It is caused by one of the most destructive fungal plant disease organisms, Phymatotrichum omnivorum, that can attack more than 2,000 species of plants. However, monocotyledonous plants (grasses, etc.) have field resistance. In Texas, the disease is economically important in cotton, ornamentals and fruit, nut and shade trees. The fungus is prevalent in calcareous clay loam soils with a pH range of 7.0 to 8.5 and in areas with high summer temperatures. Therefore, the disease is limited to the Southwestern United States. Cotton root rot has been reported in Texas counties from the Red River to the Rio Grande and from Tom Green County to the Neches River. Disease Symptoms – Symptoms are most likely to occur from June through September when soil temperatures reach 28 °C (82 °F). The first symptoms are slight yellowing or bronzing of the leaves. The upper-most leaves wilt within 24 to 48 hours after bronzing, followed by wilting of the lower leaves within 72 hours. Permanent wilt occurs by the third day, followed by death. The leaves remain firmly attached to the plant. Affected plants die suddenly, often after excellent growth. Trees and shrubs may die more slowly. Roots are usually extensively invaded by the fungus by the time wilting occurs. Affected plants can be pulled from the soil with little effort. Root bark is decayed and brownish, and bronze colored wooly strands of the fungus are frequently apparent on the root surface. -
Phymatotrichum Root Rot
Oklahoma Cooperative Extension Service EPP-7621 Phymatotrichum Root Rot John P. Damicone State Extension Plant Pathology Specialist Oklahoma Cooperative Extension Fact Sheets are also available on our website at: Phymatotrichum root rot, also known as cotton root rot http://osufacts.okstate.edu and Texas root rot, is caused by the fungus Phymatotrichopsis ominvorum. The fungus attacks more than 2,000 species of broadleaf plants, but does not affect monocots (grasses). The disease is economically important to cotton, alfalfa, peanut, sclerotia. Sclerotia have been recovered from soil at depths ornamental shrubs, and fruit, nut and shade trees. of up to 8 feet. In the summer, mycelium from germinating The fungus is capable of persisting for a long period sclerotia or from fungal fragments overwintering on roots of of time in the soil. It is most destructive in soils that are of perennial plants infects nearby roots. The fungus enters the limestone origin (calcareous), highly alkaline (high pH), and roots of infected plants, decaying the bark and penetrating the are exposed to high summer temperatures. Therefore, soil woody portions of the root. Nutrients derived from infected type and cold temperatures limit the geographic distribution plants support the growth of the fungus through the soil to of this disease to areas in the southwestern and south cen- infect new plants. The function of spores produced on spore tral United States. In Oklahoma, Phymatotrichum root rot is mats in the disease cycle is unknown. mostly restricted to the southern tier of counties in the Red The fungus appears to be indigenous to certain fields and River Valley. -
Euonymus Fortunei
Euonymus fortunei INTRODUCTORY DISTRIBUTION AND OCCURRENCE BOTANICAL AND ECOLOGICAL CHARACTERISTICS FIRE EFFECTS AND MANAGEMENT MANAGEMENT CONSIDERATIONS APPENDIX: FIRE REGIME TABLE REFERENCES INTRODUCTORY AUTHORSHIP AND CITATION FEIS ABBREVIATION NRCS PLANT CODE COMMON NAMES TAXONOMY SYNONYMS LIFE FORM FEDERAL LEGAL STATUS OTHER STATUS Photo by Keith Langdon, National Park Service, Bugwood.org AUTHORSHIP AND CITATION: Zouhar, Kris. 2009. Euonymus fortunei. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/ [ 2010, January 25]. FEIS ABBREVIATION: EUOFOR NRCS PLANT CODE [69]: EUFO5 EUFOF EUFOR2 COMMON NAMES: wintercreeper Chinese spindle-tree climbing euonymus TAXONOMY: The scientific name of wintercreeper is Euonymus fortunei (Turcz.) Hand.-Maz. (Celastraceae) [3,18,22,33,42,46,73,76]. Although not distinguished in local floras, Kartesz [33] recognizes 2 varieties in North America: Euonymus fortunei (Turcz.) Hand.-Maz. var. fortunei Euonymus fortunei (Turcz.) Hand.-Maz. var. radicans (Sieb. ex Miq.) Rehd. A review by Dirr [17] describes another variety in the United States, E. f. var. coloratus, which he says is often listed as the cultivar 'Coloratus'. Dirr [17] describes 51 cultivars of E. fortunei. A review by Blakelock [2] describes several varieties and forms of E. fortunei, occurring mostly in Asia or as cultivars, distinguished primarily by leaf characteristics. The Flora of China states "Numerous taxa have been named within the E. fortunei complex but many of these refer to cultivated plants and are best treated as cultivars" [76]. In this review, E. fortunei is referred to as "wintercreeper", varieties are referred to by scientific name, and cultivars, when identified as such in the literature, are referred to by cultivar name in single quotation marks (e.g., 'Emerald and Gold'). -
The Sweet Potato; a Handbook for the Practical Grower
!e oenes, H, Baili?" XLbc IRural Science Series L. H. BAILEY, Editor THE SWEET POTATO Edited by L. II. Bailey The Soil. King. The Sprayikg of Plants. Lodeman. Milk and Its Products. Wiiiff. Enlarged and Revised. The Fertility of the Land. Roberts. The Principles of Fruit-growing. BwUey. 20th Edition, Revisfd. Bush-fruits. Card. Revised. Fertilizers. Voorhees. Revised. The Principles of Agriculture. Bailey. Revised. Irrigation and Drainage. King. The FaRiMSTEAd. Roberts. Rural Wealth and Welfare. FairchUd. The Principles of Vegetable-gardening. Bailey. Farm Poultry. Watson. Enlarged and Revised. The Feeding of Animals. Jordan. (Now Rural Text- Book.) The Farmer's Business Handbook. Roberts. The Diseases of Animals. Mayo. The Horse. Roberts. Ho\v TO Choose a Farm. Hunt. Forage Crops. Voorhees. Bacteria in Relation to Country Life. Lipman. The Nursery-book. Bailey. (Now Rural Manual Series.) Plant-breeding. Bailey and Gilbert Revised. The Forcing-book. Bniley. The Pruning-book. Bailey. (Now Rural Manual Series.) Fruit Growing in Arid Regions. Paddock and Whipple. Rural Hygiene. Oyden. Dry-farming. Widtsoe. Law for the American Farmer. Green. Farm Boys and Girls. McEeever. The Training and Breaking of Horses. Harper. Sheep-farming in North America. Craig. Cooperation in Agriculture. Powell. The Faum Woodlot. Cheyney and Wentlvng. Household Insects. Berrick. Citrus Fruits. Coit. Principles of Rural Credits. Uorman. Beekeeping. Phillips. Subtropical Vegetable-gardening. Rolfs. Turf for Golf Courses. Piper and Oakley. The Pot.\to. Gilbert. Strawberry-growing. Fletcher. Western Live-stock Management. Porter. Peach-growing. Gould. The Sugar-beet in .Vmerica. Harris. Pork-production. Smith. The Development of Institutions Undee Ibbigation. Thomas. Landscape-gardening. Simonds.