<I>Phymatotrichopsis Omnivora</I>

Total Page:16

File Type:pdf, Size:1020Kb

<I>Phymatotrichopsis Omnivora</I> Persoonia 22, 2009: 63 –74 www.persoonia.org RESEARCH ARTICLE doi:10.3767/003158509X430930 Molecular systematics of the cotton root rot pathogen, Phymatotrichopsis omnivora S.M. Marek1, K. Hansen2, M. Romanish3, 4, R.G. Thorn3 Key words Abstract Cotton root rot is an important soilborne disease of cotton and numerous dicot plants in the south-western United States and Mexico. The causal organism, Phymatotrichopsis omnivora (= Phymatotrichum omnivorum), is Ozonium known only as an asexual, holoanamorphic (mitosporic) fungus, and produces conidia resembling those of Botrytis. Pezizales Although the corticoid basidiomycetes Phanerochaete omnivora (Polyporales) and Sistotrema brinkmannii (Cantharel­ Phylogeny lales; both Agaricomycetes) have been suggested as teleomorphs of Phymatotrichopsis omnivora, phylogenetic Phymatotrichum root rot analyses of nuclear small- and large-subunit ribosomal DNA and subunit 2 of RNA polymerase II from multiple Pulchromyces fimicola isolates indicate that it is neither a basidiomycete nor closely related to other species of Botrytis (Sclerotiniaceae, rDNA Leotiomycetes). Phymatotrichopsis omnivora is a member of the family Rhizinaceae, Pezizales (Ascomycota: RPB2 Pezizomycetes) allied to Psilopezia and Rhizina. Texas Article info Received: 29 May 2008; Accepted: 23 February 2009; Published: 11 March 2009. INTRODUCTION Taxonomy The confused taxonomic history of the cotton root rot fungus A devastating disease of cotton in Texas, which caused large goes back more than a century. The causal agent was first numbers of plants in affected areas to suddenly wilt and die, identified by W.G. Farlow as Ozonium auricomum Link, based was first reported in the 1880s (Pammel 1888, 1889). The on nonsporulating mycelium associated with diseased roots disease has been variably called cotton root rot (after the (Pammel 1888). However, this name now applies to the asexual major crop host), Texas root rot (for the centre of distribution), state of Coprinellus (Coprinus) domesticus and related species or Ozonium or Phymatotrichum root rot (for the former names of the causal organism). It has since remained a considerable (Shear 1907, Orton & Watling 1979, Redhead et al. 2001). economic concern, causing up to $ 100 million in annual losses The cotton root rot fungus was described as a new species of to the US cotton crop alone (based on disease loss estimates Ozonium, O. omnivorum Shear (1907), again based on non- and price data for 1980–2008; provided by the National Cotton sporulating mycelium associated with diseased roots. Later, a Council of America, www.cotton.org). The average loss of raw conidial stage was found forming sporemats on soil surrounding cotton fibre yield has been estimated to be 3.5 % in Texas and diseased plants and was named Phymatotrichum omnivorum 2.2 % in Arizona, with losses ranging from 8–13 % in severely (Shear) Duggar (1916). infested areas (Kenerley & Jeger 1992). The causal agent is A hydnoid homobasidiomycete fruiting body was found asso- a soilborne fungus known as Phymatotrichopsis omnivora ciated with diseased plants and named Hydnum omnivorum or, more commonly, Phymatotrichum omnivorum (Streets & Shear (1925), once again based on a different type specimen Bloss 1973, Kenerley & Jeger 1992, Kirkpatrick & Rothrock (C.L. Shear 5267, BPI 259732) from that of Ozonium om­ 2001; see below for taxonomic authorities). This species is nivorum or Phymatotrichum omnivorum. Later, a corticioid capable of infecting more than 2 000 species of dicots (Streets homobasidiomycete fruiting body was discovered in a culture & Bloss 1973), arguably the largest host range of any plant of Phymatotrichum omnivorum and identified as Sistotrema pathogen. It also causes severe losses in alfalfa, vegetable brinkmannii (Baniecki & Bloss 1969). Basidiospores of the crops, grapes, and fruit and nut orchards throughout its range, Sistotrema failed to form the mycelium of Phymatotrichum, and which stretches from eastern Texas and southern Oklahoma Weresub & LeClair (1971) considered this report to be based west through Arizona and south into Mexico (Streets & Bloss on a homothallic culture contaminant. 1973). Generally, infected plants quickly wilt in the summer, and almost inevitably die, usually in large circular patches The type species of Phymatotrichum, P. gemellum Bonord., in the field (Fig. 1a, b). Below ground, the taproots of wilted was shown to be a member of Botrytis by Hennebert (1973). plants are rotted and usually covered with mycelial strands of Hennebert (1973) believed that the name Phymatotrichum the causal fungus (Fig. 1c). omnivorum should be attributed to Duggar alone since it was based on different specimens than examined by Shear (1907) 1 Department of Entomology and Plant Pathology, 127 Noble Research when he described Ozonium omnivorum, and because the Center, Oklahoma State University, Stillwater, OK 74078-3033, USA. 2 Harvard University Herbaria, 22 Divinity Ave., Cambridge, MA 02138, distinguishing features described by Duggar (the conidia) USA; Present address: Swedish Museum of Natural History, Department were not present in the type of Ozonium omnivorum (C.L. of Cryptogamic Botany, P.O. Box 50007, 104 05 Stockholm, Sweden. Shear 1447, BPI 455660). Phymatotrichum omnivorum was 3 Department of Biology, University of Western Ontario, London, Ontario, transferred to Phymatotrichopsis omnivora (Duggar) Hennebert N6A 5B7, Canada; corresponding author e-mail: [email protected]. 4 Present address: Department of Medical Genetics, University of British and Phymatotrichum fimicola Dring to Pulchromyces fimicola Columbia, Vancouver, BC, V5Z 1L3, Canada. (Dring) Hennebert. © 2009 Nationaal Herbarium Nederland & Centraalbureau voor Schimmelcultures You are free to share - to copy, distribute and transmit the work, under the following conditions: Attribution: You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work). Non-commercial: You may not use this work for commercial purposes. No derivative works: You may not alter, transform, or build upon this work. For any reuse or distribution, you must make clear to others the license terms of this work, which can be found at http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode. Any of the above conditions can be waived if you get permission from the copyright holder. Nothing in this license impairs or restricts the author’s moral rights. 64 Persoonia – Volume 22, 2009 3 -tub – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – β . RPB2 DQ470918 – – – AY641054 – AY500504 DQ247787 – – – DQ497613 – – – – – – – – – – – DQ470892 – – – DQ470891 AY641045 – – – – – – AF107810 – – DQ247785 – – DQ471123 – – – – AY500506 – – – – – – – bold LSU DQ168334 U42673 U42680 AF335118 AY544664/AF279398 U42684 AY500531 DQ247799 U42686 DQ220344 DQ220342 AY544655 AY544660 AY500526 DQ168335 – U42683 AY500530 U42694 AY307944 AY945860 AY945854 U42678 U42670/AY544667 DQ220329 AY945850 – AY544673 U42675 U42676 DQ062995 DQ167411 U42674 AF335120 AY500539 U42667/AY544665 DQ220374 AF279401 AY544654 AY500527 – AY544661 U42688 DQ168336 DQ220351 DQ220353 AY500534 U42689 DQ220358 DQ220363 AY500536 DQ646524 DQ220371 DQ220377 GenBank Accession Numbers GenBank ITS – – – – – – – – – – – – – – – – – – – – – – – – – – –,DQ220335 – – – – – – – – – – – – – – – – – – – – – – – – – – – SSU DQ062997 U42646 U42653 DQ646530 U42642/AY544708 U42657 Z30241 DQ247807 U42659 DQ646527 DQ646528 AY544699 AY544704 AY544720 – U53372 U42656 – U42666 AF104340 AF006311 AF104341 U42651 U42643/AY544711 AF104342 AF004948 DQ646526 AY544717 U42648 U42649 DQ063000 DQ646532 U42647 DQ646535 DQ646536 U42641/AY544709 AF006314 Z27393 AY544698 AY544721 U53373 AY544705 U42661 AF104665 DQ062996 DQ646529 U53380 U42662 DQ646531 DQ646533 DQ646534 DQ646537 DQ646538 AF061720 2 ) 1 CBS 626.71 1889 (OSC) JMT NSW 7196 (OSC) (FH) 18510 PAN 10968 ATCC 22335, SSU+LSU: MV3 (dubl. OSC 100041), LSU+RPB2: SSU: NRRL RF 533 (OSC) SSU: UME 29218, LSU: KS-94-4 (C) DJ053103-2 12617 (OSC) JMT KH.03.61 (FH) Trappe 18034 (FH, dubl. OSC) Trappe OSC 100019 (OSC) Vouchers, Isolates, Strains (Herbarium Vouchers, OSC 100026 KH 00.008 (C) (dubl. OSC 100079) CBS 389.68 RK 95.55 (O) 13020 (OSC) JMT Rana 79.049 (C) 12993 (OSC) JMT Keller & K.C. Rudy s.n. (FH) SSU: mh 694 (FH), LSU: H.W. SSU: mh 686 (FH), LSU: 1D-D5 (FH) (FH), LSU: RK 95.12 (Herb. Roy Kristiansen) SSU: ‘Norway’ NSW 4498 (MICH) 22213) OSC 100045 (dubl. NRRL mh 669 (FH) mh 101 (FH) (FH, dubl. OSC) 11775 Trappe OSC 100068 20925 (dubl. CBS 335.73) NRRL NSW 6494 (OSC) CBS 344.73 KS-94-005 (C) 7205 (OSC) JMT All-94-8 (C) KH.01.06 (C) 22447 (dubl. OSC 100042) 25405, SSU+LSU: NRRL SSU+LSU+RPB2: NRRL mh PR61 (FH) 176 (F) SSU: UME 29192 (U), LSU: JP OSC 100018 KH.02.005 (C) (dubl. OSC 100082) ARON 2167 (O) KH04282003-4 (dubl. OSC 100034) 7014 (OSC) JMT SSU: _ (FH), LSU: C F-49793 (C) PR-5954 (FH) KH.03.100 (FH) 00.027 (C) ARON 2102, LSU+RPB2: JHP SSU: 14825 (OSC) JMT KH.03.54 (FH) CBS 782.70 KH.00.07 (C) KH.03.43 (FH) KH.03.156 (FH) ARON 2690 (U), LSU: KH.03.55 (FH) SSU: gilkeyae s f. cervina sp. compressa Species used in molecular phylogenetic analyses, specimen information and GenBank accession numbers. New sequences generated for this study are indicated with GenBank numbers in sp. cf. cf. Table 1 Table Aleuria aurantia Anthracobia Ascobolus carbonarius Ascobolus crenulatus Ascodesmis nigricans Ascodesmis sphaerospora Balsamia magnata Barssia oregonensis
Recommended publications
  • Ectomycorrhizal Communities of Quercus Garryana Are Similar on Serpentine and Nonserpentine Soils
    Plant Soil (2009) 315:185–194 DOI 10.1007/s11104-008-9743-9 REGULAR ARTICLE Ectomycorrhizal communities of Quercus garryana are similar on serpentine and nonserpentine soils A. Mariah Moser & Jonathan L. Frank & Jad A. D’Allura & Darlene Southworth Received: 17 March 2008 /Accepted: 1 August 2008 / Published online: 16 August 2008 # The Author(s) 2008. This article is published with open access at Springerlink.com Abstract Serpentine soils, rich in iron, magnesium, that ectomycorrhizal species associated with Q. and heavy metals, select for unique plant communities garryana exhibit edaphic tolerance and were neither and for endemic species. Because mycorrhizal fungi reduced nor excluded by serpentinite or peridotite mediate the interaction between plants and soil, we parent materials. hypothesized that distinct ectomycorrhizal fungi would colonize Quercus garryana roots on serpentine Keywords Ectomycorrhiza . Heavy metal tolerance . and nonserpentine soils. We sampled roots of Q. Josephine ophiolite . Non-metric multidimensional garryana on serpentine soils at two locations in the scaling . Oaks . Quercus garryana . Serpentine Klamath-Siskiyou Mountains of southwestern Oregon and identified ectomycorrhizas by morphological and molecular methods. The same six most abundant and Introduction most frequent mycorrhizal species, Cenococcum geo- philum, Tuber candidum, Genea harknessii, Tomen- The ectomycorrhizal community of Quercus gar- tella sp., Sebacina sp., and Inocybe sp., were found ryana Dougl. ex Hook. exhibits rich biodiversity on serpentine and nonserpentine soils. Based on (Valentine et al. 2004). On alluvial soils in Southern similarities calculated using the Sørensen index in Oregon, roots formed mycorrhizas with 40 fungal Non-metric Multidimensional Scaling, mycorrhizal species; the most common were Cenococcum geo- communities on serpentine and nonserpentine soils philum and Tuber candidum.
    [Show full text]
  • Chorioactidaceae: a New Family in the Pezizales (Ascomycota) with Four Genera
    mycological research 112 (2008) 513–527 journal homepage: www.elsevier.com/locate/mycres Chorioactidaceae: a new family in the Pezizales (Ascomycota) with four genera Donald H. PFISTER*, Caroline SLATER, Karen HANSENy Harvard University Herbaria – Farlow Herbarium of Cryptogamic Botany, Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138, USA article info abstract Article history: Molecular phylogenetic and comparative morphological studies provide evidence for the Received 15 June 2007 recognition of a new family, Chorioactidaceae, in the Pezizales. Four genera are placed in Received in revised form the family: Chorioactis, Desmazierella, Neournula, and Wolfina. Based on parsimony, like- 1 November 2007 lihood, and Bayesian analyses of LSU, SSU, and RPB2 sequence data, Chorioactidaceae repre- Accepted 29 November 2007 sents a sister clade to the Sarcosomataceae, to which some of these taxa were previously Corresponding Editor: referred. Morphologically these genera are similar in pigmentation, excipular construction, H. Thorsten Lumbsch and asci, which mostly have terminal opercula and rounded, sometimes forked, bases without croziers. Ascospores have cyanophilic walls or cyanophilic surface ornamentation Keywords: in the form of ridges or warts. So far as is known the ascospores and the cells of the LSU paraphyses of all species are multinucleate. The six species recognized in these four genera RPB2 all have limited geographical distributions in the northern hemisphere. Sarcoscyphaceae ª 2007 The British Mycological Society. Published by Elsevier Ltd. All rights reserved. Sarcosomataceae SSU Introduction indicated a relationship of these taxa to the Sarcosomataceae and discussed the group as the Chorioactis clade. Only six spe- The Pezizales, operculate cup-fungi, have been put on rela- cies are assigned to these genera, most of which are infre- tively stable phylogenetic footing as summarized by Hansen quently collected.
    [Show full text]
  • Biological Diversity
    From the Editors’ Desk….. Biodiversity, which is defined as the variety and variability among living organisms and the ecological complexes in which they occur, is measured at three levels – the gene, the species, and the ecosystem. Forest is a key element of our terrestrial ecological systems. They comprise tree- dominated vegetative associations with an innate complexity, inherent diversity, and serve as a renewable resource base as well as habitat for a myriad of life forms. Forests render numerous goods and services, and maintain life-support systems so essential for life on earth. India in its geographical area includes 1.8% of forest area according to the Forest Survey of India (2000). The forests cover an actual area of 63.73 million ha (19.39%) and consist of 37.74 million ha of dense forests, 25.51 million ha of open forest and 0.487 million ha of mangroves, apart from 5.19 million ha of scrub and comprises 16 major forest groups (MoEF, 2002). India has a rich and varied heritage of biodiversity covering ten biogeographical zones, the trans-Himalayan, the Himalayan, the Indian desert, the semi-arid zone(s), the Western Ghats, the Deccan Peninsula, the Gangetic Plain, North-East India, and the islands and coasts (Rodgers; Panwar and Mathur, 2000). India is rich at all levels of biodiversity and is one of the 12 megadiversity countries in the world. India’s wide range of climatic and topographical features has resulted in a high level of ecosystem diversity encompassing forests, wetlands, grasslands, deserts, coastal and marine ecosystems, each with a unique assemblage of species (MoEF, 2002).
    [Show full text]
  • Appendix K. Survey and Manage Species Persistence Evaluation
    Appendix K. Survey and Manage Species Persistence Evaluation Establishment of the 95-foot wide construction corridor and TEWAs would likely remove individuals of H. caeruleus and modify microclimate conditions around individuals that are not removed. The removal of forests and host trees and disturbance to soil could negatively affect H. caeruleus in adjacent areas by removing its habitat, disturbing the roots of host trees, and affecting its mycorrhizal association with the trees, potentially affecting site persistence. Restored portions of the corridor and TEWAs would be dominated by early seral vegetation for approximately 30 years, which would result in long-term changes to habitat conditions. A 30-foot wide portion of the corridor would be maintained in low-growing vegetation for pipeline maintenance and would not provide habitat for the species during the life of the project. Hygrophorus caeruleus is not likely to persist at one of the sites in the project area because of the extent of impacts and the proximity of the recorded observation to the corridor. Hygrophorus caeruleus is likely to persist at the remaining three sites in the project area (MP 168.8 and MP 172.4 (north), and MP 172.5-172.7) because the majority of observations within the sites are more than 90 feet from the corridor, where direct effects are not anticipated and indirect effects are unlikely. The site at MP 168.8 is in a forested area on an east-facing slope, and a paved road occurs through the southeast part of the site. Four out of five observations are more than 90 feet southwest of the corridor and are not likely to be directly or indirectly affected by the PCGP Project based on the distance from the corridor, extent of forests surrounding the observations, and proximity to an existing open corridor (the road), indicating the species is likely resilient to edge- related effects at the site.
    [Show full text]
  • Peziza and Pezizaceae Inferred from Multiple Nuclear Genes: RPB2, -Tubulin, and LSU Rdna
    Molecular Phylogenetics and Evolution 36 (2005) 1–23 www.elsevier.com/locate/ympev Evolutionary relationships of the cup-fungus genus Peziza and Pezizaceae inferred from multiple nuclear genes: RPB2, -tubulin, and LSU rDNA Karen Hansen ¤, Katherine F. LoBuglio, Donald H. PWster Harvard University Herbaria, Cambridge, MA 02138, USA Received 5 May 2004; revised 17 December 2004 Available online 22 April 2005 Abstract To provide a robust phylogeny of Pezizaceae, partial sequences from two nuclear protein-coding genes, RPB2 (encoding the sec- ond largest subunit of RNA polymerase II) and -tubulin, were obtained from 69 and 72 specimens, respectively, to analyze with nuclear ribosomal large subunit RNA gene sequences (LSU). The three-gene data set includes 32 species of Peziza, and 27 species from nine additional epigeous and six hypogeous (truZe) pezizaceous genera. Analyses of the combined LSU, RPB2, and -tubulin data set using parsimony, maximum likelihood, and Bayesian approaches identify 14 Wne-scale lineages within Pezizaceae. Species of Peziza occur in eight of the lineages, spread among other genera of the family, conWrming the non-monophyly of the genus. Although parsimony analyses of the three-gene data set produced a nearly completely resolved strict consensus tree, with increased conWdence, relationships between the lineages are still resolved with mostly weak bootstrap support. Bayesian analyses of the three- gene data, however, show support for several more inclusive clades, mostly congruent with Bayesian analyses of RPB2. No strongly supported incongruence was found among phylogenies derived from the separate LSU, RPB2, and -tubulin data sets. The RPB2 region appeared to be the most informative single gene region based on resolution and clade support, and accounts for the greatest number of potentially parsimony informative characters within the combined data set, followed by the LSU and the -tubulin region.
    [Show full text]
  • Studies of the Laboulbeniomycetes: Diversity, Evolution, and Patterns of Speciation
    Studies of the Laboulbeniomycetes: Diversity, Evolution, and Patterns of Speciation The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:40049989 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA ! STUDIES OF THE LABOULBENIOMYCETES: DIVERSITY, EVOLUTION, AND PATTERNS OF SPECIATION A dissertation presented by DANNY HAELEWATERS to THE DEPARTMENT OF ORGANISMIC AND EVOLUTIONARY BIOLOGY in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Biology HARVARD UNIVERSITY Cambridge, Massachusetts April 2018 ! ! © 2018 – Danny Haelewaters All rights reserved. ! ! Dissertation Advisor: Professor Donald H. Pfister Danny Haelewaters STUDIES OF THE LABOULBENIOMYCETES: DIVERSITY, EVOLUTION, AND PATTERNS OF SPECIATION ABSTRACT CHAPTER 1: Laboulbeniales is one of the most morphologically and ecologically distinct orders of Ascomycota. These microscopic fungi are characterized by an ectoparasitic lifestyle on arthropods, determinate growth, lack of asexual state, high species richness and intractability to culture. DNA extraction and PCR amplification have proven difficult for multiple reasons. DNA isolation techniques and commercially available kits are tested enabling efficient and rapid genetic analysis of Laboulbeniales fungi. Success rates for the different techniques on different taxa are presented and discussed in the light of difficulties with micromanipulation, preservation techniques and negative results. CHAPTER 2: The class Laboulbeniomycetes comprises biotrophic parasites associated with arthropods and fungi.
    [Show full text]
  • Pezizales, Pyronemataceae), Is Described from Australia Pamela S
    Swainsona 31: 17–26 (2017) © 2017 Board of the Botanic Gardens & State Herbarium (Adelaide, South Australia) A new species of small black disc fungi, Smardaea australis (Pezizales, Pyronemataceae), is described from Australia Pamela S. Catcheside a,b, Samra Qaraghuli b & David E.A. Catcheside b a State Herbarium of South Australia, GPO Box 1047, Adelaide, South Australia 5001 Email: [email protected] b School of Biological Sciences, Flinders University, PO Box 2100, Adelaide, South Australia 5001 Email: [email protected], [email protected] Abstract: A new species, Smardaea australis P.S.Catches. & D.E.A.Catches. (Ascomycota, Pezizales, Pyronemataceae) is described and illustrated. This is the first record of the genus in Australia. The phylogeny of Smardaea and Marcelleina, genera of violaceous-black discomycetes having similar morphological traits, is discussed. Keywords: Fungi, discomycete, Pezizales, Smardaea, Marcelleina, Australia Introduction has dark coloured apothecia and globose ascospores, but differs morphologically from Smardaea in having Small black discomycetes are often difficult or impossible dark hairs on the excipulum. to identify on macro-morphological characters alone. Microscopic examination of receptacle and hymenial Marcelleina and Smardaea tissues has, until the relatively recent use of molecular Four genera of small black discomycetes with purple analysis, been the method of species and genus pigmentation, Greletia Donad., Pulparia P.Karst., determination. Marcelleina and Smardaea, had been separated by characters in part based on distribution of this Between 2001 and 2014 five collections of a small purple pigmentation, as well as on other microscopic black disc fungus with globose spores were made in characters.
    [Show full text]
  • A Taxonomic Study of the Coprophilous Ascomycetes Of
    Eastern Illinois University The Keep Masters Theses Student Theses & Publications 1971 A Taxonomic Study of the Coprophilous Ascomycetes of Southeastern Illinois Alan Douglas Parker Eastern Illinois University This research is a product of the graduate program in Botany at Eastern Illinois University. Find out more about the program. Recommended Citation Parker, Alan Douglas, "A Taxonomic Study of the Coprophilous Ascomycetes of Southeastern Illinois" (1971). Masters Theses. 3958. https://thekeep.eiu.edu/theses/3958 This is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Masters Theses by an authorized administrator of The Keep. For more information, please contact [email protected]. PA ER CERTIFICATE #2 f TO Graduate Degree Candidates who have written formal theses. SUBJECT: Permission to reproduce theses. Th' University Library is receiving a number of requests from other ins.litutions asking permission to reproduce dissertations for inclusion in their library holdings. Although no copyright laws are involved, we:feel that professional courtesy demands that permission be obtained frqm the author before we allow theses to be copied. Ple'ase sign one of the following statements. Bo9th Library of 'Eastern Illinois University has my permission to le�� my thesis to a reputable college or university for the purpose of copying it for inclusion in that institution's library or research hol�ings. Date Author I ��spectfully request Booth Library of Eastern Illinois University not al�pw my thesis be reproduced because � µ� 7 Date ILB1861.C57X P2381>C2/ A TAXONOMIC STUDY OF THE COPROPHILOUS ASCOMYCETES OF sou·rHEASTERN ILLINOIS (TITLE) BY ALAN DOUGLAS PARKER ......
    [Show full text]
  • The Macrofungi Checklist of Liguria (Italy): the Current Status of Surveys
    Posted November 2008. Summary published in MYCOTAXON 105: 167–170. 2008. The macrofungi checklist of Liguria (Italy): the current status of surveys MIRCA ZOTTI1*, ALFREDO VIZZINI 2, MIDO TRAVERSO3, FABRIZIO BOCCARDO4, MARIO PAVARINO1 & MAURO GIORGIO MARIOTTI1 *[email protected] 1DIP.TE.RIS - Università di Genova - Polo Botanico “Hanbury”, Corso Dogali 1/M, I16136 Genova, Italy 2 MUT- Università di Torino, Dipartimento di Biologia Vegetale, Viale Mattioli 25, I10125 Torino, Italy 3Via San Marino 111/16, I16127 Genova, Italy 4Via F. Bettini 14/11, I16162 Genova, Italy Abstract— The paper is aimed at integrating and updating the first edition of the checklist of Ligurian macrofungi. Data are related to mycological researches carried out mainly in some holm-oak woods through last three years. The new taxa collected amount to 172: 15 of them belonging to Ascomycota and 157 to Basidiomycota. It should be highlighted that 12 taxa have been recorded for the first time in Italy and many species are considered rare or infrequent. Each taxa reported consists of the following items: Latin name, author, habitat, height, and the WGS-84 Global Position System (GPS) coordinates. This work, together with the original Ligurian checklist, represents a contribution to the national checklist. Key words—mycological flora, new reports Introduction Liguria represents a very interesting region from a mycological point of view: macrofungi, directly and not directly correlated to vegetation, are frequent, abundant and quite well distributed among the species. This topic is faced and discussed in Zotti & Orsino (2001). Observations prove an high level of fungal biodiversity (sometimes called “mycodiversity”) since Liguria, though covering only about 2% of the Italian territory, shows more than 36 % of all the species recorded in Italy.
    [Show full text]
  • The Phylogeny of Plant and Animal Pathogens in the Ascomycota
    Physiological and Molecular Plant Pathology (2001) 59, 165±187 doi:10.1006/pmpp.2001.0355, available online at http://www.idealibrary.com on MINI-REVIEW The phylogeny of plant and animal pathogens in the Ascomycota MARY L. BERBEE* Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada (Accepted for publication August 2001) What makes a fungus pathogenic? In this review, phylogenetic inference is used to speculate on the evolution of plant and animal pathogens in the fungal Phylum Ascomycota. A phylogeny is presented using 297 18S ribosomal DNA sequences from GenBank and it is shown that most known plant pathogens are concentrated in four classes in the Ascomycota. Animal pathogens are also concentrated, but in two ascomycete classes that contain few, if any, plant pathogens. Rather than appearing as a constant character of a class, the ability to cause disease in plants and animals was gained and lost repeatedly. The genes that code for some traits involved in pathogenicity or virulence have been cloned and characterized, and so the evolutionary relationships of a few of the genes for enzymes and toxins known to play roles in diseases were explored. In general, these genes are too narrowly distributed and too recent in origin to explain the broad patterns of origin of pathogens. Co-evolution could potentially be part of an explanation for phylogenetic patterns of pathogenesis. Robust phylogenies not only of the fungi, but also of host plants and animals are becoming available, allowing for critical analysis of the nature of co-evolutionary warfare. Host animals, particularly human hosts have had little obvious eect on fungal evolution and most cases of fungal disease in humans appear to represent an evolutionary dead end for the fungus.
    [Show full text]
  • Contribución Al Estudio De Los Pezizales (Ascomycotina) De Costa Rica
    CONTRIBUCIÓN AL ESTUDIO DE LOS PEZIZALES (ASCOMYCOTINA) DE COSTA RICA por 1 F. D. CALONGE , T. ITURRIAGN, M. MATA' & J. CARRANZA' I Real Jardín Botánico, CSIC, Plaza de Murillo 2. E- 280 l4 Madrid, España. e-mail: [email protected] 2 Dpto. Biología de Organismos, Universidad Simón Bolívar, Caracas, Venezuela. e-mail: [email protected] ) INBio, Instituto Nacional de Biodiversidad, A.P. 22-3100, Santo Domingo, Heredia, Costa Rica. e-mail: [email protected] , Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica. e-mail: [email protected] Summary. CALONGE, F. D., T. ITURRIAGA, M. MATA & J. CARRANZA (2003). Contribution to the study ofthe Pezizales (Ascomycotina) ofCosta Rica. Bol. Soco Micol. Madrid 27: 21-32. More than 400 herbarium collections ofPezizales have been observed during the confection ofthis work. As a result ofthis research on the taxonomy, chorology and ecology ofthese fungi, 46 taxa have been identified, and within them the following six species represent new records to Costa Rica: Aurophora dochmia, Glaziella allrantiaca, Gyromitra esculenta, Morchella esculenta, Plectania rhytidia and Winnea gigantea. Key words: Pezizales, taxonomy, chorology, ecology, Central America, Costa Rica. Resumen. CALONGE, F. D., T. ITURRIAGA, M. MATA & J. CARRANZA (2003). Contribución al estudio de los Pezizales (Ascomycotina) de Costa Rica. Bol. Soco Micol. Madrid 27: 21-32. Se han revisado más de 400 colecciones de herbario pertenecientes a los Pezizales, y se ha seguido una investigación de la taxonomía, corología y ecología de los mismos. Como resultado de este tra­ bajo se han identificado 46 táxones, entre los cuales pensamos que los seis siguientes representan nuevos registros para Costa Rica: Aurophora dochmia, Glaziella aurantiaca, Gyromitra esculenta, Morchella esculenta, Plectania rhytidia y Winnea gigantea.
    [Show full text]
  • (With (Otidiaceae). Annellospores, The
    PERSOONIA Published by the Rijksherbarium, Leiden Volume Part 6, 4, pp. 405-414 (1972) Imperfect states and the taxonomy of the Pezizales J.W. Paden Department of Biology, University of Victoria Victoria, B. C., Canada (With Plates 20-22) Certainly only a relatively few species of the Pezizales have been studied in culture. I that this will efforts in this direction. hope paper stimulatemore A few patterns are emerging from those species that have been cultured and have produced conidia but more information is needed. Botryoblasto- and found in cultures of spores ( Oedocephalum Ostracoderma) are frequently Peziza and Iodophanus (Pezizaceae). Aleurospores are known in Peziza but also in other like known in genera. Botrytis- imperfect states are Trichophaea (Otidiaceae). Sympodulosporous imperfect states are known in several families (Sarcoscyphaceae, Sarcosomataceae, Aleuriaceae, Morchellaceae) embracing both suborders. Conoplea is definitely tied in with Urnula and Plectania, Nodulosporium with Geopyxis, and Costantinella with Morchella. Certain types of conidia are not presently known in the Pezizales. Phialo- and few other have spores, porospores, annellospores, blastospores a types not been reported. The absence of phialospores is of special interest since these are common in the Helotiales. The absence of conidia in certain e. Helvellaceae and Theleboleaceae also be of groups, g. may significance, and would aid in delimiting these taxa. At the species level critical com- of taxonomic and parison imperfect states may help clarify problems supplement other data in distinguishing between closely related species. Plectania and of where such Peziza, perhaps Sarcoscypha are examples genera studies valuable. might prove One of the Pezizales in need of in culture large group desparate study are the few of these have been cultured.
    [Show full text]